
Journal of Statistical Planning and
Inference 86 (2000) 1–10

www.elsevier.com/locate/jspi

Orthogonality of the She�er system associated to a
Levy process

Denys Pommeret ∗
CREST (LSM) - ENITIAA, Laboratoire de Statistique, Rue de la G�eraudi�ere, 44322 Nantes cedex 3,

France

Received 4 May 1999; accepted 4 August 1999

Abstract

The aim of this paper is to relate some recent results on L�evy processes (see Schoutens
and Teugels, 1998. Comm. Statist. Stochastic Models 14, 335–349) to a recent study of the
author (1996) on multidimensional natural exponential families. In this way, we consider a
natural construction of She�er polynomials associated to a d-dimensional L�evy process and we
prove that this is the only one that leads to an orthogonal She�er system. It is also shown
that the orthogonality occurs if and only if the L�evy process wanders throught the class of
quadratic natural exponential families. Some interesting martingale properties are reviewed in a
multidimensional setting. c© 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Let us recall �rst what we call a L�evy–She�er system associated to a L�evy process.
For an up-dated account of the theory of L�evy processes we refer the reader to Bertoin
(1996). Let (Xt)t¿0 be a stochastic process on Rd (d¿1). We say that (Xt)t¿0 is
a L�evy process if for every s; t¿0, the increment Xt+s − Xt is independent of the
process (Xk)06k6t and has the same law as Xs. For all t¿0, we will denote by �t

the distribution of Xt on Rd. In this way, we obtain what we shall call the associated
distributions to the L�evy process. The Laplace transform of �t will be denoted by

L�t (�) =
∫
Rd
exp(〈�; x〉)�t (dx); (1)
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where x= t(x1; : : : ; xd); �= t(�1; : : : ; �d) and 〈�; x〉=∑d
i=1 �ixi. The cumulant function

of �t is de�ned to be

k�t (�) = log(L�t (�)): (2)

We observe that each distribution �t is in�nitely divisible and we have

k�t (�) = tk�(�); (3)

where � = �1. The following assumptions will be needed throughout the paper and
guarantees that the L�evy process has �nite exponential moments: It is required that
the in�nitely divisible measure � = �1 is not concentrated on an a�ne hyperplan and
��, the interior of the domain {�∈Rd; k�(�)¡+∞}, is not empty. We introduce now
some multivariate notations. The order of n= t(n1; : : : ; nd) ∈ Nd is, by de�nition, the
integer |n|= n1 + · · ·+ nd. Write

xn = xn11 · · · xndd ; n! = n1! · · · nd!:

On Rd, a polynomial of the |n|th degree may be written as
Pn(x) =

∑
q∈Nd;|q|6|n|

�qxq;

where at least one of the reals �q is non-zero when |q| = |n|. A family (Pn)n∈Nd of
such polynomials is a polynomial sequence.

De�nition 1. A polynomial sequence is called a She�er system (see She�er, 1937) if
there exists a neighborhood of m = 0, B, and two analytic functions a : B → Rd and
b : B → R, such that for all m ∈ B∑

n∈Nd

mn

n!
Pn(x) = exp(〈a(m); x〉)b(m): (4)

For all t¿0, let (Pn; t)n∈Nd be a polynomial sequence.

De�nition 2. The family of polynomials (Pn; t)n∈Nd;t¿0 is called a L�evy–She�er system
(see Schoutens and Teugels, 1998) if there exists a neighborhood of m = 0; B, such
that for all m ∈ B and for all t¿0∑

n∈Nd

mn

n!
Pn; t(x) = exp{〈a(m); x〉 − tk�(a(m))}; (5)

where a :B → Rd is analytic with a(0) = 0 and � is an in�nitely divisible distribution
on Rd.

One sees via (3) that a L�evy–She�er system is connected to a L�evy process with
associated distributions (�t)t¿0. We are interested in �nding the correspondance be-
tween such a L�evy–She�er system and the families of associated distributions. At �rst,
in Section 2 we relate the construction of L�evy–She�er system with the theory of ex-
ponential families. In Section 3 we give a characterization of the pseudo-orthogonal
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L�evy–She�er sytems. Section 4 is devoted to the study of the orthogonal systems and
Section 5 provides a detailed exposition and extension of recent results related to the
martingales theory. Sections 3 and 4 are adapted from Pommeret (1996) and we outline
the proofs of Theorems 2 and 3, thus making our exposition self-contained.

2. Construction of L�evy–She�er systems

We introduce here the notion of natural exponential families (NEFs). The best gen-
eral references here are Barndor�-Nielsen (1978) and Letac (1992). We denote by  �
the inverse function of k ′�. The family F = F(�) of probabilities

P(m; F)(dx) = f�(x; m)�(dx) (6)

= exp{〈 �(m); x〉 − k�( �(m))}�(dx); (7)

where m = t(m1; : : : ; md) belongs to the domain MF = k ′�(��), is called the natural
exponential family generated by �. The variance VF of P(m; F) is considered as a
function of m,

VF(m) =
∫
Rd
(x − m)t(x − m)f�(x; m)�(dx):

The natural exponential family F is said to be quadratic if the entries of the matrix
VF are second-order polynomials in m, and simple quadratic if the term of second
order of the (i; j) entry is of the form amimj, where a is a real constant inde-
pendent of (i; j). The class of simple quadratic NEFs on R has been described by
Morris (1982). Casalis (1996) has extended this classi�cation on Rd and has split
the simple quadratic NEFs into 2d + 4 types: The d + 1 Poisson–Gaussian types
(see also Letac, 1989) are composed by the distribution of d independent variables
(X1; : : : ; Xd) where X1; : : : ; Xk have Poisson distribution and Xk+1; : : : ; Xd are Gaussian
variables with variance 1. The d + 1 negative multinomial gamma types are com-
posed by the distribution of (X1; : : : ; Xd) where (X1; : : : ; Xk) has a negative multino-
mial distribution, the conditional variable Xk+1|(X1; : : : ; Xk) is gamma distributed with
shape parameter

∑k
i=1 Xi + 1 and (Xk+2; : : : ; Xd)|(X1; : : : ; Xk+1) is a Gaussian vector

with variance diag (Xk+1; : : : ; Xk+1). The hyperbolic type is composed by the distribu-
tion of (X1; : : : ; Xd) where (X1; : : : ; Xd−1) has a negative multinomial distribution and
Xd|(X1; : : : ; Xd−1) has an hyperbolic cosine distribution with power convolution param-
eter

∑d−1
i=1 Xi + 1. The last type of simple quadratic NEFs is the classical multinomial

type. Each type is composed by one NEF of the same name and its a�nities and
convolution powers, i.e. two families F(�) and F(�) are said to be of the same type if
there exists an a�nity h : x 7→ Ax+B and a positive real number � such that �=h(�∗�),
where ∗ denotes the convolution product. In this case we have

F(�) = {h(P(�; �∗�)); � ∈ tA−1��}; (8)

VF(�) = �AVF(�)(A−1(m=�− B)) tA: (9)
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Remark 1. Among all the simple quadratic NEFs, only the multinomial distributions
are not in�nitely divisible, its set of convolution powers being N∗.
Let (�t)t¿0 be the distributions on Rd associated to a L�evy process (Xt)t¿0 with

mean mt , respectively. From (9) it is easily seen that

VF(�t)(m) = tVF(�)(m=t): (10)

To such a family of probability measures we associate a family of polynomials in d
variables constructed from the Taylor expansion of the function f�t (x; m) of the form
(7). Let GL(Rd) denote the set of invertible d × d matrices. For all n ∈ Nd and for
all A ∈ GL(Rd) we de�ne on Rd ×MFt

QA;n; t(x) = f(n)�t
(x; mt)(Ae1; : : : ; Aed); (11)

where f(n)�t (x; m)(Ae1; : : : ; Aed) is the |n|=n1+n2+ · · ·+nd derivative of m 7→ f�t (x; m)
in the |n| directions Ae1 (n1 times); : : : ; Aed (nd times). By induction on |n| it is easy to
check that QA;n; t is a polynomial in x of degree |n| and the (QA;n)n∈Nd form a basis of
R[x1; : : : ; xd]. The following theorem expresses this basis of polynomials as a particular
construction of L�evy–She�er system. We will see in Section 3 that this is the unique
one leading to orthogonal L�evy–She�er system.

Theorem 1. The polynomials (QtA;n; t)n∈Nd; t¿0 form a L�evy–She�er system.

Proof. From the analycity of  �t and k�t (see Letac, 1992) it follows that, for all m
in an neighborhood of mt , we have∑

n∈Nd

mn

n!
QtA;n; t(x) = f�t (x; tAm+ mt): (12)

Since mt is the �rst derivative of k�t in �= 0, we have the following properties:

mt = tm1;  �t (m) =  �(m=t): (13)

Hence (5) occurs with a(m) =  �(Am+ m1) and b(m) = exp{−k�t (a(m))}.

3. Characterization of L�evy–She�er systems

We introduce here two notions of orthogonality.

De�nition 3. The polynomials (Pn)n∈Nd are said to be �-orthogonal (respectively �-
pseudo-orthogonal) if for all n; k ∈Nd such that n 6= k (respectively |n| 6= |k|) we have∫

Rd
Pn(x)Pk(x)�(dx) = 0:

The L�evy–She�er system given by (5) is said to be orthogonal (respectively pseudo-
orthogonal) if the polynomials (Pn; t)n∈Nd are �t-orthogonal (respectively pseudo-ortho-
gonal), for all t¿0. Under the assumption of pseudo-orthogonality, the following
theorem o�ers an intrinsic construction of the L�evy–She�er systems.
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Theorem 2. For all t¿0; let the polynomial sequence (Pn; t)n∈Nd be a �t-pseudo-
orthogonal basis of R[x1; : : : ; xd]. Then the two following assertions are equivalent:
(i) The polynomials (Pn; t) form a She�er system.
(ii) There exists A ∈ GL(Rd) such that Pn; t = QtA;n; t ; for all (n; t) ∈ Nd × R+.

Proof. The proof is similar to Pommeret (1996). We only give the main ideas.
Theorem 1 shows that (ii) implies (i). Suppose that (i) occurs. From Pommeret (1996,
Lemma 2:5:), there exists a neighborhood of 0, B, such that for all m ∈ B∫ ( ∑

n∈Nd

mn

n!
Pn; t(x)

)
�t(dx) =

∑
n∈Nd

mn

n!

∫
Rd

Pn; t(x)�t(dx)

=
∫

P0(x)�t(dx) = 1:

In addition, from (4) we obtain∫ ( ∑
n∈Nd

mn

n!
Pn; t(x)

)
�t(dx) =

∫
exp(〈a(m); x〉)b(m)�t(dx)

= exp{k�t (a(m))}b(m): (14)

It follows that b(z) = exp{−k�t (a(m))}. Letting P1(x) = t(Pe1 ;t(x); : : : ; Ped;t(x)), and
proceeding in a similar manner to that above, we obtain the following vectorial equality:∫ ( ∑

n∈Nd

mn

n!
Pn; t(x)

)
P1(x)�t(dx) =

(∫
P1(x) tP1(x)�t(dx)

)
m: (15)

Since P1(x) is a vector of polynomials of degree 1, there exists Ã∈GL(Rd) and
� ∈ Rd such that

P1(x) = Ãx + �: (16)

Since ∫
P1(x)�t(dx) =

∫
P1(x)P0(x)�t(dx) = 0

we have that � =−Ãmt and∫
P1(x) tP1(x)�t(dx) =

∫
Ã(x − mt) t(x − mt) tÃ�t(dx) (17)

= ÃVFt (mt) tÃ; (18)

where Ft = F(�t). Combining (15) with (16) and (18) yields

ÃVFt (mt) tÃm= Ã(k ′�t
(a(m))− mt):

It follows that

a(m) =  �t (VFt (mt) tÃm+ mt)

=  �(VF1 (m1)
tÃm+ m1):
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From this we can rewrite (5) as∑
n∈Nd

mn

n!
Pn; t(x) = f�t (x; tVF1 (m1)

tÃm+ tm1):

Then, setting A= VF1 (m1)
tÃ, we have

Pn; t(x) = t|n|f(n)�t
(x; mt)(Ae1; : : : ; Aed)

=QtA;n; t(x):

4. Orthogonal L�evy–She�er systems

We are now interested in �nding for which measures �t on Rd the orthogonal-
ity of the L�evy–She�er polynomials occurs. Since we restrict our attention to in-
�nitely divisible measures, we omit the multinomial distributions from the simple
quadratic natural exponential families (see Remark 1). However, a similar result of
Theorem 3(ii) occurs in the multinomial case. The following result is an extension of
Feinsilver’s (1986).

Theorem 3. Let (Pn; t)n∈Nd; t¿0 be the L�evy–She�er system de�ned by (5). Then we
have the following two assertions:

(i) The L�evy–She�er system is pseudo-orthogonal if and only if F(�) is quadratic
and there exists (A; b) ∈ GL(Rd)× Rd such that a(m) =  �(Am+ b).

(ii) Assume that the NEF F(�) is not the product of two NEFs on Rd−k ×Rk . Then
the L�evy–She�er system is orthogonal if and only if F(�) is simple quadratic and
there exists (A; b)∈GL(Rd)×Rd such that a(m)= �(Am+b) and A−1VF(�)(m1)tA−1

is diagonal.

Proof. We content ourselves only with showing part (ii) since part (i) follows this
proof. Assume the polynomials Pn; t are �t-orthogonal. From Theorem 2 there exist
A=VF1 (m1)Ã, where Ã has the form (18), such that Pn; t=QtA;n; t and a(m)= �(Am+m1).
We have

A−1VF1 (m1)
tA−1 = (ÃVF1 (m1)

tÃ)−1

=
(∫

P1(x)tP1(x)�1(dx)
)−1

and from the �-orthogonality of the polynomials (Pn;1)n∈Nd , the above positive de�nite
matrix is diagonal. To show that F is simple quadratic, we may suppose A = I (the
identity), (9) giving the general case. Write Pn=QI;n; t (for short). Writting k ′�(�)=m1,
from (14) we have

exp{k�( �(m) +  �(z))− k�( �(m))− k�( �(z))}

=
∑

n∈Nd

(m− m1)n(z − m1)n

(n!)2

∫
P2n; t(x)�(dx): (19)
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Di�erentiating two times (19) with respect to m and taking m = m1 yields F simple
quadratic.
Conversely, note �rst that from (10) if F1 is simple quadratic then Ft is simple

quadratic for all t¿0. Thus we content to show that the polynomials Pn = Pn;1 are
�-orthogonal. Write �=  �(m1). We have

exp{〈�; x〉}= ∑
n∈Nd

(k ′�(�)− m1)n

n!
Pn(x) exp{k�(�)}:

By di�erentiating this equality with respect to � and by identi�cation we obtain for all
i = 1; : : : ; d,

xiPn(x) =
∑

|n|−16|q|6|n|+1
�q; iPq(x); (20)

where (�q; i)q∈Nd ∈ R. By induction on |n|, (7) and (20) imply the following three
results (see Pommeret, 1996):

1. ∀n ∈ Nd \ {0}; ∫ Pn(x)�(dx) = 0.
2. There exists (�n

l;q) ∈ R such that for all q ∈ Nd, if |q|¡ |n|, then
xqPn(x) =

∑
|n|−|q|6|l|6|n|+|q|

�n
l;qPl(x):

3. Write VF1 (m1) = diag(v1; : : : ; vd). There exists (�q;n) ∈ R such that
Pn(x) = �n;nxn +

∑
q;|q|¡|n|

�n;qxq;

where �n;n = (v
n1
1 · · · vndd )−1.

From these three above equalities, if |n| 6= |q|, then ∫ Pn(x)Pq(x)�(dx) = 0.

5. Applications and examples

The characterization of orthogonal She�er system on R is due to Meixner (1934)
(see Morris (1982) for a treatment via the exponential families) and for a recent
account of the theory of orthogonal L�evy–She�er system on R we refer the reader
to Schoutens and Teugels (1998). As for prerequisites, the reader is expected to be
familiar with some classical polynomials on R which are described in the Koekoek and
Swarttouw (1994) report. We use the notation of Koekoek and Swarttouw. Following
Schoutens and Teugels, we relate our results to the theory of martingales associated
with L�evy–She�er processes. For this purpose, we recall here an important property of
the orthogonal L�evy–She�er system (Pn; t)n∈Nd; t¿0 (see Schoutens and Teugels):

∀t ¿ s¿0; E(Pn; t(Xt)|Xs) = Pn;s(Xs); (21)

where (Xt)t¿0 is the L�evy process with the associated distributions (�t)t¿0. In the
remainder of this section we have compiled a few examples of orthogonal L�evy–She�er
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system on Rd (see Pommeret (1996) for the case d=2, the other ones are in a submitted
paper). For each one we give the form of the variance function of the simple quadratic
natural exponential family (see Casalis, 1996 for more details) and we consider some
particular values of m1 to apply (21). From now on, Xt = (X

(1)
t ; : : : ; X (d)

t ) denotes the
random vector with distribution �t and we will denote by mt=(m

(1)
t ; : : : ; m(d)t ) its mean.

It is a simple matter to apply (21) and we only describe the polynomials Pn; t . The
Pochhammer symbol is de�ned by

(a)0 = 1 and (a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1):

The family of negative binomial distributions on R2: Let F = F(�) be the negative
multinomial family on R2 with variance function

VF(m) = amtm+
(

m(1) 0
0 m(2)

)
;

where a¿ 0. If m(1)1 = 1=a and m(2)1 = (
√
5 − 1)=a, then the orthogonal L�evy–She�er

polynomials are products of Meixner polynomials:

Pn; t(x) = (x(1) + p)n1 (n1 + p)n2 (c1)
n1=2(−1=

√
2p)|n|Mc1 ;�1

n1 (x(2))Mc2 ;�2
n2 (x(1));

where p= t=a; 2c1 = 3−
√
5; �1 = x(1); c2 = 1

2 and �2 = n1 + p.
The family of negative binomial hyperbolic distributions on R2: Let F = F(�) be

the negative binomial hyperbolic family with variance function

amtm−
(

m(1) m(2)

m(2) −m(1)

)
;

where a¿ 0. If m1 =1=a(2; 0) then the orthogonal L�evy–She�er system is a mixing of
Meixner and Meixner–Pollaczek polynomials:

Pn; t(x) = (x(1))n2 (p+ n2)n1 (−1)n1 (1=
√
2p)|n|P�

n2 (x
(2)=2; �=2)Mc1 ;�1

n1 (x(1) − p);

where p = t=a; � = x(1)=2; c1 = 1=2; �1 = n2 + p; and Pn2 ; Mn1 denote Pollaczek and
Meixner polynomials, respectively.
The Poisson–Gaussian family on Rd: Let F = F(�) be the family of Poisson–

Gaussian distributions with variance function

VF(m) = diag(m(1); : : : ; m(k); 1; : : : ; 1):

If m( j)1 = 1 for j = 1; : : : ; k and if m( j)1 = 0 for l = k + 1; : : : ; d, then the orthogonal
L�evy–She�er system is given by

Pn; t(x) = t|n|
k∏

i=1
(−1)niC1ni(x(i))

d∏
j=k+1

(1=
√
2)njHnj (

√
2x(j));

where C and H denote Charlier and Hermite polynomials, respectively.
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The gamma Gaussian family on Rd: Let F = F(�) be the gamma Gaussian family
with variance function

VF(m) = amtm+ diag(0; m(1); : : : ; m(d));

where a¿ 0. Let m1 = (1=a; 0; : : : ; 0), then the orthogonal L�evy–She�er system is

Pn; t(x) = (−a=t)n1 (n1)!L�t
n1 (x

(1))
d∏

i=2

(
a
√
x(1)

t
√
2

)ni

Hni

(
x(i)√
2x(1)

)
;

where �t=n2 + · · ·+nd−1+ t=a; and L, H denote Laguerre and Hermite polynomials.
The negative multinomial gamma family on Rd: Let F = F(�) be the negative

multinomial gamma family with variance function

VF(m) = amtm+ diag(m(1); : : : ; m(k); 0; m(k+1); : : : ; m(k+1))

with a¿ 0. If m1 = (1=a; : : : ; 1=a), then the orthogonal L�evy–She�er system is given
by a product of Laguerre and Charlier polynomials:

Pn; t(x) = (−ax(d)=t)|n|L�t
nd(x

(d))
d−1∏
i=1

Cx(d)
ni (x

(i));

where �t = n1 + · · ·+ nd−1 − 1 + t=a.
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