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A formal calculus on the Riordan near algebra

L. Poinsota, G.H.E. Duchampa

aLIPN - UMR 7030
CNRS - Université Paris 13

F-93430 Villetaneuse, France

Abstract

The Riordan group is the semi-direct product of a multiplicative group of invert-
ible series and a group, under substitution, of non units. The Riordan near algebra,
as introduced in this paper, is the Cartesian product of the algebra of formal power
series and its principal ideal of non units, equipped with a product that extends the
multiplication of the Riordan group. The later is naturallyembedded as a sub-
group of units into the former. In this paper, we prove the existence of a formal
calculus on the Riordan algebra. This formal calculus playsa role similar to those
of holomorphic calculi in the Banach or Fréchet algebras setting, but without the
constraint of a radius of convergence. Using this calculus,we defineen passanta
notion of generalized powers in the Riordan group.

Keywords: formal power series, formal substitution, Riordan group, near
algebra, generalized powers
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1. Introduction

As defined in [18] a Riordan matrix is an infinite matrixM(µ,σ)=(mi, j)i, j≥0 with
complex coefficients such that for everyj ∈ N, the ordinary generating function of
its jth column is equal toµ(x)σ(x) j , or in other terms, for everyj ∈ N,

∑

i≥0

mi, jx
i =

µ(x)σ(x) j , whereµ, σ are two formal power series in the variablex such thatµ =
1+ xν andσ = x+ x2τ with ν, τ ∈ C[[x]]. The set of all pairs of such series (µ, σ)
is naturally equipped with a semi-direct group structure called “Riordan group”
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which can be univocally transported to the set of all RiordanmatricesM(µ,σ). The
group multiplication is given by (µ1, σ1) ⋊ (µ2, σ2) := ((µ1 ◦ σ2)µ2, σ1 × σ2).
The Riordan group also plays a rather important role in pure combinatorics. For
instance it naturally appears in the umbral calculus setting [16] and is related
in an obvious way to Sheffer sequences [9, 17] since the exponential generating
function of the ordinary generating function of each columnsatisfies the following

condition [8]:
∑

i≥0, j≥0

mi, jx
i y

j

j!
= µ(x)eyσ(x). More recently the Riordan group also

appeared in the new domain of combinatorial quantum physics, namely in the
problem of normal ordering of boson strings [6, 7, 8]. Let us say some words on
the subject. A boson string is an element of the so-called Weyl algebra that is
the quotient algebraC{a, a†}/〈aa† − a†a− 1〉 of the free algebra generated by two
(distinct) lettersa anda† by the two-sided ideal generated by noncommutative
polynomials of the formaa† − a†a − 1. Since the work of O. Ore [11], it is
well-known that ((a†)ia j)i, j is a Hamel basis for the Weyl algebra. Then a boson
string is called to be in normal form if, and only if, it is written in this basis. In
papers [7, 8] the authors show that for an important class of boson stringsΩ, the
coefficientsmi, j of their decomposition in normal formΩ =

∑

i, j

mi, j(a
†)ia j define a

Riordan matrix1 (mi, j)i, j. Using some properties of the Riordan group, the authors
succeeded to compute, in an explicit way, the evolution operatoreλΩ, so important
in quantum physics. In the paper [8] was proved the followingstatement.

Let M be a Riordan matrix. Then for allλ ∈ C, Mλ also is a Riordan matrix.

In this paper, we develop a formal calculus on pairs of series(µ+, σ+) such
that (1+µ+, x+σ+) belongs to the Riordan group. More precisely it is shown that
for every formal power seriesf =

∑

n≥0

fnx
n with coefficients in some fieldK of

characteristic zero,
∑

n≥0

fn(µ+, σ+)
⋊n defines an element of theRiordan near alge-

bra (which is nothing else than the Cartesian product ofK[[x]] with the maximal
ideal generated byx, and equipped with some algebraic structure, see sect. 2),
and where (µ+, σ+)⋊n is the usualnth power of (µ+, σ+) with respect to the mul-
tiplicative law ⋊ of the Riordan near algebra which extends the product of the
Riordan group. In other terms, we extend and generalize the notion of formal

1In [7, 8] such matrices are calledmatrix of unipotent substitution with prefunction operators.
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substitution inK[[x]] to the Riordan near algebra. This formal calculus plays a
similar role to the usual holomorphic calculi for Banach or Fréchet algebras. In
particular it makes possible to consider exponential, logarithm or inverse as series
in monomials (µ+, σ+)⋊n in a way identical to those ofK[[x]]. Using this formal
calculus, we also proveen passantthe existence of another kind of generalized
powers (1+ µ+, x + σ+)⋊λ using binomial series, where (1+ µ+, x + σ+) belongs
to the Riordan group andλ ∈ K, such that (1+ µ+, x+σ+)⋊λ also is in the Riordan
group and (1+ µ+, x + σ+)⋊(α+β) = (1 + µ+, x + σ+)⋊α ⋊ (1 + µ+, x + σ+)⋊β. This
notion of generalized powers, although similar in appearance, is different from the
one introduced for the Riordan matrices in [8]. The matrix version in [8] concerns
the existence of generalized powers for elements of the Riordan group but seen
as lower triangular infinite matrices, and therefore embedded in some algebra of
infinite matrices. In these notes, we establish the same kindof statement but in
another kind of algebras, namely, in a near algebra.

2. The Riordan near algebraK[[x]] ⋊M of formal power series under multi-
plication and substitution

2.1. Basics on formal power series

In this paragraph some basic and useful definitions and notations are provided.
Many textbooks such as [3, 4, 19, 20] can be used as referenceson the subject.
The meaning of symbol “:=” is an equality by definition. The letter “K” denote
any field of characteristic zero andK[[x]] is theK-algebra of formal power series
in one indeterminatex. K[[x]] is endowed with the usual (x)-adic topology. In the
sequel we suppose that each of its subsets is equipped with the induced topology.
The (x)-adic topology is equivalently given by the valuationν the definition of
which is recalled with some of its main properties. Let+∞ < N. Let f =

∑

n≥0

fnx
n.

ν( f ) :=

{

+∞ if f = 0 ,
inf{n ∈ N : fn , 0} otherwise.

(1)

For all f , g ∈ K[[x]],

1. ν( f + g) ≥ min{ν( f ), ν(g)} with equality in caseν( f ) , ν(g);
2. ν( f g) = ν( f ) + ν(g)

with the usual conventions+∞ > n and+∞ + n = n + ∞ = +∞ for every
n ∈ N, +∞ + ∞ = +∞. In the sequel we also use the following conventions
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(+∞)n = n(+∞) = +∞ for everyn ∈ N \ {0} or n = +∞ and 0n = n0 = 0 for
everyn ∈ N or n = +∞, (+∞)n = +∞ for everyn ∈ N \ {0}. Sometimes we use
the notation “n > 0” that means “n ∈ N \ {0} or n = +∞” when n explicitly refers
to the valuation of some series.
With the previous topology,K[[x]] becomes a topological algebra (we put onK
the discrete topology). In particular the multiplication is (jointly) continuous.
The coefficient fn of xn in the seriesf can also be denoted by〈 f , xn〉 so that f
should be written as the sum

∑

n≥0

〈 f , xn〉xn. In particular,〈 f , 1〉 is the constant term

of the seriesf which is also denotedf (0). For everyn ∈ N and f ∈ K[[x]] we
define as usually

f n :=






1 = x0 if n = 0 ,
f × . . . × f
︸       ︷︷       ︸

n terms

if n ≥ 1 . (2)

(Here we adopt the symbol “×” to emphasize the use of the multiplication in
K[[x]] but in what follows juxtaposition will be used.) Finally,whenR is a ring
(with unit), U(R) denotes its group of units: for instance,U(K[[x]]) is the set of
series of order zero,i.e., the constant term is not null:U(K[[x]]) = { f ∈ K[[x]] :
〈 f , 1〉 = f (0) , 0}. We define the group ofunipotent multiplications(following
the terminology of [6, 7, 8])UM := {1+ x f : f ∈ K[[x]] } which is a subgroup of
U(K[[x]]).

2.2. Ringoid of formal power series under substitution

For a certain kind of formal power series, another product may be defined: the
formal substitution. Roughly speaking ifσ is a series without constant term, that
isσ is an element of the ideal (x) := xK[[x]], and f =

∑

n≥0

fnx
n is any series, then

f ◦ σ :=
∑

n≥0

fnσ
n is a well-defined element ofK[[x]] called thesubstitutionof

f andσ. This operation is linear in its first variable but not in the second one.
So under this substitution the ideal (x) does not behave as an algebra but as some
more general structure called a “ringoid”.

2.2.1. Ringoids, composition rings, tri-operational algebras, and near algebras:
a review

In this short paragraph are recalled some basic definitions and facts about exotic
algebraic structures equipped with two or three operationsand closely related to
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the notion of substitution/composition, which is quite central in this work and
therefore deserves a review.

A (right) nearK-algebra [5] over a fieldK is aK-vector spaceN equipped
with an operation◦ such that

1. (N, ◦) is a (non necessarily commutative) semigroup;
2. (x+ y) ◦ z= (x ◦ z) + (y ◦ z);
3. (αx) ◦ y = α(x ◦ y)

for every x, y, z ∈ N andα ∈ K. In a right near algebra, the null vector 0 of
N is a left zero for◦, i.e., 0 ◦ x = 0, because (N,+, 0) is a group. Obviously
every (associative) algebra (without a unit) can be seen as aright near algebra.
Let denote byµ : N × N → N the mappingµ(x, y) := x ◦ y. The semigroup
multiplicationµ defines a right semigroup representationρµ of (N, µ) on the vector
spaceN,

ρµ : N → End(N)

y 7→

(

N → N
x 7→ µ(x, y)

)

(3)

whereEnd(V) is theK-algebra of linear endomorphisms of the vector spaceN.
In other terms, for everyx, y, z ∈ N, (ρµ(x) ◦ ρµ(y))(z) = ρµ(µ(y, x))(z), and
for every α, β ∈ K, ρµ(x)(αy + βz) = αρµ(x)(y) + βρµ(x)(z). The notion of
a two-sided ideal of a near algebraN takes its immediate meaning in this set-
ting: more precisely, a two-sided idealI of N is a subvector space ofN such
that for everyµ(I × R) ⊂ I ⊃ µ(R × I ). Moreover, when (N, ◦) also has a
(two-sided) unitI, i.e., (N, ◦, I) is a monoid, we also define the group of units
of N, U(N), as the group of invertible elements of the monoid (N, ◦, I), that is,
U(N) := {x ∈ N : ∃y ∈ N, x ◦ y = y ◦ x = I}. If (N, ◦, I) is a monoid, thenKI
does not lie necessarily in the centerZ(N) := {x ∈ N : x ◦ y = y ◦ x , ∀y ∈ N},
because in general it is not true that (αI) ◦ x = x ◦ (αI).
As in algebras, an elementx of a near algebraN is called aright zero divisorif
there is some non zeroy ∈ N such thaty ◦ x = 0. Note that 0 is not necessarily a
right zero divisor. If 0 also is a right zero for◦, then a non zerox ∈ N is called a
left zero divisorif there is some non zeroy ∈ N, such thatx ◦ y = 0. Again if 0 is
a two-sided zero for◦, we say thatN is adomainif there is no left or right zero
divisor.
Suppose thatK is a topological field,i.e., a field equipped with a topology such
that (K,+, 0) is a topological group and (K, ·, 1) is a topological monoid, and that
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the near algebraN is a topologicalK-vector space for some given topology. We
say thatN is atopological near algebraif for everyy ∈ N the mappingsx 7→ x◦ y
andx 7→ y ◦ x are continuous, that is,◦ is separately continuous.

In the subsequent sections and subsections, we will consider near algebras in
which 0 also is a left zero for◦, and therefore (N, ◦, 0) is a semigroup with a (two-
sided) zero. Moreover the near algebras encountered will also have a two-sided
neutral elementI , 0 for ◦, in such a way that (N, ◦, I, 0) is a monoid with a zero.

The idea to consider generalized algebras endowed with three different op-
erations, namelyaddition, multiplicationandsubstitution, can be traced back to
the work of Menger [13, 14, 15] and Mannos [12] who consideredthe notion of
tri-operational algebras. Atri-operational algebra Ris a nonempty set together
with three operations+, . and◦ - respectively calledaddition, multiplicationand
substitution- and three mutually distinct distinguished elements 0, 1 and I that
satisfy the following properties:

1. (R,+, 0, ·, 1) is a commutative ring with unit 1;
2. (R, ◦, I) is a (non necessarily commutative) monoid with identityI;
3. (x+ y) ◦ z= (x ◦ z) + (y ◦ z);
4. (x · y) ◦ z= (x ◦ z) · (y ◦ z);
5. 1◦ 0 = 1

for everyx, y, z ∈ R. A constantof R is an elementx ∈ R such thatx = x ◦ 0.
In particular, 1 and 0 are both constants, the setCR of all constants is a com-
mutative ring, called thering of constants of R, and, it can be easily checked
that (R,+, 0, ., 1) is aCR-algebra with unit 1 (in particular (R,+, 0) is a unitary
CR-module). For instance, ifA is a commutative ring with unit, thenA[x] is
a tri-operational algebra under the usual operations withI = x. Conversely, if
R is a tri-operational algebra, then the setΠ(R)of all elements ofR of the form
α0 + α1 · I + α2 · I + · · · + αn · I

n, for n ∈ N, where, for everyi, αi ∈ CR and
Ii := I · I · · ·I

︸    ︷︷    ︸

i factors

if i , 0, is a tri-operational algebra for the operations induced by

R onCR, and therefore atri-operational subring(in an obvious way) ofR, called
thealgebra of polynomials of R. Note thatΠ(R) is not necessarily isomorphic to
R[x] becauseI may not be algebraically free over the ringCR.

In [1], Adler generalized the concept of tri-operational algebra. Acomposition
ring R is a ring (R,+, 0, ·) (possibly without a unit) equipped with an operation◦
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such that

1. (R, ◦) is a (non necessarily commutative) semigroup;
2. (x+ y) ◦ z= (x ◦ y) + (x ◦ z);
3. (x · y) ◦ z= (x ◦ z) · (x ◦ y).

A tri-operational algebra is nothing else than a composition ring with a multiplica-
tive unit 1, 0 and with a (two-sided) unit for compositionI, I , 0, I , 1, such
that 1◦0 = 1. The last fact is possible only if there is at least one element of R that
is not a zero-divisor of the carrier ring (R,+, 0, ·, 1). A constantof R is an element
x ∈ R such thatx ◦ y = x for everyy ∈ R. The setFound R of all constants ofR
is called thefoundationof R, and it is a composition subring ofR. In particular,
(Found R,+, 0, ·) is a commutative sub-ring (possibly without a unit) of (R,+, 0, ·).

Finally, Iskander [10] introduced the following kind of structures. Aringoid
(R,+, ·, ◦) is nonvoid set with three operations+, · and◦ such that

1. (R,+) is a commutative semigroup;
2. (R, ·) is a commutative semigroup;
3. (x+ y) · z= (x · z) + (x · z);
4. (R, ◦) is a (non necessarily commutative) semigroup;
5. (x+ y) ◦ z= (x ◦ z) + (y ◦ z);
6. (x · y) ◦ z= (x ◦ z) · (y ◦ z)

for every x, y, z ∈ R. The first three axioms mean that (R,+, ·) is a commuta-
tive semiring (without 0). Aringoid with units0, 1 andI is a ringoid with three
mutually distinct elements 0, 1 andI that are (two-sided) neutral elements for re-
spectively+, · and◦, such that 0◦ x = 0 and 1◦ x = 1 for everyx ∈ R. Note that
(R,+, 0, ·, 1) becomes a semiring (without the usual requirement thatx · 0 = 0). A
composition ring is a ringoid with an element 0∈ R such that (R,+, 0) becomes a
(commutative) group. In this case, (R,+, 0, ·) is a ring andx·0 = 0 for everyx ∈ R
(in other terms, (R, ·, 0) is a semigroup with a zero).
A topological ringoidis a ringoidR together with a topology such that (R,+, ·) is
a topological semiring and◦ is separately continuous.

In what follows we will present a ringoid (R,+, 0, ·, ◦, I) such thatR is a com-
position ring (0 is the identity of the group (R,+, 0)) with a two-sided identityI
for the operation of substitution◦ such that (R, ◦, I, 0) is a (non necessarily com-
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mutative) monoid with a two-sided2 zero 0,i.e., x ◦ 0 = 0 ◦ x = 0 for everyx ∈ R.
Note that in this case, if the ring (R,+, 0, ·) has no multiplicative unit (which will
be the case), then the foundation of the composition ring is reduced to (0) sincex
is a constant if, and only if,x ◦ y = x for everyy ∈ R, so, in particular,x ◦ 0 = x
but, because we assume that 0 is a right-zero for the composition, x = 0.

2.2.2. Ringoid of formal power series under substitution

LetM := (x) = xK[[x]] be the principal ideal generated byx. It is the unique
maximal ideal ofK[[x]] and it also generates the (x)-adic topology. Due to the
definition ofM any of its elements has a positive valuation (since the constant term
is equal to zero). The operation “◦” of formal substitution of power series turnsM
into a (noncommutative) monoid whose (two-sided) identityis x. If σ ∈ M and
n ∈ N, we may define

σ◦n :=






x if n = 0 ,
σ ◦ . . . ◦ σ
︸       ︷︷       ︸

n terms

if n ≥ 1 . (4)

The operation of right substitution by an elementσ ∈ M on K[[x]] defines a
K-algebra endomorphism, that is,

K[[x]] → K[[x]]
f 7→ f ◦ σ

(5)

is aK-algebra endomorphism ofK[[x]]. Such an endomorphism is an automor-
phism if, and only if,ν(σ) = 1 (or, equivalently, the coefficient〈σ, x〉 of x in σ is
non zero). More generally we can prove that in many cases the above endomor-
phism is one-to-one.

Lemma 1. Letσ ∈ M \ {0}. Then, right substitution byσ is one-to-one.

Proof. Suppose the contrary and letf =
∑

n≥0

fnx
n ∈ K[[x]] \{0} such thatf ◦σ = 0.

Let m := ν( f ) , ∞ andℓ := ν(σ) > 0. By assumption, we havem ≥ 1 and
fmσm

ℓ
= 0 which contradicts the fact thatK is a field. �

2The fact that 0 is a left zero for◦ is true in any composition ring since (R,+, 0) is a group.
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This lemma implies that for everyσ, τ ∈ M, if σ ◦ τ = 0 thenσ = 0 or τ = 0.
Indeed ifτ , 0, then by the previous lemma,σ = 0. If σ , 0, thenτ = 0 and
we are done (σ ◦ 0 = σ(0) = 0 becauseν(σ) > 0) or τ , 0, but the later case
contradicts the lemma.

The group of invertible elements of the monoidM is then precisely given by
{σ ∈ M : 〈σ, x〉 , 0}, that is, the set of series that “begin exactly by some
(nonzero) multiple ofx”. With the usual addition of formal power series,M
becomes a right near algebra (without zero divisor), withx has the two-sided
identity for ◦, which is not an algebra. Indeed, for instance,x2 ◦ (x − x) = 0
but x2 ◦ x + x2 ◦ (−x) = 2x2

, 0 (sinceK is field of characteristic zero), or
alsox2 ◦ (2x) = 4x2

, (2x2) ◦ x = 2x2. The group of unitsU(M) of the al-
gebraM is the group of invertible elements of the corresponding monoid, and,
US := {x+x2 f : f ∈ K[[x]] } is a subgroup ofU(M), called the group ofunipotent
substitutions. Note also that 0 is a two-sided zero for the operation of substitution.
Because right composition is an algebra endomorphism, it can be easily checked
that (M,+, 0,×, ◦, x) also is a ringoid, with 0 neutral for+, and a two-sided zero
for ◦.

Remark 1. This structure can be extended to the wholeK[[x]] as follows. Let
ω < K[[x]] . We extend addition and multiplication toK[[x]] ∪ {ω} by

ω + f = f + ω = ω ,

ω f = fω = ω
(6)

for every f∈ K[[x]]∪{ω}. Then,(K[[x]]∪{ω},+, 0, ·, 1) is a commutative semiring
(with a zeroω for both addition and multiplication). We also extend◦ toK[[x]] by
ω◦ f = ω for every f∈ K[[x]]∪{ω}, and, for every f∈ K[[x]] and g∈ K[[x]]∪{ω},

f ◦ g =

{

f ◦ g if g ∈ M ,

ω if g < M .
(7)

In particular, f ◦ ω = ω for every f ∈ K[[x]] , becauseω < M. Then,(K[[x]] ∪
{ω}, ◦, x) is a monoid with a zeroω, and(K[[x]] ∪ {ω},+, 0, ·, 1, ◦, x) is a ringoid.

When we put onK the discrete topology and onM the subspace topology,
the later is immediately seen as a Hausdorff (since metrizable) topological vector
space on the former.
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Lemma 2. The formal substitution is separately continuous. More precisely, for
everyσr ∈ M,

s(r)
σr : M → M

σ 7→ σ ◦ σr
(8)

is a continuous linear endomorphism and for everyσl ∈ M,

s(l)
σl : M → M

σ 7→ σl ◦ σ
(9)

is a continuous (nonlinear) mapping.

Proof. Left to the reader. �

It follows thatM is both a topological near algebra and a topological ringoid.

2.3. Near algebraK[[x]] ⋊M

On the set-theoretic cartesian productK[[x]] × M it is possible to define a
natural structure of right nearK-algebra. This near algebra is denoted byK[[x]] ⋊
M and called theRiordan near algebra. The additive structure of the underlying
K-vector space is the usual one given by the direct sum. The multiplication is
defined by the following rule for each (µ1, σ1), (µ2, σ2) ∈ K[[x]] ×M

(µ1, σ1) ⋊ (µ2, σ2) := ((µ1 ◦ σ2)µ2, σ1 ◦ σ2) . (10)

It is left to the reader to check that this formula defines a noncommutative monoid
multiplication (and in particular an associative binary law) with (1, x) as its iden-
tity element. Likewise inM, (0, 0) is a right (and therefore a two-sided) zero
for ⋊. As easily one can prove that the group of units ofK[[x]] ⋊ M is the
semi-direct product of the group of units of each (near) algebra. More precisely,
U(K[[x]] ⋊M) = U(K[[x]]) ⋊ U(M) where⋊ is defined as in the formula (10).
Moreover the semi-direct groupUM ⋊ US is a subgroup ofU(K[[x]] ⋊M). It is
called theRiordan groupas originally introduced and studied in [18]. The near
algebraK[[x]] ⋊M is far from being a domain because for instance every nonzero
element of the two-sided ideal (0)×M is a right zero divisor and every nonzero
element of the right idealK[[x]] ⋊ (0) is a left zero divisor: (µ, 0)⋊ (0, σ) = (0, 0).
The near algebraMmay be identified with a two-sided ideal ofK[[x]] ⋊M by the
natural injection

M → K[[x]] ⋊M
σ 7→ (0, σ)

(11)
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whereasK[[x]] can only be identified separately as a submonoid and as a subvec-
tor space ofK[[x]] ⋊ M by the respective one-to-one homomorphisms (the first
one is a morphism of monoids, and the second one is a linear mapping)

K[[x]] → K[[x]] ⋊M
µ 7→ (µ, x)

(12)

and
K[[x]] → K[[x]] ⋊M
µ 7→ (µ, 0)

(13)

It obviously holds that each of these embeddings is also continuous (K[[x]] ⋊M
has the product topology) and both vector spaces (0)× M andK[[x]] × (0) are
closed in the Riordan near algebra.

We define the generalized product in a usual fashion. For eachn ∈ N and
(µ, σ) ∈ K[[x]] ⋊M, we put

(µ, σ)⋊n :=






(1, x) if n = 0 ,
(µ, σ) ⋊ . . . ⋊ (µ, σ)
︸                   ︷︷                   ︸

n terms

if n ≥ 1 . (14)

The following easy lemma will be useful in the sequel.

Lemma 3. For each(µ, σ) ∈ K[[x]] ⋊M+ and n∈ N,

(µ, σ)⋊n =






(1, x) if n = 0 ,




n∏

k=1

(µ ◦ σ◦(k−1)), σ◦n


 if n ≥ 1 . (15)

In particular if σ = 0, then

(µ, 0)⋊n =

{

(1, x) if n = 0 ,
(µµ(0)n−1, 0) if n ≥ 1 .

(16)

(Under the conventionα0 := 1 for everyα ∈ K in such a way that(µ, 0)⋊1 =

(µµ(0)0, 0) = (µ, 0) even forµ(0) = 0.)
If µ = 0, then

(0, σ)⋊n =

{

(1, x) if n = 0 ,
(0, σ◦n) if n ≥ 1 .

(17)

Proof. Omitted. �
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2.3.1. Topological considerations

In the remainder of the paper, we suppose that the underlyingsetK[[x]] ×M of
the near algebraK[[x]] ⋊M is equipped with the product topology in such a way
that the underlying vector space is a Hausdorff (since the topology is metrizable)
topological vector space (when is put onK the discrete topology). Regarding the
multiplicative structure, the following result is proved.

Lemma 4. ⋊ is separately continuous. More precisely, for every(µr , σr) ∈ K[[x]]⋊
M, the mapping

R(µr ,σr ) : K[[x]] ⋊M → K[[x]] ⋊M
(µ, σ) 7→ (µ, σ) ⋊ (µr , σr)

(18)

is a continuous linear endomorphism, and for every(µl , σl) ∈ K[[x]] ⋊M,

L(µl ,σl) : K[[x]] ⋊M → K[[x]] ⋊M
(µ, σ) 7→ (µl , σl) ⋊ (µ, σ)

(19)

is a (nonlinear) continuous mapping.

Before we achieve the proof of this result, we need another easy lemma.

Lemma 5. Let (µ, σ) ∈ K[[x]] × M. Thenν(µ ◦ σ) = ν(µ)ν(σ). In particular,
for every n∈ N, ν(σ◦n) = ν(σ)n. (Under the conventions recalled in subsect. 2.1:
(+∞)n = n(+∞) = +∞ if n ∈ N \ {0} or n = +∞, 0n = n0 = 0 if n ∈ N or n = +∞,
(+∞)n = +∞ for every n∈ N \ {0}.)

Proof. Let us begin to prove thatν(µ ◦ σ) = ν(µ)ν(σ).

1. Suppose thatµ = 0. Thenµ ◦ σ = 0. Sinceν(0) = +∞, ν(σ) > 0 and
(+∞)n = n(+∞) = +∞ for everyn > 0, the result follows;

2. Suppose thatµ , 0. If σ = 0, thenν ◦ σ = µ(0). Now if µ(0) = 0, that
is, ν(µ) > 0, thenν(µ(0)) = +∞ = ν(µ)(+∞) = ν(µ)ν(0). If µ(0) , 0, that
is, ν(µ) = 0, thenν(µ(0)) = 0 = ν(µ)0 = ν(µ)ν(σ). Finally let suppose that
σ , 0. Becauseµ , 0, there is an0 ∈ N such thatn0 = ν(µ) andµ =

∑

n≥n0

µnx
n

with µn0 , 0. By definition,µ ◦ σ =
∑

n≥n0

µnσ
n. But ν(σn) = nν(σ) for every

n ∈ N. Sinceν(σ) > 0, for all m > n, ν(σm) > ν(σn) and in particular for
everyn > n0 = ν(µ), ν(σn) > ν(σn0) = n0ν(σ) = ν(µ)ν(σ) and for every
n < n0, µnσ

n = 0.

12



Now let us prove the second statement of the lemma. Letσ ∈ M andn ∈ N.

1. Suppose thatσ = 0. Therefore 0◦n =

{

x if n = 0 ,
0 if n ∈ N \ {0}

which implies

thatν(0◦n) =

{

1 if n = 0 ,
+∞ if n ∈ N \ {0}

. The expected result follows;

2. Suppose thatσ , 0 (that is to says thatν(σ) ∈ N \ {0}). ν(σ◦0) = ν(x) =
1 = ν(σ)0. Suppose by induction thatν(σ◦n) = ν(σ)n. Thenν(σ◦(n+1)) =
ν(σ◦n ◦ σ) = ν(σ◦n)ν(σ) (according to the first statement of the lemma)
= ν(σ)n+1 by induction.

�

Proof. (of lemma 4)

1. Let us begin withR(µr ,σr ): it is already known to be linear. Therefore we
only need to check continuity at zero. Let ((µn, σn))n∈N be a sequence of
elements ofK[[x]] ⋊ M converging to (0, 0), which, by definition of the
product topology, is equivalent toν(µn) and ν(σn) both converge to+∞.
But (µn, σn) ⋊ (µr , σr) = ((µn ◦ σr)µr , σn ◦ σr). Now ν((µn ◦ σr)µr) = ν(µn ◦

σr)+ ν(µr) = ν(µn)ν(σr) + ν(µr), according to lemma 5. Becauseν(σr) > 0,
it follows that ν((µn, σn) ⋊ (µr , σr)) converges to+∞ asn → +∞. So the
first component ofR(µr ,σr )(µn, σn) converges to zero asn→ +∞. Moreover
ν(σn ◦ σr) = ν(σn)ν(σr), and for the same reason as the first component,
the second component also converges to zero. By definition ofthe product
topology of two metrizable topologies, the result is proved;

2. Let us explore the case ofL(µl ,σl ): we begin to prove that the following
mapping is continuous.

ℓµl : M → K[[x]]
σ 7→ µl ◦ σ

(20)

Let (σn)n∈N ∈ M
N which converges toσ ∈ M. We should prove thatµl ◦

σn→ µl ◦σ which actually is immediate. Thereforeℓµl is continuous. Now
we need a general result recalled below.
Let X1,X2,Y1,Y2 andZ be topological spaces andh : Y1 × Y2 → Z be a
continuous mapping (Y1 × Y2 with the product topology). Letfi : Xi → Yi

for i = 1, 2 be continuous mappings. Then the mapping

f1 ⊗h f2 : X1 × X2 → Z
(x1, x2) 7→ h( f1(x1), f2(x2))

(21)
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is also continuous (X1 × X2 with the product topology).
It is possible to take advantage of this later general statement in our case
because the first coordinate function ofL(µl ,σl ) is equal toId⊗× ℓµl (whereId
stands for the identity mapping ofK[[x]] and× for the usual multiplication
of K[[x]] which is known to be continuous). Finally the second coordinate
function ofL(µl ,σl ) is

K[[x]] ⋊M → M

(µ, σ) 7→ σl ◦ σ
(22)

which is continuous by lemma 2 since for every (µ, σ) it is equal tos(l)
σl (σ).

By definition of the product topology, continuity of both coordinate func-
tions implies the continuity ofL(µl ,σl ) itself.

�

In what follows we consider convergent series of elements ofK[[x]]. In some
cases, convergence actually implies summability, that is to say that the sum of
the series does not depend on the order of summation. A formalpower series
f ∈ K[[x]] is said topologically nilpotentif, and only if, lim

n→+∞
f n = 0. For such

series the following assertion holds.

Lemma 6. Let f ∈ K[[x]] be a topologically nilpotent series. Then for every
sequence of scalars(αn)n∈N, the family(αn f n)n∈N is summable.

Proof. According to theorem 10.4 [21] sinceK[[x]] is a complete Hausdorff com-
mutative group, it is sufficient to prove that (αn f n)n∈N satisfies Cauchy’s condition,
namely for every neighborhoodV of zero inK[[x]] there exists a finite subsetJV

of N such that for every finite subsetK of N disjoint from JV,
∑

n∈K

αn f n ∈ V. So

let I be a finite subset ofN. Let VI := {g ∈ K[[x]] : 〈g, xn〉 = 0 for everyn ∈ I }
be a neighborhood of zero. Becausef is topologically nilpotent, for everym ∈ N
there existsnm ∈ N such that for everyn > nm, ν( f n) > m. Therefore in particular
for everyk ≤ m and everyn > nm, 〈αn f n, xk〉 = 0. Thus for every finite subsetK
of N disjoint from {0, . . . , nmax{I }}, 〈αk f k, xi〉 = 0 for everyk ∈ K andi ∈ I . Then
∑

k∈K

αk f k ∈ VI . �

More generally the same lemma holds forK[[x]] ⋊M in place ofK[[x]], where
we call (µ, σ) topologically nilpotent if, and only if, lim

n→∞
(µ, σ)⋊n = 0.
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Lemma 7. Let (µ, σ) ∈ K[[x]] ⋊ M be topologically nilpotent. Then for every
sequence of scalars(αn)n, the family(αn(µ, σ)⋊n)n∈N is summable.

Proof. BecauseK[[x]] ⋊ M is a complete Hausdorff commutative group for the
product topology, it is sufficient to prove that the summability holds component-
wise. It is obvious to prove thatσ is topologically nilpotent inM that is to say that
lim
n→∞

σ◦n = 0. Therefore by a trivial variation of lemma 6 it implies that(αnσ
◦n)n is

summable inM (note thatM is easily seen to be closed inK[[x]] and therefore is
complete). It remains to prove that the family (un)n is summable inK[[x]] where

un =






α0 if n = 0 ,

αn

n∏

k=1

(µ ◦ σ◦(k−1)) if n ≥ 1 . Because (µ, σ) is topologically nilpotent,

it implies that lim
n→∞

un = 0. So for everym ∈ N there existsnm ∈ N such that for

everyn > nm, 〈un, x
k〉 = 0 for all k ≤ m. The conclusion follows by a slight

adaptation of the proof of lemma 6. �

In the previous proof we saw thatM is a complete (as a vector space). We say
thatσ ∈ M is topological nilpotentif, and only if, lim

n→∞
σ◦n = 0. Then, by a minor

modification of the proof of lemma 6, we easily deduce the following.

Lemma 8. Let σ ∈ M be topologically nilpotent. Then for every sequence of
scalars(αn)n, the family(αnσ

◦n)n∈N is summable.

Note that by the identification ofM with (0)×M, σ is topologically nilpotent
inM if, and only if, (0, σ) is topologically nilpotent inK[[x]] ⋊M.

3. Formal calculus on the Riordan near algebra

3.1. Introduction

The goal of this section is to develop a formal calculus on theRiordan near al-
gebra. The idea is to extend the notion of formal substitution to this new algebraic
framework: given a seriesf =

∑

n≥0

fnx
n and some particular element (µ+, σ+) of

the Riordan near algebra, it will appear that the series
∑

n≥0

fn(µ+, σ+)
⋊n obtained

by substitution ofx by (µ+, σ+) is convergent in the Riordan near algebra just as
∑

n≥0

fnσ
n defines a formal power series wheneverσ ∈ M. The two-sided ideal

K[[x]]+ ⋊ M+ of the Riordan near algebra, given by pairs of series (µ+, σ+) of
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orders respectively positive and strictly greater than one, plays the same role as
the idealM for the usual substitution. This formal calculus allows us to define ex-
ponential, logarithm and inverse series in the Riordan nearalgebra by using their
usual formal power series versions where monomials inx are replaced by powers
of (µ+, σ+). Nevertheless, due to the lack of commutativity and left-distributivity
of the Riordan near algebra, the usual properties of these series fail to be true in
the new setting. For instance the inverse series

∑

n≥0

(µ+, σ+)
⋊n is not the inverse of

(1, x)−(µ+, σ+) in the Riordan near algebra. It will be the main objective ofsect. 4
to provide a convenient algebraic setting in which these series play their expected
roles.

3.2. Power series of elements ofK[[x]]+ ⋊M+

Generally speaking a formal power seriesf :=
∑

n≥0

fnx
n is said tooperateon

an elementa of a topological (associative) algebraA (with unit 1A) if and only if
the series

∑

n≥0

fna
n (with a0 := 1A andan+1 := aan) converges in the topology ofA.

If each element of a given subsetS ⊆ K[[x]] operates ona, we say thatS operates
on a. Finally if S operates on each element ofT ⊆ A, then we say thatS operates
on T. In this section we prove that there exists a two-sided idealof K[[x]] ⋊M on
which every element ofK[[x]] operate. This allows us to define a formal calculus
on the Riordan near algebra.

We defineM+ := {σ ∈ M : ν(σ) > 1}, or in other terms, an arbitrary element
σ of M+ takes the formσ = αx2 + x3 f , where f ∈ K[[x]]. The setM+ is a two-
sided ideal of the near algebraM. Indeed,ν(σ + τ) ≥ min{ν(σ), ν(τ)} > 1 and
ασ ∈ M+ for everyσ, τ ∈ M+ and everyα ∈ K. Now letσ ∈ M andσ+ ∈ M+,
thenν(σ ◦σ+) = ν(σ)ν(σ+) > 1 andν(σ+ ◦σ) = ν(σ+)ν(σ) > 1 (sinceν(σ+) ≥ 1)
which ensure thatM+ is a two-sided ideal ofM.

In a similar way we defineK[[x]]+ := M. We use another name forM because
in the subsequent part of this paper its multiplicative structure will be important,
at least more important than its compositional structure.K[[x]]+ is a two-sided
ideal ofK[[x]]. Indeed,ν(λ + µ) ≥ min{ν(λ), ν(µ)} > 0 andαµ ∈ K[[x]]+ for
everyλ, µ ∈ K[[x]]+ andα ∈ K. Now let µ ∈ K[[x]] and µ+ ∈ K[[x]]+. Then
ν(µµ+) = ν(µ) + ν(µ+) > 0 which ensures thatK[[x]]+ is an ideal of the commuta-
tive algebraK[[x]].
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Now let show thatK[[x]]+ ⋊ M+ is itself a two-sided ideal ofK[[x]] ⋊ M.
Obviously regarding the vector space structure, there is nothing to prove. Let
(µ, σ) ∈ K[[x]] ⋊ M and (µ+, σ+) ∈ K[[x]]+ ⋊ M+. We need to prove that
(µ, σ) ⋊ (µ+, σ+) and (µ+, σ+) ⋊ (µ, σ) both belong toK[[x]]+ ⋊M+. On the one
hand, the former product is equal to ((µ ◦ σ+)µ+, σ ◦ σ+). Since we already know
thatσ ◦ σ+ ∈ K[[x]]+, we only need to establish thatν((µ ◦ σ+)µ+) > 0. But
ν((µ ◦ σ+)µ+) = ν(µ ◦ σ+) + ν(µ+) = ν(µ)µ(σ+) + ν(µ+) > 0. On the other hand,
(µ+, σ+)⋊ (µ, σ) = ((µ+◦σ)µ, σ+◦σ) and as in the first case, the only fact to check
is ν((µ+ ◦ σ)µ) > 0. Butν((µ+ ◦ σ)µ) = ν(µ+)ν(σ) + ν(µ) > 0 (because bothν(µ+)
andν(σ) are positive).

Independently from algebraic considerations, it is possible to prove that each
element ofK[[x]] operates onK[[x]]+ ⋊M+. The argument to prove this fact is
partially based on the following lemma.

Lemma 9.K[[x]] operates onM+. More precisely, for each f=
∑

n≥0

fnx
n ∈ K[[x]]

and eachσ+ ∈ M+,
∑

n≥0

fnσ
◦n
+ ∈ M.

Proof. The goal to prove is the fact that for everyf =
∑

n≥0

fnx
n ∈ K[[x]] and every

σ+ ∈ M
+,

∑

n≥0

fnσ
◦n
+ is a well-defined element ofM. According to lemma 5,

ν(σ◦n+ ) = ν(σ+)n ≥ 2n for every n ∈ N. Therefore lim
n→+∞

ν(σ◦n+ ) = +∞, so

that the series
∑

n≥0

fnσ
◦n
+ converges inK[[x]]. Moreover it is easy to check that

〈
∑

n≥0

fnσ
◦n
+ , 1〉 = 0 and〈

∑

n≥0

fnσ
◦n
+ , x〉 = f0 (becauseσ◦0+ = x). The convergence in

M follows. �

Proposition 10. K[[x]] operates onK[[x]]+ ⋊M+. More precisely for every f=
∑

n≥0

fnx
n ∈ K[[x]] and every(µ+, σ+) ∈ K[[x]]+ ⋊M+,

∑

n≥0

fn(µ+, σ+)
⋊n ∈ K[[x]] ⋊

M.

Proof. The goal to be proved is that
∑

n≥0

fn(µ+, σ+)
⋊n is a convergent series in

K[[x]] ⋊M whenever (µ+, σ+) ∈ K[[x]]+ ⋊M+. A proof by case follows.
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1. µ+ = σ+ = 0: For everyn > 0, (0, 0)⋊n = (0, 0). Therefore
∑

n≥0

fn(0, 0)⋊n

reduces tof0(1, x) ∈ K[[x]] ⋊M;
2. µ+ = 0 andσ+ , 0: According to lemma 3, for everyn > 0, (0, σ+)⋊n =

(0, σ◦n+ ), so we only need to prove that the series
∑

n≥0

fnσ
◦n
+ is convergent in

M which is the case by lemma 9 sinceσ+ ∈ M+;
3. µ+ , 0 andσ+ = 0: According to lemma 3, for everyn > 0, (µ+, 0)⋊n =

(µ+µ+(0)n−1, 0), so we only need to prove that the series

f0 +
∑

n≥1

fnµ+µ+(0)n−1

converges inK[[x]]. Sinceµ+ ∈ K[[x]]+, µ+(0) = 0 so thatf1µ+µ+(0)0 =
f1µ+ and fnµ+µ+(0)n−1 = 0 for everyn > 1. Therefore

f0 +
∑

n≥1

fnµ+µ+(0)n = f0 + f1µ+ ∈ K[[x]] .

4. µ+ , 0 andσ+ , 0: Using lemmas 3 and 9 it already holds that the sec-
ond component of the series is convergent inM (sinceσ+ ∈ M+). Let us
study the first component. For everyn > 0, taking into account lemma 3,

fn(µ+, σ+)⋊n = fn(
n∏

k=1

(µ+ ◦ σ
◦(k−1)
+ ), σ◦n+ ). We need to evaluate the val-

uation of
n∏

k=1

(µ+ ◦ σ
◦(k−1)
+ ): ν(

n∏

k=1

(µ+ ◦ σ
◦(k−1)
+ )) = ν(µ+)

n∑

k=1

ν(σ+)
k−1 ≥

ν(µ+)
n∑

k=1

2k−1. Sinceν(µ+) > 0, it follows that lim
n→+∞

ν(
n∏

k=1

(µ+ ◦ σ
◦(k−1)
+ )) =

+∞ which ensures the convergence of the first component. Therefore the
series

∑

n≥0

fn(µ+, σ+)
⋊n is componentwise convergent and so is convergent in

the product topology ofK[[x]] ⋊M.

�

Remark 2. In the later proof, we implicitly show that every(µ+, σ+) ∈ K[[x]]+ ⋊
M
+ is topologically nilpotent and even nilpotent in the usual sense whenσ+ equals

zero. Likewise, in the proof of lemma 9, we also show that every σ+ ∈ M+ is
topologically nilpotent inM.
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The above proposition guarantees the existence inK[[x]] ⋊M of, for instance,

exp(µ+, σ+) - defined as the sum of the series
∑

n≥0

1
n!

(µ+, σ+)
⋊n - or

∑

n≥0

(µ+, σ+)
⋊n

whenever (µ+, σ+) ∈ K[[x]]+ ⋊ M+. We can note that the later series gener-
ally does not define ((1, x) − (µ+, σ+))⋊(−1) as we would expect since in general

((1, x)− (µ+, σ+))⋊





m∑

n=0

(µ+, σ+)
⋊n



 ,





m∑

n=0

(µ+, σ+)
⋊n



⋊ ((1, x)− (µ+, σ+)) because

of noncommutativity of⋊ and its lack of left distributivity. Nevertheless it will
soon be shown (see section 4) that

∑

n≥0

(µ+, σ+)
⋊n is the inverse of ((1, x)−(µ+, σ+))

for another kind of multiplication.

As another direct consequence of the above proposition, we have the fol-
lowing result. Let (µ, σ) ∈ K[[x]] ⋊ M and f =

∑

n≥0

fnx
n ∈ K[[x]]. Then

∑

n≥0

fn((µ, σ) − (µ(0), 〈σ, x〉x))⋊n ∈ K[[x]] ⋊M. This result is indeed straightfor-

ward because (µ, σ)−(µ(0), 〈σ, x〉x) ∈ K[[x]]+⋊M+ whenever (µ, σ) ∈ K[[x]]⋊M.

The operation ofK[[x]] on K[[x]]+ ⋊M+ gives rise to the following mapping.

Ψ : K[[x]] × (K[[x]]+ ⋊M+) → K[[x]] ⋊M
( f , (µ+, σ+)) 7→

∑

n≥0

fn(µ+, σ+)
⋊n (23)

where f =
∑

n≥0

fnx
n. This operation has some interesting properties stated below,

even if they are not important for the main subject of the paper.

Lemma 11. Let (µ+, σ+) ∈ K[[x]]+ ⋊M+. We define

φ(µ+,σ+) : K[[x]] → K[[x]] ⋊M
f 7→ Ψ( f , (µ+, σ+)) .

(24)

Then,φ(µ+,σ+) is a vector space homomorphism that mapsx to (µ+, σ+). Moreover
if f ∈ M, thenφ(µ+,σ+)( f ) ∈ K[[x]]+ ⋊ M+, and if 〈 f , 1〉 = 1, thenφ(µ+,σ+)( f ) ∈
UM ⋊ US.

Proof. Let f =
∑

n≥0

fnx
n andg =

∑

n≥0

gnx
n be two formal series. We havef +

g =
∑

n≥0

( fn + gn)x
n. Besidesφ(µ+,σ+)( f ) =

∑

n≥0

fn(µ+, σ+)
⋊n and φ(µ+,σ+)(g) =
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∑

n≥0

gn(µ+, σ+)
⋊n and finallyφ(µ+,σ+)( f+g) =

∑

n≥0

( fn+gn)(µ+, σ+)
⋊n =

∑

n≥0

( fn(µ+, σ+)
⋊n+

gn(µ+, σ+)
⋊n) =

∑

n≥0

fn(µ+, σ+)
⋊n +

∑

n≥0

gn(µ+, σ+)
⋊n (the last equality is due to the

fact thatK[[x]] ⋊ M is a topological group). Scalar multiplication byα ∈ K
is continuous onK[[x]] ⋊ M and one hasφ(µ+,σ+)(α f ) =

∑

n≥0

α fn(µ+, σ+)
⋊n =

α
∑

n≥0

fn(µ+, σ+)
⋊n = αφ(µ+,σ+)( f ). Finally the last statements are rather straight-

forward. �

In order to deeply studyφ(µ+,σ+) another easy lemma is needed.

Lemma 12. Let (µ+, σ+) ∈ K[[x]]+ ⋊M+, g ∈ K[[x]] and m∈ N. Then

φ(µ+,σ+)(x
mg) = φ(µ+,σ+)(g) ⋊ (µ+, σ+)

⋊m = φ(µ+,σ+)(gx
m) . (25)

Proof.

φ(µ+,σ+)(xmg) = φ(µ+,σ+)(
∞∑

n=0

gnx
n+m)

=
∑

n≥0

gn(µ+, σ+)
⋊(n+m)

=
∑

n≥0

gn ((µ+, σ+)
⋊n
⋊ (µ+, σ+)

⋊m)

=
∑

n≥0

((gn(µ+, σ+)
⋊n) ⋊ (µ+, σ+)

⋊m)

(according to the rule of right distributivity.)

=





∑

n≥0

gn(µ+, σ+)
⋊n



 ⋊ (µ+, σ+)
⋊m

(by continuity and linearity of⋊ in its first variable.)
= φ(µ+,σ+)(g) ⋊ (µ+, σ+)⋊m .

(26)

�

Proposition 13. Let (µ+, σ+) ∈ K[[x]]+ ⋊ M+. Thenφ(µ+,σ+) is the only linear
mappingψ : K[[x]] → K[[x]] ⋊M such that for every m∈ N and every g∈ K[[x]] ,
ψ(gxm) = ψ(g) ⋊ (µ+, σ+)⋊m.
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Proof. Let f ∈ K[[x]]. For everym ∈ N, f =
m∑

n=0

fnx
n + xm+1g with g ∈ K[[x]].

Let ψ as in the statement of the proposition. One hasψ( f ) =
m∑

n=0

fn(µ+, σ+)
⋊n +

ψ(g) ⋊ (µ+, σ+)
⋊(m+1) and similarly, the following equality also holdsφ(µ+,σ+)( f ) =

m∑

n=0

fn(µ+, σ+)
⋊n+φ(µ+,σ+)(g)⋊(µ+, σ+)

⋊(m+1). Then it follows thatψ( f )−φ(µ+,σ+)( f ) =

(ψ(g) − φ(µ+,σ+)(g)) ⋊ (µ+, σ+)⋊(m+1) for every m ∈ N. But whenm → +∞,
(µ+, σ+)⋊(m+1) converges to (0, 0). Indeed, suppose thatµ+ = 0 andσ+ = 0,
then the result obviously holds. Ifµ+ = 0 andσ+ , 0, then (0, σ+)⋊(m+1) =

(0, σ◦(m+1)
+ ) and ν(σ◦(m+1)

+ ) = v(σ+)m+1 ≥ 2m+1. If µ+ , 0 andσ+ = 0, then
(µ+, 0)⋊(m+1) = (µ+µ+(0)m, 0). Sinceµ+(0) = 0 (becauseµ+ ∈ K[[x]]+), for ev-
ery m > 0, (µ+µ+(0)m, 0) = (0, 0). Finally let suppose thatµ+ , 0 andσ+ , 0.
Therefore

(µ+, σ+)
⋊(m+1) = (

m+1∏

k=1

(µ+ ◦ σ
◦(k−1)
+ ), σ◦(m+1)

+ ) .

We already know that lim
m→∞

σ
◦(m+1)
+ = 0. We also haveν(

m+1∏

k=1

(µ+ ◦ σ
◦(k−1)
+ )) =

m+1∑

k=1

ν(µ+)ν(σ+)
◦(k−1) ≥ ν(σ)

m+1∑

k=1

2k−1 → ∞ as m → ∞. Besides we have seen

in lemma 4 that for everya ∈ K[[x]] ⋊M, the mapping

La : K[[x]] ⋊M → K[[x]] ⋊M
(µ, σ) 7→ a⋊ (µ, σ)

(27)

is continuous and in particular at the point (0, 0). Since the topology put on
K[[x]] ⋊M is metrizable (as the product of two metric topologies), then for ev-
ery sequence (bn)n ∈ (K[[x]] ⋊ M)N converging to (0, 0), one has lim

n→∞
La(bn) =

La(0, 0) = (0, 0). When applied to the casea := (ψ(g) − φ(µ+,σ+)(g)) andbn =

(µ+, σ+)⋊(n+1), we deduce thatψ( f ) = φ(µ+,σ+)( f ) for an arbitrary formal power
seriesf , soψ = φ(µ+,σ+). �

3.3. Generalized powers by binomial series

In this subsection is presented a result which seems to provide a relevant defi-
nition for generalized powers of elements of the Riordan group. However we will
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be shown that it is not at all the case, and we will have to propose another solution
in the subsequent section. Recall that we have

UM := {1+ xs : s ∈ K[[x]] } = {1+ µ+ : µ+ ∈ K[[x]]+} ,
US := {x + x2s : s ∈ K[[x]] } = {x + σ+ : σ+ ∈ M+} .

(28)

The elements ofUS are also known under the name “formal diffeomorphisms
(tangent to the identity)” (see for instance [2]). The semi-direct productUM⋊US,
called “Riordan group” ([18]), is a subgroup of the group of units ofK[[x]] ⋊M.
It endows the subspace topology as usually.

We now recall the traditional definition for generalized binomial coefficients:

let λ ∈ K andn ∈ N, then

(

λ

n

)

:= λ(λ−1)...(λ−n+1)
n! . Now let us prove a statement

similar to proposition 4.1 [8] in our setting.

Proposition 14. Let (µ, σ) ∈ UM ⋊ US with µ = 1 + µ+, µ+ ∈ K[[x]]+ and
σ = x+σ+,σ+ ∈ M+. Letλ ∈ K. Then the series(µ, σ)⋊λ = ((1, x)+(µ+, σ+))⋊λ :=
∑

n≥0

(

λ

n

)

(µ+, σ+)
⋊n is convergent inK[[x]] ⋊M and the sum of this series belongs

to UM ⋊ US.

Proof. According to proposition 10 we already agree for the convergence of the
series inK[[x]] ⋊M. To conclude the proof it is sufficient to check that the sum
of the series belongs toUM ⋊ US. The first term of the series is (1, x) because
(

λ

0

)

= 1. Now we make use of lemma 3 to study the terms (µ+, σ+)⋊n for each

n ∈ N \ {0}.

1. Second coordinate of (µ+, σ+)⋊n:

• Caseσ+ = 0: the second component is equal to 0 for everyn ∈ N\ {0};

• Caseσ+ , 0: the second component is equal toσ◦n+ . According to
lemma 5,ν(σ◦n) ≥ 2n > 1.

2. First coordinate of (µ+, σ+)⋊n:

• Caseµ+ = 0: the first component is equal to 0 for everyn ∈ N \ {0};

• Caseµ+ , 0:

– Caseσ+ = 0: the first component is equal toµ+µ+(0)n−1 = µ+ if
n = 1 and to 0 ifn > 1 sinceµ+(0) = 0;
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– Caseσ+ , 0: the first component is equal to
n∏

k=1

µ+◦σ
◦(k−1)
+ . Then

according to lemma 5,

ν(
n∏

k=1

µ+ ◦ σ
◦(k−1)
+ ) ≥ ν(µ+)

n∑

k=1

2k−1 > 0 .

�

The definition of generalized powers for elements of the Riordan group pro-
vided by the previous proposition seems quite natural, nevertheless it is not the
convenient one in our setting. Actually when restricted to natural integers it does
not match with the usual powers inK[[x]] ⋊M as it can be easily checked even on
trivial instances: letµ = 1+ x andσ = x+ x2. Therefore on the one hand, seen as
an element of the Riordan group, one has

(µ, σ)⋊2 = ((µ ◦ σ) × µ, σ◦2)
= (((1+ x) ◦ (x + x2)) × (1+ x), (x + x2) ◦ (x + x2))
= ((1+ x + x2)(1+ x), x + x2 + (x + x2)2)
= (1+ 2x + 2x2 + x3, x + 2x2 + 2x3 + x4) .

(29)

Using the series definition, we have on the other hand,

(x, x2)⋊0 + 2(x, x2)⋊1 + (x, x2)⋊2 = (1, x) + 2(x, x2) + (x, x2) ⋊ (x, x2)
= (1, x) + (2x, 2x2) + (x3, x4)
= (1+ 2x + x3, x + 2x2 + x4) .

(30)

So our definition for generalized powers has a serious weakness: it does not
generalize the usual powers, which makes it impossible to betaken as generalized
powers at least in this minimal sense. The same weakness is shared by the expo-
nential, logarithm or inverse series for instance. Nevertheless there is a convenient
algebra in which those series play their expected roles.

4. A convenient setting for the generalized powers

4.1. The algebra of formal power seriesK[[µ+, σ+]]

In order to fix the problem met in the end of the previous section, we need to
introduce a new algebra in which can be lead convenient calculus.
Let (µ+, σ+) ∈ K[[x]]+ ⋊ M+ \ {(0, 0)}. Our first goal is to prove thatφ(µ+,σ+) is
one-to-one.
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Lemma 15. For every integers n< m,

1. ν(
n∏

k=1

µ+ ◦ σ
◦(k−1)
+ ) < ν(

n∏

k=1

µ+ ◦ σ
◦(k−1)
+ );

2. ν(σ◦n+ ) < ν(σ◦m+ ).

Proof. 1. • Suppose thatn = 0 (and thereforem> 0). In this case
0∏

k=1

µ+ ◦

σ
◦(k−1)
+ := 1 by convention and thenν(1) = 0. Besidesν(

n∏

k=1

µ+ ◦

σ
◦(k−1)
+ ) = ν(µ+)

m∑

k=1

ν(σk−1
+ ) > 0;

• Suppose thatn > 0. Then it is clear that the choices ofµ+ andσ+ gives
the expected result.

2. • Suppose thatn = 0. ν(σ◦0+ ) = ν(x) = 1 andν(σ◦m+ ) = ν(σ+)m ≥ 2m > 1
for everym> 0;

• Suppose thatn , 0. Then it is clear thatν(σ+)n < ν(σ+)m.

�

Lemma 16. φ(µ+,σ+) : K[[x]] → K[[x]] ⋊M is one-to-one.

Proof. Since it is a linear mapping, it is sufficient to check that its kernel is re-

duced to zero. So letf =
∞∑

n=0

fnx
n ∈ K[[x]] be a nonzero series. Letn0 :=

ν( f ). In this case,φ(µ+,σ+)( f ) = φ(µ+,σ+)( fn0x
n0 +

∑

n>n0

fnx
n) = φ(µ+,σ+)( fn0x

n0) +

φ(µ+,σ+)(
∑

n>n0

fnx
n) = fn0(µ+, σ+)

⋊n0 +
∑

n>n0

fn(µ+, σ+)
⋊n. Checking component by

component and using the previous lemma, we obtain the expected result. �

Remark 3. The mappingφ(µ+,σ+) is far from being onto. For instance, let(µ, σ) ∈
K[[x]] ⋊ M such thatµ = α + µ+ andσ = βx + σ+ with α , β, α , 0 and
β , 0. If (µ, σ) ∈ K[[µ+, σ+]] then there exists f∈ K[[x]] such that(µ, σ) =
∑

n≥0

fn(µ+, σ+)
⋊n and, according to the fact that(µ+, σ+) ∈ K[[x]]+⋊M+, f0(1, x) =

(α, βx), which implies that f0 = α = β: a contradiction.
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Now it becomes natural to define

K[[µ+, σ+]] := im(φµ+,σ+) = {
∑

n≥0

fn(µ+, σ+)
⋊n : f =

∑

n≥0

fnx
n ∈ K[[x]] } .

By injectivity of φ(µ+,σ+), for every (µ, σ) ∈ K[[µ+, σ+]], it exists one only one
formal power seriesf such that (µ, σ) =

∑

n≥0

fn(µ+, σ+)
⋊n. So it is possible to

manipulate the elements ofK[[µ+, σ+]] via their representation as a sum of con-
verging series in the “variable” (µ+, σ+). It is also interesting to remark, due to
lemma 7 since (µ+, σ+) is topologically nilpotent, that

∑

n∈N

fn(µ+, σ+)
⋊n does not

depend on the order of summation (which explains the use of the notation “n ∈ N”
rather than “n ≥ 0”). Becauseφ(µ+,σ+) is a linear mapping,K[[µ+, σ+]] has a struc-

ture ofK subvector space ofK[[x]] ⋊ M. In particular,λ





∑

n≥0

fn(µ+, σ+)
⋊n



 =

∑

n≥0

λ fn(µ+, σ+)
⋊n and

∑

n≥0

fn(µ+, σ+)
⋊n+

∑

n≥0

gn(µ+, σ+)
⋊n =

∑

n≥0

( fn+ gn)(µ+, σ+)
⋊n.

The addition of two elements ofK[[µ+, σ+]] in K[[x]]⋊Mmatches with their addi-
tion inK[[µ+, σ+]]. Nevertheless the notationK[[µ+, σ+]] should seem misleading
becauseφ(µ+,σ+)( f g) , φ(µ+,σ+)( f ) ⋊ φ(µ+,σ+)(g). Indeed, on the one side,

φ(µ+,σ+)( f g) =
∑

n≥0





n∑

k=0

fkgn−k



 (µ+, σ+)
⋊n (31)

and on the other side,

φ(µ+,σ+)( f ) ⋊ φ(µ+,σ+)(g) =





∑

n≥0

fn(µ+, σ+)
⋊n



 ⋊





∑

n≥0

gn(µ+, σ+)
⋊n





=
∑

n≥0

fn



(µ+, σ+)
⋊n
⋊





∑

k≥0

gk(µ+, σ+)
⋊k









(by linearity and continuity in the first variable of⋊.)
=

∑

n≥0

fn
(

(µ+, σ+) ⋊ φ(µ+,σ+)(g)
)

(32)
In order to obtain an algebra, we introduce the usual Cauchy product “∗” on
K[[µ+, σ+]].

∑

n≥0

fn(µ+, σ+)
⋊n ∗

∑

n≥0

gn(µ+, σ+)
⋊n :=

∑

n≥0





n∑

k=0

fkgn−k



 (µ+, σ+)
⋊n . (33)
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We should remark that this multiplication is commutative contrary to⋊. Actually
this operation simulates the multiplication⋊ in the multiplicative monoid gener-
ated by (µ+, σ+). Indeed letd ∈ N. We define (δ(d)

n )n∈N ∈ K
N by δ(d)

n = 0 for
everyn , d andδ(d)

d = 1. Then we have
∑

n≥0

δ(d)
n (µ+, σ+)

⋊n = (µ+, σ+)
⋊d. Now let

d, e∈ N. Let us compute the following Cauchy product

∑

n≥0

δ(d)
n (µ+, σ+)

⋊n ∗
∑

n≥0

δ(e)
n (µ+, σ+)

⋊n =
∑

n≥0





n∑

k=0

δ
(d)
k δ

(e)
n−k

︸       ︷︷       ︸

=0 ⇔ k,d,n,d+e





(µ+, σ+)
⋊n

= (µ+, σ+)⋊(d+e) .

(34)

But the first member of the Cauchy product occurring as the left member of
the first equality is nothing else than (µ+, σ+)⋊d, whereas its second member is
(µ+, σ+)⋊e. On “monomials” (µ+, σ+)⋊n the Cauchy product is identical to⋊. In
particular for every natural integern, (µ+, σ+)⋊n = (µ+, σ+)∗n where the second
member is thenth Cauchy power of (µ+, σ+). Then,φ(µ+,σ+) becomes an algebra
isomorphism fromK[[x]] into K[[µ+, σ+]].

We use this Cauchy product to define the generalized power of elements (1+
µ+, x + σ+) of the Riordan group in terms of a the binomial series: letλ ∈ K

and define ((1, x) + (µ+, σ+))
∗λ :=

∑

n≥0

(

λ

n

)

(µ+, σ+)
∗n. We need to prove that this

binomial series is convergent. Nevertheless it can be checked that ifλ ∈ N, then
((1, x) + (µ+, σ+))∗λ matches with theλth Cauchy power of (1+ µ+, x + σ+) ∈
K[[µ+, σ+]]. Therefore this version of the generalized powers extends the usual
ones (inK[[µ+, σ+]] not in UM ⋊ US).

Proposition 17. The series((1, x) + (µ+, σ+))
∗λ =

∑

n≥0

(

λ

n

)

(µ+, σ+)
∗n is conver-

gent and defines an element ofUM ⋊ US.

Proof. Actually since (µ+, σ+)∗n = (µ+, σ+)⋊n, the result is already given by propo-
sition 14. �

Mimicking in K[[µ+, σ+]] the usual properties that hold true in the algebra
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K[[x]] of formal power series3, we can check that for everyλ ∈ K,

exp(λ log((1, x) + (µ+, σ+))) = ((1, x) + (µ+, σ+))∗λ . (35)

Moreover, due to the fact that for everyf ∈ K[[x]], exp(
∑

n≥0

fn(µ+, σ+)
⋊n) is in-

vertible inK[[µ+, σ+]], λ 7→ ((1+ µ+, x + σ+))∗λ is easily seen as a one-parameter
subgroup from (K,+, 0) toU(K[[µ+, σ+]]).

In summary this new version for generalized powers satisfies,

1. whenevern ∈ N, (1+ µ+, x + σ+)∗n is the usualnth power (with respect to
Cauchy product) of (1+ µ+, x +σ+) as an element ofK[[µ+, σ+]] but not as
an element ofUM ⋊ US;

2. (1+µ+, x+σ+)∗(−1) is the inverse of (1+µ+, x+σ+) as an invertible element
of K[[µ+, σ+]] but not as an element ofUM ⋊ US;

3. λ 7→ (1 + µ+, x + σ+)∗λ is a one-parameter subgroup from (K,+, 0) to
U(K[[µ+, σ+]]).

In this setting, the following also holds. Iff0 = 1, then
∑

n≥0

fn(µ+, σ+)
⋊n is invert-

ible (inK[[µ+, σ+]]) and its inverse is





∑

n≥0

fn(µ+, σ+)
⋊n





∗(−1)

=
∑

n≥0

(−1)ng(µ+, σ+)
∗n

whereg(µ+, σ+) :=
∑

n≥1

fn(µ+, σ+)
⋊n. For such a series

∑

n≥0

fn(µ+, σ+)
⋊n which be-

longs toUM ⋊ US, we can also define for everyλ ∈ K,





∑

n≥0

fn(µ+, σ+)
⋊n





∗λ

:=

∑

n≥0

(

λ

n

)

(g(µ+, σ+))
∗n with the usual properties of one-parameter group of such

generalized powers.

4.2. An infinite number of copies ofK[[x]]
BecauseK[[µ+, σ+]] is isomorphic, as an algebra, toK[[x]], it is possible

to study the properties of series in powers of (µ+, σ+) through the properties of

3To be more rigorous, we need to equipK[[µ+, σ+]] with the (µ+, σ+)-adic topology or, equiv-
alently, with the valuation obtained fromK[[x]]’s one by replacing the monomials inx by mono-
mials in (µ+, σ+): in other terms, one can useφ(µ+ ,σ+) to transport the topology ofK[[x]] on
K[[µ+, σ+]] in a homeomorphic way. ThenK[[µ+, σ+]] becomes isomorphic toK[[x]] as a topo-
logical algebra andφ(µ+ ,σ+) becomes a topological isomorphism.
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the corresponding formal power series. We denoteφ(µ+,σ+)( f ) by f (µ+, σ+), and
ν( f (µ+, σ+)) := ν( f ). Now K[[µ+, σ+]] is a isomorphic as a topological algebra
to K[[x]]. In particular if f = 1+ g ∈ K[[x]] whereν(g) > 0, then f (µ+, σ+) has
a multiplicative inverse inK[[µ+, σ+]] given by

∑

n≥0

(−1)ng(µ+, σ+)
∗n, as already

computed in the previous subsection. Moreover ifσ ∈ M, then right substitution
byσ(µ+, σ+) is valid inK[[µ+, σ+]]: f (µ+, σ+) ◦σ(µ+, σ+) :=

∑

n≥0

fnσ(µ+, σ+)
∗n ∈

K[[µ+, σ+]]. So usingK[[µ+, σ+]] we may define a near algebraK[[µ+, σ+]] ⋊
M(µ+, σ+) - whereM(µ+, σ+) := (µ+, σ+) ⋊ K[[µ+, σ+]] - isomorphic (both as a
vector space and as a monoid) - toK[[x]] ⋊M. If (µ(µ+, σ+)+, σ(µ+, σ+)+) belongs
toK[[µ+, σ+]]+ ⋊M+(µ+, σ+) (for the natural definitions of bothK[[µ+, σ+]]+ and
M
+(µ+, σ+)), then an algebraK[[µ(µ+, σ+)+, σ(µ+, σ+)+]], isomorphic toK[[x]],

may be defined. The process can continue indefinitely.

Remark 4. The setM(µ+, σ+), asM, is both a near algebra and a ringoid.
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1970.
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