
Journal of Computational and Applied Mathematics 122 (2000) 231–250
www.elsevier.nl/locate/cam

Diophantine approximations using Pad�e approximations
M. Pr�evost

Laboratoire de Math�ematiques Pures et Appliqu�ees Joseph Liouville, Universit�e du Littoral Côte d’Opale, Centre
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Abstract

We show how Pad�e approximations are used to get Diophantine approximations of real or complex numbers, and
so to prove the irrationality. We present two kinds of examples. First, we study two types of series for which Pad�e
approximations provide exactly Diophantine approximations. Then, we show how Pad�e approximants to the asymptotic
expansion of the remainder term of a value of a series also leads to Diophantine approximation. c© 2000 Elsevier Science
B.V. All rights reserved.

1. Preliminary

De�nition 1 (Diophantine approximation). Let x a real or complex number and (pn=qn)n a sequence
of Q or Q(i):
If limn→∞|qnx−pn|=0 and pn=qn 6= x; ∀n ∈ N, then the sequence (pn=qn)n is called a Diophantine

approximation of x.

It is well known that Diophantine approximation of x proves the irrationality of x.
So, to construct Diophantine approximation of a number, a mean is to �nd rational approximation,

for example with Pad�e approximation.
We �rst recall the theory of formal orthogonal polynomials and its connection with Pad�e approx-

imation and �-algorithm.

1.1. Pad�e approximants

Let h be a function whose Taylor expansion about t=0 is
∑∞

i=0 cit
i. The Pad�e approximant [m=n]h

to h is a rational fraction Nm(t)=Dn(t) whose Taylor series at t = 0 coincides with that of h up to
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the maximal order, which is in general the sum of the degrees of numerator and denominator of the
fraction, i.e,

deg(Nm)6m; deg(Dn)6n; Dn(t)h(t)− Nm(t) = O(tm+n+1); t → 0:

Note that the numerator Nm and the denominator Dn both depend on the index m and n.
The theory of Pad�e approximation is linked with the theory of orthogonal polynomials (see [10]):
Let us de�ne the linear functional c acting on the space P of polynomials as follows:

c : P → R (or C);

xi → 〈c; xi〉= ci; i = 0; 1; 2; : : : and if p ∈ Z;

c(p) : P → R (or C);

xi → 〈c(p); xi〉:=〈c; xi+p〉= ci+p; i = 0; 1; 2; : : : (ci = 0; i ¡ 0);

then the denominators of the Pad�e approximants [m=n] satisfy the following orthogonality property:

〈c(m−n+1); xiD̃n(x)〉= 0; i = 0; 1; 2; : : : ; n− 1;
where D̃n(x) = xnDn(x−1) is the reverse polynomial. Since the polynomials Dn involved in the ex-
pression of Pad�e approximants depend on the integers m and n, and since D̃n is orthogonal with
respect to the shifted linear functional c(m−n+1), we denote

P(m−n+1)n (x) = D̃n(x);

Q̃
(m−n+1)
n (x) = Nm(x):

If we set

R(m−n+1)n−1 (t):=

〈
c(m−n+1);

P(m−n+1)n (x)− P(m−n+1)n (t)
x − t

〉
; R(m−n+1)n−1 ∈ Pn−1;

where c(m−n+1) acts on the letter x, then

Nm(t) =

(
m−n∑
i=0

citi
)
P̃
(m−n+1)
n (t) + tm−n+1R̃

(m−n+1)
n−1 (t);

where R̃
(m−n+1)
n−1 (t) = tn−1R(m−n+1)n−1 (t−1); P̃

(m−n+1)
n (t) = tnP(m−n+1)n (t−1) and

∑n−m
i=0 cit

i = 0; n¡m.
The sequence of polynomials (P(n)k )k , of degree k, exists if and only if ∀n ∈ Z, the Hankel

determinant

H (n)
k :=

∣∣∣∣∣∣∣∣
cn · · · cn+k−1
· · · · · · · · ·
cn+k−1 · · · cn+2k−2

∣∣∣∣∣∣∣∣
6= 0;

where cn = 0 if n¡ 0.
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In that case, we shall say that the linear functional c is completely de�nite. For the noncompletely
de�nite case, the interested reader is referred to Draux [15].
For extensive applications of Pad�e approximants to Physics, see Baker’s monograph [5].
If c admits an integral representation by a nondecreasing function �, with bounded variation

ci =
∫
R
xid�(x);

then the theory of Gaussian quadrature shows that the polynomials Pn orthogonal with respect to c,
have all their roots in the support of the function � and

h(t)− [m=n]h(t) =
tm−n+1

(P̃
(m−n+1)
n (t))2

c(m−n+1)

(P̃(m−n+1)n (x))2

1− xt




=
tm−n+1

(P̃
(m−n+1)
n (t))2

∫
R
xm−n+1

(P̃
(m−n+1)
n (x))2

1− xt d�(x): (1)

Note that if c0 = 0 then [n=n]h(t) = t[n− 1=n]h=t(t) and if c0 = 0 and c1 = 0; then [n=n]h(t) = t2[n−
2=n]h=t2 (t).
Consequence: If � is a nondecreasing function on R, then
h(t) 6= [m=n]f(t) ∀t ∈ C− supp(�):

1.2. Computation of Pad�e approximants with �-algorithm

The values of Pad�e approximants at some point of parameter t, can be recursively computed with
the �-algorithm of Wynn. The rules are the following:

�(n)−1 = 0; �
(n)
0 = Sn; n= 0; 1; : : : ;

�(n)k+1 = �
(n+1)
k−1 +

1

�(n+1)k − �(n)k
; k; n= 0; 1; : : : (rhombus rule);

where Sn =
∑n

k=0 ckt
k .

�-values are placed in a double-entry array as following:

�(0)−1 = 0

�(0)0 = S0

�(1)−1 = 0 �(0)1

�(1)0 = S1 �(0)2

�(2)−1 = 0 �(1)1 �(0)3

�(2)0 = S2 �(1)2
. . .

�(3)−1 = 0 �(2)1
...

. . .

... �(3)0 = S3
...

. . .
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The connection between Pad�e approximant and �-algorithm has been established by Shanks [26] and
Wynn [35]:

Theorem 2. If we apply �-algorithm to the partial sums of the series h(t) =
∑∞

i=0 cit
i; then

�(n)2k = [n+ k=k]h(t):

Many convergence results for �-algorithm has been proved for series which are meromorphic func-
tions in some complex domain, or which have an integral representation (Markov–Stieltjes function)
(see [29,6,11] for a survey).

2. Diophantine approximation of sum of series with Pad�e approximation

Sometimes, Pad�e approximation is su�cient to prove irrationality of values of a series, as it can
be seen in the following two results.

2.1. Irrationality of ln(1− r)

We explain in the following theorem, how the old proof of irrationality of some logarithm number
can be re-written in terms of �-algorithm.

Theorem 3. Let r=a=b; a ∈ Z; b ∈ N; b 6= 0; with b:e:(1−√
1− r)2¡ 1(ln e=1) Then �-algorithm

applied to the partial sums of f(r):=− ln(1− r)=r =∑∞
i=0 r

i=(i + 1) satis�es that ∀n ∈ N; (�(n)2k )k
is a Diophantine approximation of f(r).

Proof. From the connection between Pad�e approximation, orthogonal polynomials and �-algorithm,
the following expression holds:

�(n)2k =
n∑
i=0

ri

i + 1
+ rn+1

R̃
(n+1)
k−1 (r)

P̃
(n+1)
k (r)

=
Nn+k(r)

P̃
(n+1)
k (r)

;

where

P̃
(n+1)
k (t) = tkP(n+1)k (t−1) =

k∑
i=0

(
k

k − i

)(
k + n+ 1

i

)
(1− t)i

is the reversed shifted Jacobi polynomial on [0,1], with parameters �=0; �= n+1; and R̃
(n+1)
k−1 (t)=

tk−1R(n+1)k−1 (t
−1) with R(n+1)k−1 (t) = 〈c(n+1); P

(n+1)
k (x)−P(n+1)k (t)

x−t 〉(〈c(n+1); xi〉:=1=(n + i + 2)) (c acts on the
variable x ).
Since P̃

(n+1)
k (t) has only integer coe�cients, bkP̃

(n+1)
k (a=b) ∈ Z:

The expression of R(n+1)k−1 (t) shows that dn+k+1b
kR̃

(n+1)
k−1 (a=b) ∈ Z, where dn+k+1:=LCM(1; 2; : : : ; n+

k + 1) (LCM means lowest common multiple).
We prove now that the sequence (�(n)2k )k is a Diophantine approximation of ln(1− a=b):
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The proof needs asymptotics for dn+k+1, for P̃
(n+1)
k (a=b) and for (�(n)2k − f(r)) when k tends to

in�nity. dn = en(1+o(1)) follows from analytic number theory [1].
limk(P̃

(n+1)
k (x))1=k=x(y+

√
y2 − 1); x¿ 1, y=2=x−1, comes from asymptotic properties of Jacobi

polynomials (see [30]), and limk→+∞(�
(n)
2k − f(r))1=k = (2=r − 1 −√(2=r − 1)2 − 1)2 (error of Pad�e

approximants to Markov–Stieltjes function).
So

lim
k→+∞

sup
∣∣∣dn+k+1bkP̃(n+1)k (a=b)f(r)− dn+k+1bkNn+k(a=b)

∣∣∣1=k

6 lim
k→+∞

sup(dn+k+1)1=k lim sup
k

∣∣∣bkP̃(n+1)k (a=b)
∣∣∣1=k lim

k→+∞
sup

∣∣∣�(n)2k + 1=rln(1− r)∣∣∣1=k

6e:b:r:(2=r − 1 +
√
(2=r − 1)2 − 1)(2=r − 1−

√
(2=r − 1)2 − 1)2

=e:b:(2=r − 1−
√
(2=r − 1)2 − 1) = e:b:(1−√

1− r)2¡ 1

by hypothesis, which proves that

∀n ∈ N; lim
k→+∞

(dn+k+1bkP̃
(n+1)
k (a=b)f(r)− dn+k+1bkNn+k(a=b)) = 0:

Moreover,

�(n)2k + 1=r ln(1− r) =− r2k+n+1

(P̃
(n+1)
k (r))2

∫ 1

0

(P(n+1)k (x))2

1− xr (1− x)n+1 dx 6= 0:

So the sequence (�(n)2k )k is a Diophantine approximation of ln(1− a=b); if b:e:(1−
√
1− a=b)2¡ 1.

2.2. Irrationality of
∑
tn=wn

The same method as previously seen provides Diophantine approximations of f(t):=
∑∞

n=0 t
n=wn

when the sequence (wk)k satis�es a second-order recurrence relation

wn+1 = swn − pwn−1; n ∈ N; (2)

where w0 and w−1 are given in C and s and p are some complex numbers.
We suppose that wn 6= 0; ∀n ∈ N and that the two roots of the characteristic equation z2 − sz +

p= 0, � and � satisfy |�|¿ |�|.
So wn admits an expression in term of geometric sequences: wn = A�n + B�n; n ∈ N.
The roots of the characteristic equation are assumed to be of distinct modulus (|�|¿ |�|), so there

exists an integer r such that |�=�|r ¿ |B=A|.

Lemma 4 (see [25]). If �; �; A; B are some complex numbers; and |�|¿ |�|; then the function

f(t):=
∞∑
k=0

tk

A�k + B�k
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admits another expansion

f(t) =
r−1∑
k=0

tk

A�k + B�k
− tr

A�r

∞∑
k=0

[(−B=A)(�=�)r−1]k
t=�− (�=�)k ;

where r ∈ N is chosen such that |�|r|A|¿ |�|r|B|.

With the notations of Section 1.1, the Pad�e approximant [n+ k − 1=k]f is

[n+ k − 1=k]f(t) =
Q̃
(n)

k (t)

P̃
(n)
k (t)

;

where P̃
(n)
k (t) = t

kP(n)k (t
−1).

In a previous papers by the author [24,25], it has been proved that for all n ∈ Z, the sequence of
Pad�e approximants ([n+ k − 1=k])k to f converges on any compact set included in the domain of
meromorphy of the function f; with the following error term:

∀t ∈ C \ {�(�=�)j; j ∈ N}; ∀n ∈ N; lim sup
k

|f(t)− [n+ k − 1=k]f(t)|1=k
2

6
�
�
; (3)

where � and � are the two solutions of z2 − sz + p= 0; |�|¿ |�|.

Theorem 5. If Q̃
(n)

k (t)=P̃
(n)
k (t) denotes the Pad�e approximant [n+ k − 1=k]f; then

(a) P̃
(n)
k (t) =

k∑
i=0

(
k

i

)
q

qi(i−1)=2(−t=�)i
i∏
j=1

A+ Bqn+k−j

A+ Bqn+2k−j
;

where

q := �=�;

(
k

i

)
q

:=
(1− qk) : : : (1− qk−i+1)
(1− q)(1− q2) : : : (1− qi) ; 16i6k (Gaussian binomial coe�cient);

(
k

0

)
q

= 1:

(b) | P̃(n)k (t)−
k−1∏
j=0

(1− tqj=�)|6R|q|k ; k¿K0

for some constant R independent of k and K0 is an integer depending on A; B; q; n.
Moreover; if s; p; w−1; w0 ∈ Z(i); for all common multiple dm of {w0; w1; : : : ; wm}

(c) wn+k · · ·wn+2k−1P̃(n)k ∈ Z(i)[t]; ∀n ∈ Z=n+ k − 1¿0
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and

(d) dn+k−1 wn+k · · ·wn+2k−1 Q̃(n)k ∈ Z(i)[t]; ∀n ∈ Z =n+ k − 1¿0:

Proof. (a) is proved in [16] and (b) is proved in [25]. (c) and (d) comes from expression (a).

The expression of wn is

wn = A�n + B�n:

If A or B is equal to 0 then f(t) is a rational function, so without loss of generality, we can assume
that AB 6= 0.
The degrees of Q̃

(n)

k and P̃
(n)
k are, respectively, k + n − 1 and k, so if we take t ∈ Q(i) with

vt ∈ Z(i), the above theorem implies that the following sequence:

ek;n:=f(t)× vk′ dn+k−1wn+k · · ·wn+2k−1P̃(n)k (t)− vk
′
dn+k−1wn+k · · ·wn+2k−1Q̃(n)k (t);

where k ′ =max{n+ k − 1; k} is a Diophantine approximation to f(t), if
(i) ∀n ∈ Z; limk→∞ek;n = 0,
(ii) [n+ k − 1=k]f(t) 6= [n+ k=k + 1]f(t).
For sake of simplicity, we only display the proof for the particular case n= 0.
We set

ek :=ek;0; Q̃k :=Q̃
(0)

k and P̃k :=P̃
(0)
k :

From the asymptotics given in (3), we get

lim sup
k

|ek |1=k26 lim sup
k

∣∣∣∣∣f(t)− Q̃k(t)
P̃k(t)

∣∣∣∣∣
1=k2

lim sup
k

∣∣∣vkdk−1wk · · ·w2k−1P̃k(t)∣∣∣1=k2 (4)

6|p|lim sup|�k−1|1=k2 ; (5)

where �k :=dk=
∏k
i=0 wi.

We will get limk→∞ ek = 0 if the following condition is satis�ed:

lim sup
k→∞

|�k−1|1=k2¡ 1=|p|:
Moreover, from the Christo�el–Darboux identity between orthogonal polynomials, condition (ii) is
satis�ed since the di�erence

Q̃k+1(t)P̃k(t)− P̃k+1(t)Q̃k(t) = t2k
(−1)k
A+ B

k∏
i=1

ABp2i−2(�i − �i)2 w2i−1
w22i−1w2iw22i−2

is di�erent from 0.
The following theorem is now proved.

Theorem 6. Let f be the meromorphic function de�ned by the following series:

f(t) =
∞∑
n=0

tn

wn
;
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where (wn)n is a sequence of Z(i) satisfying a three-term recurrence relation

wn+1 = s wn − p wn−1; s; p ∈ Z(i)
with the initial conditions: w−1; w0 ∈ Z(i). If for each integer m; there exists a common multiple
dm for the numbers {w0; w1; : : : ; wm} such that �m de�ned by

�m:=
dm∏m
i=0 wi

satis�es the condition

lim sup
m

|�m|1=m2¡ 1=|p|; (6)

then for t ∈ Q(i); t 6= �(�=�) j; j = 0; 1; 2; : : : we have

f(t) 6∈ Q(i):
See [25] for application to Fibonacci and Lucas series. (If Fn and Ln are, respectively, Fibonacci

and Lucas sequences, then f(t) =
∑
tn=Fn and g(t) =

∑
tn=Ln are not rational for all t rational, not

a pole of the functions f or g, which is a generalization of [2].)

3. Diophantine approximation with Pad�e approximation to the asymptotic expansion of the
remainder of the series

For sums of series f, Pad�e approximation to the function f does not always provide Diophantine
approximation. Although the approximation error |x−pn=qn| is very sharp, the value of the denom-
inator qn of the approximation may be too large such that |qnx − pn| does not tend to zero when n
tends to in�nity.
Another way is the following.
Consider the series f(t) =

∑∞
i=0 cit

i =
∑n

i=0 cit
i +Rn(t): If, for some complex number t0, we know

the asymptotic expansion of Rn(t0) on the set {1=ni; i = 1; 2; : : :}; then it is possible to construct an
approximation of f(t0), by adding to the partial sums Sn(t0):=

∑n
i=0 cit

i
0; some Pad�e approximation

to the remainder Rn(t0) for the variable n.
But it is not sure that we will get a Diophantine approximation for two reasons.

(1) the Pad�e approximation to Rn(t0) may not converge to Rn(t0),
(2) the denominator of the approximant computed at t0, can converge to in�nity more rapidly

than the approximation error does converge to zero.

So, this method works only for few cases.

3.1. Irrationality of �(2); �(3) , ln(1 + �) and
∑

n 1=(q
n + r)

3.1.1. Zeta function
The Zeta function of Riemann is de�ned as

�(s) =
∞∑
n=1

1
ns
; (7)
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where the Dirichlet series on the right-hand side of (7) is convergent for Re(s)¿ 1 and uniformly
convergent in any �nite region where Re(s)¿1 + �, with �¿ 0. It de�nes an analytic function for
Re(s)¿ 1.
Riemann’s formula

�(s) =
1
�(s)

∫ ∞

0

xs−1

ex − 1 dx; Re(s)¿ 1;

where

�(s) =
∫ ∞

0
ys−1e−y dy is the gamma function (8)

and

�(s) =
e−i�s�(1− s)

2i�

∫
C

zs−1

ez − 1 dz (9)

where C is some path in C, provides the analytic continuation of �(s) over the whole s-plane.
If we write formula (7) as

�(s) =
n∑
k=1

1
ks
+

∞∑
k=1

1
(n+ k)s

and set 	s(x):=�(s)
∑∞

k=1(x=(1 + kx))
s then

�(s) =
n∑
k=1

1
ks
+

1
�(s)

	s(1=n): (10)

The function
∑∞

k=1(x=(1+ kx))
s) is known as the generalized zeta-function �(s; 1+1=x) [32, Chapter

XIII] and so we get another expression of 	s(x):

	s(x) =
∫ ∞

0
us−1

e−u=x

eu − 1 du; x¿ 0;

whose asymptotic expansion is

	s(x) =
∞∑
k=0

Bk
k!
�(k + s− 1)xk+s−1;

where Bk are the Bernoulli numbers.
Outline of the method: In (10), we replace the unknown value 	s(1=n) by some Pad�e-approximant

to 	s(x), at the point x = 1=n. We get the following approximation:

�(s) ≈
n∑
k=1

1
ks
+

1
�(s)

[p=q]	s(x = 1=n): (11)

We only consider the particular case p= q.
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Case �(2): If s= 2 then (10) becomes

�(2) =
n∑
k=1

1
k2
+	2(1=n);

and its approximation (11):

�(2) ≈
n∑
k=1

1
k2
+ [p=p]	2 (x = 1=n); (12)

where

	2(x) =
∞∑
k=0

Bkxk+1 = B0x + B1x2 + B2x3 + · · · (asymptotic expansion): (13)

The asymptotic expansion (13) is Borel-summable and its sum is

	2(x) =
∫ ∞

0
u
e−u=x

eu − 1 du:
Computation of [p=p]	2(x)=x: We apply Section 1.1, where function f(x)=	2(x)=x. The Pad�e ap-

proximants [p=p]f are linked with the orthogonal polynomial with respect to the sequence B0; B1; B2 : : :.
As in Section 1, we de�ne the linear functional B acting on the space of polynomials by

B : P → R

xi → 〈B; xi〉= Bi; i = 0; 1; 2; : : : :

The orthogonal polynomials 
p satisfy

〈B; xi
p(x)〉= 0; i = 0; 1; : : : ; p− 1: (14)

These polynomials have been studied by Touchard ([31,9,28,29]) and generalized by Carlitz ([12,13]).
The following expressions


p(x) =
∑
2r6p

(
2x + p− 2r
p− 2r

)(
x

r

)2

= (−1)p
p∑
k=0

(−1)k
(
p

k

)(
p+ k

k

)(
x + k

k

)
=

p∑
k=0

(
p

k

)(
p+ k

k

)(
x

k

)
(15)

hold (see [34,12]).
Note that the 
p’s are orthogonal polynomials and thus satisfy a three-term recurrence relation.
The associated polynomials �p of degree p− 1 are de�ned as
�p(t) =

〈
B;

p(x)− 
p(t)

x − t
〉
;

where B acts on x.
From expression (15) for 
p, we get the following formula for �p:

�p(t) =
p∑
k=0

(
p

k

)(
p+ k

k

)〈
B;

(
x

k

)
−
(
t

k

)

x − t

〉
:
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The recurrence relation between the Bernoulli numbers Bi implies that〈
B;

(
x

k

)〉
=
(−1)k
k + 1

:

Using the expression of the polynomial (( xk )− ( tk ))=(x − t) on the Newton basis on 0; 1; : : : ; k − 1;(
x

k

)
−
(
t

k

)

x − t =

(
t

k

)
k∑
i=1

(
x

i − 1

)

i

(
t

i

) ;

we can write a compact formula for �p:

�p(t) =
p∑
k=1

(
p

k

)(
p+ k

k

)(
t

k

)
k∑
i=1

(−1)i−1

i2
(
t

i

) ∈ Pp−1 :

Approximation (12) for �(2) becomes

�(2) ≈
n∑
k=1

1
k2
+ t
�̃p(t)


̃p(t)

∣∣∣∣∣
t=1=n

=
n∑
k=1

1
k2
+
�p(n)

p(n)

:

Using partial decomposition of 1=
( n
i

)
with respect to the variable n, it is easy to prove that

dn

i

(
n

i

) ∈ N; ∀i ∈ {1; 2; : : : ; n} (16)

with dn:=LCM(1; 2; : : : ; n).
A consequence of the above result is

d2n�p(n) ∈ N; ∀p ∈ N
and

d2n
p(n)�(2)− d2n(Sn
p(n) + �p(n)) (17)

is a Diophantine approximation of �(2), for all values of integer p, where Sn denotes the partial
sums Sn =

∑n
k=1 1=k

2. It remains to estimate the error for the Pad�e approximation:

	2(t)− [p=p]	2 (t) =	2(t)− [p− 1=p]	2=t(t):
Touchard found the integral representation for the linear functional B:

〈B; xk〉:=Bk =−i�
2

∫ �+i∞

�−i∞
xk

dx

sin2(�x)
; −1¡�¡ 0:
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Thus, formula (1) becomes

t−1	2(t)− [p− 1=p]	2=t(t) =−i�
2
t2p


̃
2

p(t)

∫ �+i∞

�−i∞


2p(x)
1− xt

dx

sin2(�x)
;

and we obtain the error for the Pad�e approximant to 	2:

	2(t)− [p=p]	2 (t) =−i�
2

t

2p(t−1)

∫ �+i∞

�−i∞


2p(x)
1− xt

dx

sin2(�x)
and the error for formula (17):

d2n
p(n)�(2)− d2n(Sn
p(n) + �p(n)) =−d2ni
�
2n

1

p(n)

∫ �+i∞

�−i∞


2p(x)
1− x=n

dx

sin2(�x)
: (18)

If p= n, we get Ap�ery’s numbers [4]:

b′n = 
n(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)

and

a′n = Sn
n(n) + �n(n) =

(
n∑
k=1

1
k2

)
b′n +

n∑
k=1

(
n

k

)2(
n+ k

k

)
k∑
i=1

(−1)i−1

i2
(
n

i

) :

The error in formula (18) becomes

d2nb
′
n�(2)− d2na′n =−d2ni

�
2n
1
b′n

∫ �+i∞

�−i∞


2n(x)
1− x=n

dx

sin2 �x
(19)

In order to prove the irrationality of �(2), we have to show that the right-hand side of (19) tends
to 0 when n tends to in�nity, and is di�erent from 0, for each integer n.
We have∣∣∣∣∣

∫ −1=2+i∞

−1=2−i∞


2n(x)
1− x=n

dx

sin2 �x

∣∣∣∣∣6
∣∣∣∣∣
∫ +∞

−∞


2n(− 1
2 + iu)

1 + 1=2n
du

cosh2�u

∣∣∣∣∣6 1
1 + 1=2n

∣∣〈B;
2n(x)〉∣∣
since cosh2�u is positive for u ∈ R and 
2n(− 1

2 + iu) real positive for u real (
n has all its roots on
the line − 1

2 + iR; because 
n(− 1
2 + iu) is orthogonal with respect to the positive weight 1=cosh

2�u
on R). The quantity 〈B;
2n(x)〉 can be computed from the three term recurrence relation between
the 
′

ns [31]:

〈B;
2n(x)〉=
(−1)n
2n+ 1

:

The Diophantine approximation (19) satis�es

|d2nb′n�(2)− d2na′n|6d2n
�

(2n+ 1)2
× 1
b′n
:
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In [14], it is proved that b′n ∼ A′((1 +
√
5)=2)5nn−1 when n → ∞, for some constant A′. From a

result concerning dn = LCM(1; 2; : : : ; n): (dn = e(n(1+o(1))), we get

lim
n→∞ |d2nb′n�(2)− d2na′n|= 0; (20)

where d2nb
′
n and d

2
na

′
n are integers.

Relation (20) proves that �(2) is not rational.
Case �(3): If s= 3 then equality (10) becomes

�(3) =
n∑
k=1

1
k3
+
1
2
	3(1=n); (21)

where

	3(x) =
∫ ∞

0
u2
e−u=x

eu − 1 du

whose asymptotic expansion is

	3(x) =
∞∑
k=0

Bk(k + 1)xk+2:

Computation of [p=p]	3(x)=x2 : Let us de�ne the derivative of B by

〈−B′; xk〉 := 〈B; kxk−1〉= kBk−1; k¿1;

〈−B′; 1〉 := 0:
So, the functional B′ admits an integral representation:

〈B′; xk〉= i�2
∫ �+i∞

�−i∞
xk
cos(�x)
sin3(�x)

dx; −1¡�¡ 0:

Let (�n)n be the sequence of orthogonal polynomial with respect to the sequence

−B′
0:=0; −B′

1 = B0; −B′
2 = 2B1; −B′

3 = 3B2; : : : :

The linear form B′ is not de�nite and so the polynomials �n are not of exact degree n.
More precisely, �2n has degree 2n and �2n+1 =�2n. For the general theory of orthogonal poly-

nomials with respect to a nonde�nite functional, the reader is referred to Draux [15]. If we take
�=− 1

2 , the weight cos�x=sin
3 (�x) dx on the line − 1

2 + iR becomes sinh �t=cosh
3 �t dt on R, which

is symmetrical around 0. So, �2n(it − 1
2 ) only contains even power of t and we can write

�2n(it − 1
2 ) =Wn(t2), Wn of exact degree n. Thus Wn satis�es∫

R
Wn(t2)Wm(t2)

t sinh �t

cosh3�t
dt = 0; n 6= m:

The weight t sinh �t=cosh3�t equals (1=4�3)|�( 12 + it)|8|�(2it)|2 and has been studied by Wilson
[33,3]:

n¿0; �2n(y) =
n∑
k=0

(
n

k

)(
n+ k

k

)(
y + k

k

)(
y

k

)
: (22)
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Let �2n the polynomial associated to �2n:

�2n(t) =
〈
−B′;

�2n(x)−�2n(t)
x − t

〉
; B′ acts on x:

For the computation of �2n, we need to expand the polynomial(
x + k

k

)(
x

k

)
−
(
t + k

k

)(
t

k

)

x − t :

On the Newton basis with the abscissa {0; 1;−1; : : : ; n;−n}(
x + k

k

)(
x

k

)
−
(
t + k

k

)(
t

k

)

x − t =
2k∑
i=1

N2k(t)
Ni(t)

Ni−1(x)
[(i + 1)=2]

;

where N0(x):=1, N1(x) =
( x
1

)
, N2(x) =

( x
1

) ( x+1
1

)
; : : : ; N2i(x) =

( x
i

) ( x+i
i

)
N2i+1(x) =

(
x
i+1

) ( x+i
i

)
.

By recurrence, the values 〈−B′; Ni(x)〉 can be found in

i ∈ N; 〈−B′; N2i(x)〉= 0; 〈−B′; N2i+1(x)〉= (−1)i
(i + 1)2

:

Using the linearity of B′, we get the expression of �2n:

�2n(t) =
n∑
k=0

(
n

k

)(
n+ k

k

)
k∑
i=1

(−1)i+1
i3

(
t + k

k − i

)(
t − i
k − i

)
(
k

i

)2 ∈ P2n−2: (23)

Eq. (16) implies that

d3n�2n(t) ∈ N; ∀t ∈ N:
The link between �2n, �2n and the Ap�ery’s numbers an, bn is given by taking y = n in (22) and
t = n in (23):

�2n(n) =
n∑
k=0

(
n

k

)2(
n+ k

k

)2
= bn;

(
n∑
k=1

1
k3

)
�2n(n) +

1
2
�2n(n) = an:

Ap�ery was the �rst to prove irrationality of �(3). He only used recurrence relation between the an
and bn. We end the proof of irrationality of �(3) with the error term for the Pad�e approximation.
Let us recall equality (21),

�(3) =
n∑
k=1

1
k3
+
1
2
	3

(
1
n

)
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in which we replace the unknown term 	3(1=n) by its Pad�e approximant [2n=2n]	3 (x=1=n). It arises
the following approximation for �(3):

�(3) ≈
n∑
k=1

1
k3
+
1
2
�2n(n)
�2n(n)

and the expression

en = 2d3n�2n(n)�(3)−
[(

n∑
k=1

1
k3

)
2�2n(n) +�2n(n)

]
d3n

will be a Diophantine approximation, if we prove that limn en = 0 (since �2n(n) and d3n�2n(n) are
integer).
Let us estimate the error en. The method is the same as for �(2):

	3(t)− [2n=2n]	3 (t) =	3(t)− t2[2n− 2=2n]	3=t2 (t) =	3(t)− �2n(t−1)
�2n(t−1)

:

The integral representation of B′ gives

	3(t)− [2n=2n]	3 (t) =− t�2i
�2
2n(t−1)

∫ �+i∞

�−i∞

�2
2n(x)
1− xt

cos�x

sin3�x
dx:

The previous expression implies that the error 	3(t)− [2n=2n]	3 (t) is nonzero, and also that

|	3(t)− [2n=2n]	3 (t)|6
�2t

�2
2n(t−1)

· 1
1 + t=2

·
∫
R
W 2
n (u

2)
u sinh �u

cosh3�u
du; t ∈ R+:

From the expression of the integral (see [33]) we get

|	3(1=n)− [2n=2n]	3 (1=n)|6
4�2

(2n+ 1)2�2
2n(n)

:

The error term in the Pad�e approximation satis�es∣∣∣∣∣2�(3)− 2
n∑
k=1

1
k3

− [2n=2n]	3 (1=n)
∣∣∣∣∣6 4�2

(2n+ 1)2�2
2n(n)

and the error term en satis�es

|en|=
∣∣∣∣∣2d3n�2n(n)�(3)−

[
2

(
n∑
k=1

1
k3

)
�2n(n) +�2n(n)

]
d3n

∣∣∣∣∣6 8�2
(2n+ 1)2

d3n
�2n(n)

:

�2n(n) = bn implies that �2n(n) = A(1 +
√
2)4nn−3=2 [14], and so we get, since dn = en(1+o(1)),

|2d3nbn�(3)− 2d3nan| → 0;

n→ ∞; (24)

where 2d3nbn and 2d
3
nan are integers.

The above relation (24) shows that �(3) is irrational.
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Of course, using the connection between Pad�e approximation and �-algorithm, the Diophantine
approximation of �(3) can be constructed by means of the following �-array: an=bn =

∑n
k=1 1=k

3 +
�(0)4n (Tm)= �

(0)
4n (
∑n

k=1 1=k
3 +Tm); where Tm is the partial sum of the asymptotic series (nonconvergent)

Tm = 1
2

∑m
k=1 Bk(k + 1)1=n

k :
We get the following �-arrays for n= 1,



0

0 0

1 1=2 2=5 = �(0)4

0 1=3

1=2



; 1 + 1

2 ∗ �(0)4 = 6
5 = a1=b1 (Apery′s numbers);

and for n= 2,


0

0 0

1=4 1=6 2=13

1=8 3=20 2=13 2=13

5=32 5=32 21=136 37=240 45=292 = �(0)8

5=32 5=32 2=13 53=344

59=384 59=384 37=240

59=384 59=384

79=512




(we have only displayed the odd columns), 1+1=23+1=2∗�(0)8 =351=292=a2=b2: �-algorithm is a par-
ticular extrapolation algorithm as Pad�e approximation is particular case of Pad�e-type approximation.
Generalization has been achieved by Brezinski and H�avie, the so-called E-algorithm. Diophantine
approximation using E-algorithm and Pad�e-type approximation are under consideration.

3.1.2. Irrationality of ln(1 + �)
In this part, we use the same method as in the preceding section:

We set ln(1 + �) =
n∑
k=1

(−1)k+1 �
k

k
+

∞∑
k=1

(−1)k+n+1
k + n

�k+n: (25)

From the formula 1=(k + n) =
∫∞
0 e−(k+n)v dv, we get an integral representation for the remainder

term in (25):
∞∑
k=1

(−1)k+n+1 �
k+n

k + n
= (−1)n

∫ ∞

0
�n+1

e−nv

ev + �
dv:
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If we expand the function

1 + �
ev + �

=
∞∑
k=0

Rk(−�)v
k

k!
;

where the Rk(−�)′s are the Eulerian numbers [12], we get the following asymptotic expansion:
∞∑
k=1

(−1)k+n+1 �
k+n

k + n
=
(−1)n�n+1
n(1 + �)

( ∞∑
k=0

Rk(−�)xk
)
x=1=n

:

Let us set

�1(x) =
∞∑
k=0

Rk(−�)xk :

Carlitz has studied the orthogonal polynomials with respect to R0(−�), R1(−�); : : : .
If we de�ne the linear functional R by

〈R; xk〉:=Rk(−�);
then the orthogonal polynomials Pn with respect to R; i.e.,

〈R; xkPn(x)〉= 0; k = 0; 1; : : : ; n− 1;
satisfy Pn(x) =

∑n
k=0 (1 + �)

k
( n
k

) ( x
k

)
[12].

The associated polynomials are

Qn(t) =
n∑
k=0

(1 + �)k
(
n

k

)〈
R;

( x
k

)− ( tk )
x − t

〉
: (26)

Carlitz proved that 〈R; ( xk )〉= (−�− 1)−k and thus, using (26),

Qn(t) =
n∑
k=0

(1 + �)k
(
n

k

)(
t

k

)
k∑
i=1

1
i
( t
i

) ( −1
�+ 1

)i−1
:

If we set �= p=q, p and q ∈ Z and t = n, then
qndnQn(n) ∈ Z:

An integral representation for Rk(−�) is given by Carlitz:

Rk(−�) =−1 + �
2i�

∫ �+i∞

�−i∞
zk
�−z

sin �z
dz; −1¡�¡ 0; (27)

and thus

�1(x) =−1 + �
2i�

∫ �+i∞

�−i∞

1
1− xz

�−z

sin �z
dz:

The orthogonal polynomial Pn satis�es [12]∫ �+i∞

�−i∞
P2n(z)

�−z

sin �z
dz =

+2i
i + �

(−�)n+1;



248 M. Pr�evost / Journal of Computational and Applied Mathematics 122 (2000) 231–250

and since Re(�−zsin �z)¿ 0 for z ∈ − 1
2 + iR, we obtain a majoration of the error for the Pad�e

approximation to �1:

x¿ 0;
∣∣�1(x)− [n− 1=n]�1 (x)∣∣6 �n

|1 + x=2|
and if x = 1=n, we get∣∣∣∣�1

(
1
n

)
− [n− 1=n]�1 (1=n)

∣∣∣∣6 |�|n
1 + 1=2n

:

Let us replace in (25) the remainder term by its Pad�e approximant:

ln(1 + �) ≈
n∑
k=1

(−1)k+1 �
k

k
+
(−1)n�n+1
(1 + �)n

[n− 1=n]�1 (1=n);

we obtain a Diophantine approximation for ln(1 + p=q):∣∣∣∣ln
(
1 +

p
q

)
dnq2nPn(n)− dnq2nTn(n)

∣∣∣∣6 �2ndnq2n

(n+ 2)Pn(n)
; (28)

where Tn(n) = Pn(n)
∑n

k=1 (−1)k+1pk=kqk + (−1)n+1Qn(n)qn.
From the expression of Pn(x) we can conclude that

Pn(n) =
n∑
k=0

(1 + �)k
(
n

k

)2
= Legendre

(
n;
2
�
+ 1

)
�n;

where Legendre (n; x) is the nth Legendre polynomial and thus

Tn(n)
Pn(n)

= [n=n]ln(1+x) (x = 1):

So, the classical proof for irrationality of ln(1 + p=q) based on Pad�e approximants to the function
ln(1 + x) is recovered by formula (28).
Proof of irrationality of �(2) with alternated series: Another expression for �(2) is

�(2) = 2
∞∑
k=1

(−1)k−1
k2

:

Let us write it as a sum

�(2) = 2
n∑
k=1

(−1)k−1
k2

+ 2
∞∑
k=1

(−1)k+n+1
(k + n)2

:

Let �2 be de�ned by �2(x) =
∑∞

k=0 Rk(−1)(k + 1)xk . So

�(2) = 2
n∑
k=1

(−1)k−1
k2

+
(−1)n
n2

�2(1=n):

With the same method, we can prove that the Pad�e approximant [2n=2n]�2 (x) computed at
x = 1=n leads to Ap�ery’s numbers a′n and b

′
n and so proves the irrationality of �(2) with the
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integral representation for the sequence (kRk−1(−1))k :

kRk−1(−1) =−�(1 + �)
2i�

∫ �+i∞

�−i∞
zk
cos�z

sin2 � z
dz; k¿1:

obtained with an integration by parts applied to (27).

3.1.3. Irrationality of
∑
1=(qn + r)

In [7], Borwein proves the irrationality of L(r)=
∑
1=(qn−r), for q an integer greater than 2, and

r a non zero rational (di�erent from qn; for any n¿1); by using similar method. It is as follows:
Set

Lq(x):=
∞∑
n=1

x
qn − x =

∞∑
n=1

xn

qn − 1 ; |q|¿ 1:

Fix N a positive integer and write Lq(r) =
∑N

n=1 r=(q
n − r) + Lq(r=qN ).

Then, it remains to replace Lq(r=qN ) by its Pad�e approximant [N=N ]Lq(r=q
N ).

The convergence of [N=N ]Lq to Lq is a consequence of the following formula:

∀t ∈ C \ {qj; j ∈ N}; ∀n ∈ N; lim sup
N

|Lq(t)− [N=N ]Lq(t)|1=3N
2

61=q:

pn=qn de�ned by pn=qn:=
∑N

n=1 r=(q
n − r) + [N=N ]Lq(r=qN ) leads to Diophantine approximation of

Lq(r) and so proves the irrationality of Lq(r).
For further results concerning the function Lq, see [17–19].
Di�erent authors used Pad�e or Pad�e Hermite approximants to get Diophantine approximation, see

for example [8,20–23,27].
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