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1. INTRODUCTION AND DEFINITIONS

Let �λ�n denote the Pochhammer symbol (or the shifted factorial, since
�1�n = n!) defined by

�λ�n x=
0�λ+ n�
0�λ�

=
{

1 �n = 0�
λ�λ+ 1� · · · �λ+ n− 1� �n ∈ � x= �1; 2; 3; : : :��:

(1.1)

Also, as usual, denote by pFq a generalized hypergeometric function with
p numerator and q denominator parameters.

The classical Jacobi polynomials P�α;β�n �x�, of order �α;β� and degree n
in x, defined (in terms of the Gauss hypergeometric 2F1 function) by

P
�α;β�
n �x� x=

(
α+ n
n

)
2F1

(
−n; α+ β+ n+ 1yα+ 1y 1− x

2

)
(1.2)

or, equivalently, by the Rodrigues formula:

P
�α;β�
n �x� = �−1�n�1− x�−α�1+ x�−β

2n n!

· Dn
x��1− x�α+n�1+ x�β+n�

(
Dx x=

d

dx

)
; (1.3)

are orthogonal over the interval �−1; 1� with respect to the weight function:

w�x� x= �1− x�α�1+ x�βy (1.4)

in fact, we have (cf., e.g., Szegö [24])∫ 1

−1
�1− x�α�1+ x�βP�α;β�m �x�P�α;β�n �x�dx

= 2α+β+1 0�α+ n+ 1�0�β+ n+ 1�
n! �α+ β+ 2n+ 1�0�α+ β+ n+ 1� δm;n(

min�<�α�;<�β�� > −1ym;n ∈ �0 x= � ∪ �0�); (1.5)

where δm;n denotes the Kronecker delta.
In recent years, a great deal of attention seems to have been paid to

an obvious variant of the classical Jacobi polynomials P�α;β�n �x�. These so-
called extended Jacobi polynomials F �α;β�n �xy a; b; c�, studied by (among
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others) Izuru Fujiwara (1928–1985) in an attempt to give a unified presen-
tation of the classical orthogonal polynomials (especially Jacobi, Laguerre,
and Hermite polynomials), are defined by the Rodrigues formula:

F
�α;β�
n �xy a; b; c� x= �−c�

n

n!
�x− a�−α �b− x�−β

·Dn
x

{�x− a�α+n �b− x�β+n} (
c x= λ

b− a > 0
)

(1.6)

and are orthogonal over the interval �a; b� with respect to the weight func-
tion [cf. Eq. (1.4)]:

w�xy a; b� x= �x− a�α �b− x�β: (1.7)

The polynomials F �α;β�n �xy a; b; c� are essentially those that were considered
by Szegö [24, p. 58], who showed (by means of a simple linear transforma-
tion) that these polynomials are just a constant multiple of the classical
Jacobi polynomials P�α;β�n �x�. In fact, by comparing the Rodrigues formu-
las (1.3) and (1.6), it is not difficult to rewrite Szegö’s observation [24, p.
58, Eq. (4.1.2)] in the form (cf., e.g., Srivastava and Manocha [22, p. 388,
Problem 11]):

F
�α;β�
n �xy a; b; c� = �c�a− b��nP�α;β�n

(
2�x− a�
a− b + 1

)
(1.8)

or, equivalently,

P
�α;β�
n �x� = �c�a− b��−n F �α;β�n

( 1
2�a+ b+ �a− b�x�y a; b; c

)
: (1.9)

Thus, as already pointed out by Srivastava and Manocha [22], the poly-
nomials F �α;β�n �xy a; b; c� may by looked upon as being equivalent to (and
not as a generalization of) the classical Jacobi polynomials P�α;β�n �x�.

Furthermore, by recourse to certain limiting processes, it is easily seen
that the polynomials F �α;β�n �xy a; b; c� would give rise to the Laguerre and
Hermite polynomials (and indeed also to the Bessel polynomials) just as
the classical Jacobi polynomials P�α;β�n �x� do. Consequently, the main pur-
pose of Fujiwara’s investigation [8] is already served by the classical Jacobi
polynomials themselves.

Even after the aforementioned observation by Szegö [24] and others (cf.,
e.g., Srivastava and Manocha [22]), the polynomials F �α;β�n �xy a; b; c� have
been (and are still being) made, in recent years, a tool for the purpose of
generalizing what is already known in the context of the classical Jacobi
polynomials. For example, by applying the familiar group-theoretic (Lie
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algebraic) method of Louis Weisner (1899–1988), which is described fairly
adequately in the works of Miller [13], McBride [12, Chaps. 2 and 3], and
Srivastava and Manocha [22, Chap. 6], many authors have proved various
single- and multiple-series generating functions for the so-called extended
Jacobi polynomials F �α;β�n �xy a; b; c�. The main object of this paper is to
show how easily each of these generating functions can be derived from the
corresponding known result for the classical Jacobi polynomials. We also
consider many general families of bilinear, bilateral, or mixed multilateral
generating functions for the Jacobi and related orthogonal polynomials,
which are seemingly relevant to the present investigation.

2. A SET OF LINEAR GENERATING FUNCTIONS

One of the latest works on the subject of generating functions for the
extended Jacobi polynomials F �α;β�n �xy a; b; c�, which are derived by the
group-theoretic (Lie algebraic) method already referred to in Section 1, is
by Chongdar et al. [7], who obtained these generating functions by suitably
interpreting the degree n. We choose first to recall here the main results of
Chongdar et al. [7] in the following modified forms:

n∑
k=0

(
k− β− n− 1

k

)
F
�α+k;β�
n−k �xy a; b; c�tk

=
(

1− t

λ

)n
F
�α;β�
n

(
λx− bt
λ− t y a; b; c

)
(2.1)

or, equivalently,

n∑
k=0

(
k− α− n− 1

k

)
F
�α;β+k�
n−k �xy a; b; c�tk

=
(

1+ t

λ

)n
F
�α;β�
n

(
λx+ at
λ+ t y a; b; c

)
; (2.2)

which was proven similarly by Mukherjee [14, p. 7, Eq. (3.4)];

∞∑
k=0

(
n+ k
k

)
F
�α−k;β�
n+k �xy a; b; c�tk

= �1− λt�α�1− c�x− a�t�−α−β−n−1

· F �α;β�n

(
x− bc�x− a�t
1− c�x− a�t y a; b; c

)
(�t� < min�λ−1; �c�x− a��−1�) (2.3)
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or, equivalently,
∞∑
k=0

(
n+ k
k

)
F
�α;β−k�
n+k �xy a; b; c�tk

= �1+ λt�β�1− c�x− b�t�−α−β−n−1

· F �α;β�n

(
x− ac�x− b�t
1− c�x− b�t y a; b; c

)
(�t� < min�λ−1; �c�x− b��−1); (2.4)

which was proven similarly by Mukherjee [14, p. 8, Eq. (3.5)];
∞∑
k=0

(
n+ k
k

)
tk
n+k∑
j=0

(
j − β− n− k− 1

j

)
F
�α+j−k;β�
n−j+k �xy a; b; c� τj

=
(

1− τ
λ

)n
�1− λt + tτ�α�1− c�x− a�t + tτ�−α−β−n−1

· F �α;β�n

(
λx− bτ − b�λ− τ��c�x− a� − τ�t
�λ− τ� �1− c�x− a�t + tτ� y a; b; c

)
(�t� < min��λ− τ�−1; �c�x− a� − τ�−1�); (2.5)

which appears erroneouly in the work of Chongdar et al. [7, p. 375,
Eq. (3.7)]; and

∞∑
k=0

(
n+ k
k

)
tk
n+k∑
j=0

(
j − α− n− k− 1

j

)
F
�α;β+j−k�
n−j+k �xy a; b; c� τj

=
(

1+ τ
λ

)n
�1+ λt + tτ�β�1− c�x− b�t + tτ�−α−β−n−1

· F �α;β�n

(
λx+ at − a�λ+ τ��c�x− b� − τ�t
�λ+ τ� �1− c�x− b�t + tτ� y a; b; c

)
��t� < min��λ+ τ�−1; �c�x− b� − τ�−1��; (2.6)

which was given earlier by Mukherjee [14, p. 11, Eq. (4.3)] and appears
erroneously in the work of Chongdar et al. [7, p. 376, Eq. (3.12)].

The equivalence of (2.1) and (2.2), as also of (2.3) and (2.4), can be
exhibited by appealing to the relationship:

F
�α;β�
n �a+ b− xy a; b; c� = �−1�nF �β;α�n �xy a; b; c�; (2.7)

which follows readily from the well-known relationship [24, p. 59, Eq.
(4.1.3)]:

P
�α;β�
n �−x� = �−1�nP�β;α�n �x�; (2.8)

by means of (1.8).
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Earlier, just as we have indicated above, by suitably interpreting the de-
gree n or one of the parameters α and β (or both the degree n and one
of the parameters α and β simultaneously) in the aforementioned group-
theoretic (Lie algebraic) method, essentially the same generating func-
tions as some of the above, and several additional generating functions
for F �α;β�n �xy a; b; c�, were derived in many other works on this subject. For
the sake of ready reference, we also recall these other generating functions
in their (corrected and/or modified) forms:

n∑
k=0

(
α+ β+ n+ k

k

)
F
�α+k;β+k�
n−k �xy a; b; c�tk

= F �α;β�n

(
x+ t

c
y a; b; c

)
; (2.9)

which first appeared in the work of Shrivastava and Dhillon [18, p. 133,
Eq. (3.5)];

∞∑
k=0

(
n+ k
k

)
F
�α−k;β−k�
n+k �xy a; b; c�tk

= �1+ c�x− b�t�α �1+ c�x− a�t�β

· F �α;β�n

(
x+ c�x− a��x− b�ty a; b; c

)
(�t� < min��c�x− a��−1; �c�x− b��−1�); (2.10)

which also appeared first in the work of Shrivastava and Dhillon [18, p. 133,
Eq. (3.8)];

∞∑
k=0

(
n+ k
k

)
tk
n+k∑
j=0

(
α+ β+ n− k+ j

j

)
F
�α−k+j; β−k+j�
n+k−j �xy a; b; c�τj

=
{

1+ c
(
x− b+ τ

c

)
t

}α {
1+ c

(
x− a+ τ

c

)
t

}β
· F �α;β�n

(
x+ τ

c
+ c

(
x− a+ τ

c

)(
x− b+ τ

c

)
ty a; b; c

)
(�t� < min��c�x− a� + τ�−1; �c�x− b� + τ�−1�); (2.11)

which first appeared in the work of Shrivastava and Dhillon [18, p. 134,
Eq. (3.11)] (see also [18, p. 135, Eq. (3.14)] for an obviously erroneous
version of (2.11) above);

∞∑
k=0

(
k− β− n− 1

k

)
F
�α+k;β−k�
n �xy a; b; c�tk

= �1− t�β F �α;β�n �x− �x− b�ty a; b; c� ��t� < 1�; (2.12)
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which appeared in the work of Sen and Chongdar [16, p. 85, Eq. (3.4)] (and
also in the identical work of Sen and Chongdar [17]; see also Chongdar and
Majumdar [6, p. 32, Eq. (3.4)]);

∞∑
k=0

(
k− α− n− 1

k

)
F
�α−k;β+k�
n �xy a; b; c�tk

= �1− t�α F �α;β�n �x− �x− a�ty a; b; c� ��t� < 1�; (2.13)

which appeared in the work of Sen and Chongdar [16, p. 86, Eq. (3.6)] (and
also in the work of Chongdar and Majumdar [6, p. 33, Eq. (3.5)]); and

∞∑
k; j=0

(
k− α− n− j − 1

k

)(
j − β− n− 1

j

)
F
�α−k+j; β−k+j�
n �xy a; b; c� tkτj

= �1− t�α�1− �1− t�τ�β

· F �α;β�n

(�x− �x− a�t��1− �1− t�τ� + b�1− t�τy a; b; c)
��t� < 1 y �τ� < �1− t�−1�; (2.14)

which appeared in the work of Sen and Chongdar [16, p. 86, Eq. (3.7)] (see
also Chongdar and Majumdar [6, p. 33, Eq. (3.6)] for an obviouly erroneous
version of (2.14) above).

In view of the relationship (2.7), the generating functions (2.12) and
(2.13) are equivalent. Furthermore, since

F
�α;β�
n �xy a; b; c� =

(
−x− a
a− b

)n
F
�−α−β−2n−1; β�
n

(
ax− 2ab+ b2

x− a y a; b; c
)

=
(
x− b
a− b

)n
F
�α;−α−β−2n−1�
n

(
bx− 2ab+ a2

x− b y a; b; c
)
;

(2.15)

which would follow easily from the known relationships [24, p. 64, Eq.
(4.22.1)]:

P
�α;β�
n �x� =

(
1− x

2

)n
P
�−α−β−2n−1; β�
n

(
x+ 3
x− 1

)
=
(

1+ x
2

)n
P
�α;−α−β−2n−1�
n

(
3− x
1+ x

)
(2.16)

by means of (1.8), it is not difficult to show that the finite summation for-
mula (2.9) is equivalent to (2.1) and (2.2); the generating function (2.10) is
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equivalent to (2.3) and (2.4); and (2.12), (2.13), and the generating func-
tions (2.17) to (2.20) below are all equivalent to one another:

∞∑
k=0

(
k− α− n− 1

k

)
F
�α−k;β�
n �xy a; b; c�tk

= �1− t�α
(

1+ �x− a�t
a− b

)n
· F �α;β�n

( �a− b�x+ b�x− a�t
a− b+ �x− a�t y a; b; c

)
��t� < 1�y (2.17)

∞∑
k=0

(
k− β− n− 1

k

)
F
�α;β−k�
n �xy a; b; c�tk

= �1− t�β
(

1− �x− b�t
a− b

)n
· F �α;β�n

( �a− b�x− a�x− b�t
a− b− �x− b�t y a; b; c

)
��t� < 1�y (2.18)

∞∑
k=0

(
α+ β+ n+ k

k

)
F
�α+k;β�
n �xy a; b; c�tk

= �1− t�−α−β−n−1 F
�α;β�
n

(
x− bt
1− t y a; b; c

)
��t� < 1�y (2.19)

∞∑
k=0

(
α+ β+ n+ k
k

)
F
�α;β+k�
n �xy a; b; c�tk

= �1− t�−α−β−n−1 F
�α;β�
n

(
x− at
1− t y a; b; c

)
��t� < 1�: (2.20)

Each of the double-series generating functions (2.5), (2.6), (2.11), and
(2.14) would follow immediately when we appropriately combine two of
the single-series generating functions (2.1), (2.2), (2.3), (2.4), (2.9), (2.10),
(2.12), and (2.13). In fact, by similarly combining two or more of the above-
listed single-series generating functions, one can easily derive numerous
other double-, triple-, and multiple-series generating functions involving
the extended Jacobi polynomials F �α;β�n �xy a; b; c�. For example, we thus
obtain the following analogues and variants of the double-series generating
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functions (2.5), (2.6), (2.11), and (2.14):
∞∑
k=0

n∑
j=0

(
n+ k− j

k

)(
j − β− n− 1

j

)
F
�α−k+j; β�
n+k−j �xy a; b; c� tkτj

= �1− λt�α
(

1− τ
λ
+ tτ

)n
�1− c�x− a�t�−α−β−n−1

· F �α;β�n

(
λ�x− bc�x− a�t� − bτ�1− λt��1− c�x− a�t�

�λ�1+ tτ� − τ� �1− c�x− a�t� y a; b; c
)

��t� < min�λ−1; �c�x− a��−1��; (2.21)

which follows immediately from (2.1) and (2.3) (and which appeared erro-
neously in the work of Chongdar et al. [7, p. 380, Eq. (4.4)]);
∞∑
k=0

n∑
j=0

(
n+ k− j

k

)(
j − α− n− 1

j

)
F
�α;β−k+j�
n+k−j �xy a; b; c� tkτj

= �1+ λt�β
(

1+ τ
λ
+ tτ

)n
�1− c�x− b�t�−α−β−n−1

· F �α;β�n

(
λ�x− ac�x− b�t� + aτ�1+ λt��1− c�x− b�t�

�λ�1+ tτ� + τ� �1− c�x− b�t� y a; b; c
)

��t� < min�λ−1; �c�x− b��−1��; (2.22)

which follows immediately from (2.2) and (2.4) (and which appeared erro-
neously in the work of Mukherjee [14, p. 8, Eq. (3.6)]);

∞∑
k=0

n∑
j=0

(
n+ k− j

k

)(
α+ β+ n+ j

j

)
F
�α−k+j; β−k+j�
n+k−j �xy a; b; c� tkτj

= �1+ c�x− b�t�α �1+ c�x− a�t�β

· F �α;β�n

(
x+ c�x− a��x− b�t

+ τ
c
�1+ c�x− a�t� �1+ c�x− b�t�y a; b; c

)
��t� < min��c�x− a��−1; �c�x− b��−1��; (2.23)

which follows immediately from (2.9) and (2.10);
∞∑

k; j=0

(
α+ β+ n+ k− j

k

)(
j − α− n− 1

j

)
F
�α+k−j; β�
n �xy a; b; c� tkτj

= �1− t�−α−β−n−1�1− �1− t�τ�α
(

1+ tτ + �x− a�τ
a− b

)n
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· F �α;β�n

( �a− b��x− bt� + bτ�1− t��x− a+ �a− b�t�
�1− t���a− b��1+ tτ� + �x− a�τ� y a; b; c

)
��t� < 1 y �τ� < �1− t�−1�; (2.24)

which follows immediately from (2.17) and (2.19);

∞∑
k; j=0

(
α+ β+ n+ k− j

k

)(
j − β− n− 1

j

)
F
�α;β+k−j�
n �xy a; b; c� tkτj

= �1− t�−α−β−n−1�1− �1− t�τ�β
(

1+ tτ − �x− b�τ
a− b

)n
· F �α;β�n

( �a− b��x− at� − aτ�1− t��x− b− �a− b�t�
�1− t���a− b��1+ tτ� − �x− b�τ� y a; b; c

)
��t� < 1 y �τ� < �1− t�−1�; (2.25)

which follows immediately from (2.18) and (2.20);

n∑
k=0

(
k− β− n− 1

k

)
tk
n−k∑
j=0

(
j − α− n− 1

j

)
F
�α+k;β+j�
n−k−j �xy a; b; c� τj

=
(

1+ τ − t
λ

)n
F
�α;β�
n

(
λx+ aτ − bt
λ+ τ − t y a; b; c

)
; (2.26)

which follows immediately from (2.1) and (2.2);

n∑
k=0

(
k− α− n− 1

k

)
tk
n−k∑
j=0

(
j − β− n− 1

j

)
F
�α+j; β+k�
n−k−j �xy a; b; c� τj

=
(

1+ t − τ
λ

)n
F
�α;β�
n

(
λx+ at − bτ
λ+ t − τ y a; b; c

)
; (2.27)

which also follows immediately from (2.1) and (2.2);

n∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
j − α− n− 1

j

)
F
�α+k−j; β+j�
n−k �xy a; b; c� τj

= �1− τ�α
(

1− t�1− τ�
λ

)n
· F �α;β�n

(
λ�x−�x− a�τ�− bt�1− τ�

λ− t�1− τ� y a; b; c
)

��τ�< 1�; (2.28)
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which follows immediately from (2.1) and (2.13);

n∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

(
j − β− n− 1

j

)
F
�α+j; β+k−j�
n−k �xy a; b; c� τj

= �1− τ�β
(

1+ t�1− τ�
λ

)n
· F �α;β�n

(
λ�x−�x− b�τ�+ at�1− τ�

λ+ t�1− τ� y a; b; c
)

��τ�< 1�; (2.29)

which follows immediately from (2.2) and (2.12);

∞∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α+k−j; β−k�
n+j �xy a; b; c� τj

= �1− λτ�α�1− t�1− λτ��β �1− c�x− a�τ�−α−β−n−1

· F �α;β�n

(
x− bc�x− a�τ − �x− b�t�1− λτ�

1− c�x− a�τ y a; b; c
)

��t� < �1− λτ�−1 y �τ� < λ−1�; (2.30)

which follows immediately from (2.3) and (2.12);

∞∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−k−j; β+k�
n+j �xy a; b; c�τj

= �1− t − λτ�α �1− c�x− a�τ�−α−β−n−1

· F �α;β�n

(
x− �x− a��t + bcτ�

1− c�x− a�τ y a; b; c
)

��t� < �1− λτ�y �τ� < min�λ−1; �c�x− a��−1��; (2.31)

which follows immediately from (2.3) and (2.13);

∞∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

( (
n+j
j

) )
F
�α−k−j; β�
n+j �xy a; b; c� τj

= �1−λτ−�1− c�x− a�τ�t�α�1− c�x− a�τ�−α−β−n−1
(

1+ �x− a�t
a− b

)n
·F �α;β�n

( �a− b��x− bc�x− a�τ�+ b�x− a�t�1− c�x− a�τ�
�a− b+�x− a�t��1− c�x− a�τ� y a; b; c

)
��t�< �1− λτ� · �1− c�x− a�τ�−1y �τ�< min�λ−1; �c�x− a��−1��; (2.32)
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which follows immediately from (2.3) and (2.17);

∞∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−j; β−k�
n+j �xy a; b; c� τj

= �1−λτ�α�1− t+ c�x− a�tτ�β�1− c�x− a�τ�−α−β−n−1

·
(

1− �x− b�t
a− b

)n
·F �α;β�n

( �a− b��x− bc�x− a�τ�− a�x− b�t�1− c�x− a�τ�
�a− b−�x− b�t��1− c�x− a�τ� y a; b; c

)
��t� < �1− c�x− a�τ�−1y �τ� < min�λ−1; �c�x− a��−1��; (2.33)

which follows immediately from (2.3) and (2.18);

∞∑
k=0

(
α+ β+ n+ k

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α+k−j; β�
n+j �xy a; b; c� τj

= �1−λτ�α�1− c�x− a�τ− t�1−λτ��−α−β−n−1

· F �α;β�n

(
x − bc�x− a�τ− bt�1−λτ�

1− c�x− a�τ− t�1−λτ� y a; b; c
)

��t�< �1− c�x− a�τ� · �1− λτ�−1y �τ�< min�λ−1; �c�x− a��−1��; (2.34)

which follows immediately from (2.3) and (2.19);

∞∑
k=0

(
α+ β+ n+ k

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−j; β+k�
n+j �xy a; b; c� τj

= �1− λτ�α�1− t − c�x− a�τ�−α−β−n−1

· F �α;β�n

(
x− at − bc�x− a�τ

1− t − c�x− a�τ y a; b; c
)

��t� < �1− c�x− a�τ�y �τ� < min�λ−1; �c�x− a��−1��; (2.35)

which follows immediately from (2.3) and (2.20);

∞∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α+k;β−k−j�
n+j �xy a; b; c� τj

= �1− t + λτ�β�1− c�x− b�τ�−α−β−n−1

· F �α;β�n

(
x− �x− b��t + acτ�

1− c�x− b�τ y a; b; c
)

��t� < 1 y �τ� < min�λ−1�1− t�; �c�x− b��−1��; (2.36)
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which follows immediately from (2.4) and (2.12);
∞∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

( (
n+j
j

) )
F
�α−k;β+k−j�
n+j �xy a; b; c� τj

= �1+ λτ�β �1− t�1+ λτ��α �1− c�x− b�τ�−α−β−n−1

· F �α;β�n

(
x− ac�x− b�τ − �x− a�t�1+ λτ�

1− c�x− b�τ y a; b; c
)

��t� < �1+ λτ�−1y �τ� < λ−1�; (2.37)

which follows immediately from (2.4) and (2.13);
∞∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−k;β−j�
n+j �xy a; b; c� τj

= �1+λτ�β�1− c�x− b�τ�−α−β−n−1 �1−�1− c�x− b�τ�t�α

·
(

1+ �x− a�t
a− b

)n
· F �α;β�n

( �a− b��x− ac�x− b�τ�+ b�x− a�t�1− c�x− b�τ�
�a− b+�x− a�t��1− c�x− b�τ� y a; b; c

)
��t�< �1− c�x− b�τ�−1y �τ�< min�λ−1; �c�x− b��−1��; (2.38)

which follows immediately from (2.4) and (2.17);
∞∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α;β−k−j�
n+j �xy a; b; c� τj

= �1+ λτ − �1− c�x− b�τ�t�β �1− c�x− b�τ�−α−β−n−1

·
(

1− �x− b�t
a− b

)n
· F �α;β�n

( �a− b��x− ac�x− b�τ�− a�x− b�t�1− c�x− b�τ�
�a− b−�x− b�t��1− c�x− b�τ� y a; b; c

)
��t� < �1+ λτ� · �1− c�x− b�τ�−1y �τ� < min�λ−1; �c�x− b��−1��; (2.39)

which follows immediately from (2.4) and (2.18);
∞∑
k=0

(
α+ β+ n+ k

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α+k;β−j�
n+j �xy a; b; c� τj

= �1+ λτ�β�1− t − c�x− b�τ�−α−β−n−1

· F �α;β�n

(
x− bt − ac�x− b�τ

1− t − c�x− b�τ y a; b; c
)

��t� < �1− c�x− b�τ�y �τ� < min�λ−1; �c�x− b��−1��; (2.40)
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which follows immediately from (2.4) and (2.19);
∞∑
k=0

(
α+ β+ n+ k

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α;β+k−j�
n+j �xy a; b; c� τj

= �1+ λτ�β�1− c�x− b�τ − t�1+ λτ��−α−β−n−1

· F �α;β�n

(
x− ac�x− b�τ− at�1+λτ�

1− c�x− b�τ− t�1+λτ� y a; b; c
)

��t�< �1− c�x− b�τ� · �1+λτ�−1y �τ�< min�λ−1; �c�x− b��−1��; (2.41)

which follows immediately from (2.4) and (2.20);
∞∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α+k−j; β−k−j�
n+j �xy a; b; c� τj

= �1+ c�x− b�τ�α�1+ c�x− a�τ − �1+ c�x− b�τ�t�β

· F �α;β�n

(
x+ c�x− a��x− b�τ − �x− b��1+ c�x− b�τ�ty a; b; c

)
(�t�< �1+ c�x− a�τ� · �1+ c�x− b�τ�−1y
�τ�< min��c�x− a��−1; �c�x− b��−1�); (2.42)

which follows immediately from (2.10) and (2.12);
∞∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−k−j; β+k−j�
n+j �xy a; b; c� τj

= �1+ c�x− a�τ�β�1+ c�x− b�τ − �1+ c�x− a�τ�t�α

· F �α;β�n

(
x+ c�x− a��x− b�τ − �x− a��1+ c�x− a�τ�ty a; b; c

)
(�t�< �1+ c�x− b�τ� · �1+ c�x− a�τ�−1y
�τ�< min��c�x− a��−1; �c�x− b��−1�); (2.43)

which follows immediately from (2.10) and (2.13);
∞∑
k=0

(
k− α− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−k−j; β−j�
n+j �xy a; b; c� τj

= �1+ c�x− a�τ�β�1− t + c�x− b�τ�α
(

1+ �x− a�t
a− b

)n
· F �α;β�n

( �a− b��x+ c�x− a��x− b�τ� + b�x− a�t
a− b+ �x− a�t y a; b; c

)
��t� < �1+ c�x− b�τ�y �τ� < min��c�x− a��−1; �c�x− b��−1��; (2.44)
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which follows immediately from (2.10) and (2.17);

∞∑
k=0

(
k− β− n− 1

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−j; β−k−j�
n+j �xy a; b; c� τj

= �1+ c�x− b�τ�α�1− t + c�x− a�τ�β
(

1− �x− b�t
a− b

)n
· F �α;β�n

( �a− b��x+ c�x− a��x− b�τ� − a�x− b�t
a− b− �x− b�t y a; b; c

)
��t�< �1+ c�x− a�τ�−1y �τ�< min��c�x− a��−1; �c�x− b��−1��; (2.45)

which follows immediately from (2.10) and (2.18);

∞∑
k=0

(
α+ β+ n+ k

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α+k−j; β−j�
n+j �xy a; b; c� τj

= �1+ c�x− b�τ�α�1+ c�x− a�τ�β�1− �1+ c�x− b�τ�t�−α−β−n−1

· F �α;β�n

(
x+ c�x− a��x− b�τ − b�1+ c�x− b�τ�t

1− �1+ c�x− b�τ�t y a; b; c
)

��t�< �1+ c�x− b�τ�−1y �τ�< min��c�x− a��−1; �c�x− b��−1��; (2.46)

which follows immediately from (2.10) and (2.19); and

∞∑
k=0

(
α+ β+ n+ k

k

)
tk
∞∑
j=0

(
n+ j
j

)
F
�α−j; β+k−j�
n+j �xy a; b; c� τj

= �1+ c�x− b�τ�α�1+ c�x− a�τ�β�1− �1+ c�x− a�τ�t�−α−β−n−1

· F �α;β�n

(
x+ c�x− a��x− b�τ − a�1+ c�x− a�τ�t

1− �1+ c�x− a�τ�t y a; b; c
)

��t� < �1+ c�x− a�τ�−1y �τ� < min��c�x− a��−1; �c�x− b��−1��; (2.47)

which follows immediately from (2.10) and (2.20).
In view of the relationship (1.8), the single-series generating functions

(2.1), (2.2), (2.9), (2.3), (2.4), (2.10), (2.12), (2.13), and (2.17) to (2.20),
which readily imply each of the aforementioned multiple-series generating
functions, are merely disguised forms of the following known generating
functions for the classical Jacobi polynomials (cf., e.g., Hansen [9], Srivas-
tava and Manocha [22], Chen and Srivastava [3], and the references cited
therein):

n∑
k=0

(
k− β− n− 1

k

)
P
�α+k;β�
n−k �x� tk = �1+ t�n P�α;β�n

(
x− t
1+ t

)
; (2.48)
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n∑
k=0

(
k− α− n− 1

k

)
P
�α;β+k�
n−k �x� tk = �1− t�n P�α;β�n

(
x− t
1− t

)
; (2.49)

n∑
k=0

(
α+ β+ n+ k

k

)
P
�α+k;β+k�
n−k �x� tk = P�α;β�n �x+ 2t�; (2.50)

∞∑
k=0

(
n+ k
k

)
P
�α−k;β�
n+k �x� tk = �1+ t�α

{
1− 1

2
�x− 1�t

}−α−β−n−1

· P�α;β�n

(
x+ 1

2 �x− 1�t
1− 1

2 �x− 1�t

)
(�t� < min�1; 2�x− 1�−1�); (2.51)

∞∑
k=0

(
n+ k
k

)
P
�α;β−k�
n+k �x� tk = �1− t�β {1− 1

2 �x+ 1�t}−α−β−n−1

· P�α;β�n

(
x− 1

2 �x+ 1�t
1− 1

2 �x+ 1�t

)
(�t� < min�1; 2�x+ 1�−1�); (2.52)

∞∑
k=0

(
n+ k
k

)
P
�α−k;β−k�
n+k �x� tk

=
{

1+ 1
2
�x+ 1�t

}α {
1+ 1

2
�x− 1�t

}β
· P�α;β�n

(
x+ 1

2
�x2 − 1�t

)
(�t� < min�2�x+ 1�−1; 2�x− 1�−1�); (2.53)

∞∑
k=0

(
k− β− n− 1

k

)
P
�α+k;β−k�
n �x� tk

= �1− t�β P�α;β�n

(
x− �x+ 1�t

)
��t� < 1�; (2.54)
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∞∑
k=0

(
k− α− n− 1

k

)
P
�α−k;β+k�
n �x� tk

= �1− t�αP�α;β�n

(
x− �x− 1�t) ��t� < 1�; (2.55)

∞∑
k=0

(
k− α− n− 1

k

)
P
�α−k;β�
n �x� tk

= �1− t�α
{

1+ 1
2
�x− 1�t

}n
· P�α;β�n

(
x− 1

2 �x− 1�t
1+ 1

2 �x− 1�t

)
��t� < 1�; (2.56)

∞∑
k=0

(
k− β− n− 1

k

)
P
�α;β−k�
n �x� tk

= �1− t�β
{

1− 1
2
�x+ 1�t

}n
· P�α;β�n

(
x− 1

2 �x+ 1�t
1− 1

2 �x+ 1�t

)
��t� < 1�; (2.57)

∞∑
k=0

(
α+ β+ n+ k

k

)
P
�α+k;β�
n �x� tk

= �1− t�−α−β−n−1 P
�α;β�
n

(
x+ t
1− t

)
��t� < 1�; (2.58)

and

∞∑
k=0

(
α+ β+ n+ k

k

)
P
�α;β+k�
n �x� tk

= �1− t�−α−β−n−1P
�α;β�
n

(
x− t
1− t

)
��t� < 1�; (2.59)

respectively.
In the fairly vast (and widely scattered) literature on generating functions,

much more general results than those that are mentioned above can be
found for the Jacobi polynomials P�α;β�n �x� as well as for their numerous
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genaralizations. For example, in terms of the Appell function F1 defined by

F1�α;β;β′yγyx; y� x=
∞∑

l;m=0

�α�l+m�β�l�β′�m
�γ�l+m

xl

l!
ym

m!(
max��x�; �y�� < 1yγ 6= 0;−1;−2; : : :

)
; (2.60)

it is known that (cf., e.g., [22, p. 114, Eq. 2.3(40)])

∞∑
k=0

(
n+ k
k

) �γ�k
�−α− β− n�k

P
�α−k;β−k�
n+k �x�tk

=
(
α+ β+ 2n

n

)(
x+ 1

2

)n{
1+ 1

2
�x+ 1�t

}−γ
· F1

(
−β− n;−n; γy −α− β− 2ny 2

x+ 1
;

t

1+ 1
2 �x+ 1�t

)
(�t� < min�2�x+ 1�−1; 2�x− 1�−1�); (2.61)

which reduces to (2.53) in the special case when

γ = −α− β− n �n ∈ �0�;

since [22, p. 105, Eq. 2.3(6)]

F1�α;β;β′yβ+ β′yx; y� = �1− y�−α2F1

(
α;βyβ+ β′y x− y

1− y
)

(� arg�1− y�� ≤ π − ε �0 < ε < π�): (2.62)

In the F-notation, the generating function (2.61) can easily be rewritten
in the following form by appealing to the relationship (1.8):

∞∑
k=0

(
n+ k
k

) �γ�k
�−α− β− n�k

F
�α−k;β−k�
n+k �xy a; b; c�tk

=
(
α+ β+ 2n

n

)
�c�x− b��n�1+ c�x− b�t�−γ

· F1

(
−β− n;−n; γy −α− β− 2ny a− b

x− b;−
λt

1+ c�x− b�t
)

(�t� < min��c�x− a��−1; �c�x− b��−1�): (2.63)
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3. BILINEAR AND BILATERAL GENERATING FUNCTIONS

A familiar bilinear generating function for the classical Jacobi polynomi-
als is the Bailey formula (cf. [2]; see also [22, p. 116, Eq. 2.3(47)]):

∞∑
n=0

n!�α+ β+ 1�n
�α+ 1�n�β+ 1�n

P
�α;β�
n �x�P�α;β�n �y�tn

= �1+ t�−α−β−1F4

[
1
2
�α+ β+ 1�; 1

2
�α+ β+ 2�yα+ 1; β+ 1y

�1− x��1− y�t
�1+ t�2 ;

�1+ x��1+ y�t
�1+ t�2

]
��t� < 1�; (3.1)

where the Appell function

F4 x= F �2�C
is the two-variable �s = 2� case of the Lauricella function F �s�C of s complex
variables z1; : : : ; zs �s ∈ ��, defined by [22, p. 60, Eq. 1.7(3)] (see also [1,
p. 114, Eq. (3)])

F
�s�
C

[
α;βyγ1; : : : ; γsy z1; : : : ; zs

]
x=

∞∑
l1;:::;ls=0

�α�l1+···+ls�β�l1+···+ls
�γ1�l1 · · · �γs�ls

z
l1
1

l1!
· · · z

ls
s

ls!(�z1�1/2 + · · · + �zs�1/2 < 1yγj 6= 0;−1;−2; : : : �j = 1; : : : ; s�): (3.2)

In view of the relationship (1.8), Bailey’s formula (3.1) immediately yields
the following bilinear generating function for the extended Jacobi polyno-
mials:
∞∑
n=0

n!�α+ β+ 1�n
�α+ 1�n�β+ 1�n

F
�α;β�
n �xy a; b; c�F �α;β�n �yyA;B;C�tn

= �1+ λ3t�−α−β−1F4

[
1
2
�α+ β+ 1�; 1

2
�α+ β+ 2�yα+ 1; β+ 1y

4cC�x− a��y −A�t
�1+ λ3t�2 ;

4cC�x− b��y − B�t
�1+ λ3t�2

]
(�t� < �λ3�−1yλ x= c�b− a�y3 x= C�B −A�): (3.3)

In fact, by merely applying the relationship (1.8) to various known gen-
eralizations of the Bailey formula (3.1), one can easily derive much more
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general results than the bilinear generating function (3.3). Just as an illus-
tration, we recall the following generating function for the classical Jacobi
polynomials (cf. [22, p. 115, Eq. 2.3(45)]):
∞∑
n=0

�m+ n�!�α+ β+m+ 1�n
�γ + 1�n�δ+ 1�n

P
�α;β�
m+n �x�P�γ;δ�n �y� tn

= �α+ 1�m
(
x+ 1

2

)−α−β−m−1

· F �3�C
[
α+ β+m+ 1; α+m+ 1yα+ 1; γ + 1; δ+ 1y

x− 1
x+ 1

;
�y − 1�t
x+ 1

;
�y + 1�t
x+ 1

]
(�t�1/2 < ��x+ 1�1/2 − �x− 1�1/2���y + 1�1/2 + �y − 1�1/2�−1ym ∈ �0

)
; (3.4)

which, in the special case when

m = 0; γ = α; and δ = β
yields the Bailey formula (3.1), since [22, p. 117, Eq. 2.3(50)]

F
�3�
C

[
α+ β+ 1; β+ 1yα+ 1; β+ 1; β+ 1yx; y; z]
= �1+ x− y − z�−α−β−1

·F4
[ 1

2 �α+ β+ 1�; 1
2 �α+ β+ 2�yα+ 1; β+ 1yX;Y ]; (3.5)

where, for convenience,

X x= 4x
�1+ x− y − z�2 and Y x= 4yz

�1+ x− y − z�2 : (3.6)

Thus, by applying the relationship (1.8), we can easily obtain the following
disguised form of (3.4):

∞∑
n=0

�m+ n�!�α+ β+m+ 1�n
�γ + 1�n�δ+ 1�n

F
�α;β�
m+n �xy a; b; c�F �γ; δ�n �yyA;B;C�tn

= �α+ 1�m�c�a− b��m
(
x− b
a− b

)−α−β−m−1

· F �3�C
[
α+ β+m+ 1; α+m+ 1yα+ 1; γ + 1; δ+ 1y

x− a
x− b;

cC�a− b�2�y −A�t
x− b ;

cC�a− b�2�y − B�t
x− b

]
(
�t�1/2 <

∣∣∣∣A− Ba− b

∣∣∣∣1/2 �x− b�1/2 − �x− a�1/2�y − B�1/2 + �y −A�1/2 ym ∈ �0

)
; (3.7)
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which, in view of the reduction formula (3.6), would reduce to the bilinear
generating function (3.3) in the special case when

m = 0; γ = α; and δ = β:

With a view to obtaining numerous families of bilinear, bilateral, or
mixed multilateral generating functions for the extended Jacobi polyno-
mials, we first observe that each of the generating functions (2.3) [with α
replaced trivially by α− n �n ∈ �0�], (2.4) [with β replaced trivially by β− n
�n ∈ �0�], (2.10) [with α and β replaced trivially by α − n and β − n, re-
spectively �n ∈ �0�], (2.12) [with α and β replaced trivially by α +m and
β −m, respectively �m ∈ �0�], (2.13) [with α and β replaced trivially by
α−m and β+m, respectively �m ∈ �0�], (2.17) [with α replaced trivially
by α−m �m ∈ �0�], (2.18) [with β replaced trivially by β−m �m ∈ �0�],
(2.19) [with α replaced trivially by α+m �m ∈ �0�], and (2.20) [with β re-
placed trivially by β +m �m ∈ �0�] fits easily into the Singhal–Srivastava
definition [19, p. 755, Eq. (1)]:

∞∑
k=0

Am;kSm+k�x�tk

= f �x; t�{g�x; t�}−m Sm(h�x; t�) �m ∈ �0�: (3.8)

Thus, by comparing the Singhal–Srivastava generating function (3.8) with
the aforementioned (trivially modified) versions of the generating functions
(2.3), (2.4), (2.10), (2.12), (2.13), (2.17), (2.18), (2.19), and (2.20), respec-
tively, we obtain the following special cases of (3.8):

Am;k =
(
m+ k
k

)
; f = �1− λt�α�1− c�x− a�t�−α−β−1;

g = 1− λt; h = x− bc�x− a�t
1− c�x− a�t ; and

Sk�x� = F �α−k;β�k �xy a; b; c�y (3.9)

Am;k =
(
m+ k
k

)
; f = �1+ λt�β�1− c�x− b�t�−α−β−1;

g = 1+ λt; h = x− ac�x− b�t
1− c�x− b�t ; and

Sk�x� = F �α;β−k�k �xy a; b; c�y (3.10)
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Am;k =
(
m+ k
k

)
; f = �1+ c�x− b�t�α�1+ c�x− a�t�β;

g = �1+ c�x− b�t��1+ c�x− a�t�;
h = x+ c�x− a��x− b�t; and Sk�x� = F �α−k;β−k�k �xy a; b; c�y

(3.11)

Am;k =
(
k− β+m− n− 1

k

)
; f = �1− t�β; g = 1− t;

h = x− �x− b�t; and Sk�x� = F �α+k;β−k�n �xy a; b; c�y
(3.12)

Am;k =
(
k− α+m− n− 1

k

)
; f = �1− t�α;

g = 1− t; h=x−�x− a�t; and Sk�x�=F �α−k;β+k�n �xy a; b; c�y
(3.13)

Am;k =
(
k− α+m− n− 1

k

)
;

f = �1− t�α
(

1+ �x− a�t
a− b

)n
; g = 1− t;

h = �a− b�x+ b�x− a�t
a− b+�x− a�t ; and Sk�x�=F �α−k;β�n �xy a; b; c�y

(3.14)

Am;k =
(
k− β+m− n− 1

k

)
;

f = �1− t�β
(

1− �x− b�t
a− b

)n
; g = 1− t;

h = �a− b�x− a�x− b�t
a− b−�x− b�t ; and Sk�x�=F �α;β−k�n �xy a; b; c�

(3.15)
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Am;k =
(
α+ β+m+ n+ k

k

)
;

f = �1− t�−α−β−n−1; g = 1− t;

h = x− bt
1− t ; and Sk�x� = F �α+k;β�n �xy a; b; c�y

(3.16)

Am;k =
(
α+ β+m+ n+ k

k

)
;

f = �1− t�−α−β−n−1; g = 1− t;
h = x− at

1− t ; and Sk�x� = F �α;β+k�n �xy a; b; c�:
(3.17)

In view of the connections exibited by (3.9) to (3.17), the entire devel-
opment stemming from the Singhal–Srivastava generating function (3.8)
would readily apply also to the generating functions (2.3), (2.4), (2.10),
(2.12), (2.13), (2.17), (2.18), (2.19), and (2.20). Alternatively, however, by
appealing directly to each of the generating functions (2.3), (2.4), (2.10),
(2.12), (2.13), (2.17), (2.18), (2.19), and (2.20), we can derive a set of nine
families of bilinear, bilateral, or mixed multilateral generating functions
for the extended Jacobi polynomials, which are given by Theorems 1 to 9
below:

Theorem 1. Corresponding to a non-vanishing function �µ�y1; : : : ; ys�
of s complex variables y1; : : : ; ys �s ∈ �� and of (complex) order µ, let

3
�1�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

ak F
�α−ρqk;β+σqk�
n+qk �xy a; b; c�

·�µ+pk�y1; : : : ; ys� zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.18)

and

2
�1�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
n+ k
k− qj

)
ajF

�α−k+ρqj; β+σqj�
n+k �xy a; b; c�

·�µ+pj�y1; : : : ; ys�zj; (3.19)
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where ρ and σ are suitable complex parameters and (as usual) �λ� represents
the greatest integer in λ ∈ �.

Then
∞∑
k=0

2
�1�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1− c�b− a�t�α�1− c�x− a�t�−α−β−n−1

· 3�1�n; 1−ρ; σ

[
x− bc�x− a�t
1− c�x− a�t y y1; : : : ; ysy

z tq�1− c�b− a�t��ρ−1�q

�1− c�x− a�t��ρ+σ�q
]
;

(3.20)

provided that each member of (3.20) exists.

Theorem 2. Under the hypotheses of Theorem 1, let

3
�2�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α+ρqk;β−σqk�
n+qk �xy a; b; c�

·�µ+pk�y1; : : : ; ys�zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.21)

and

2
�2�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
n+ k
k− qj

)
aj F

�α+ρqj; β−k+σqj�
n+k �xy a; b; c�

·�µ+pj�y1; : : : ; ys�zj; (3.22)

where ρ and σ are suitable complex parameters.
Then

∞∑
k=0

2
�2�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1+ c�b− a�t�β�1− c�x− b�t�−α−β−n−1

· 3�2�n; ρ; 1−σ

[
x− ac�x− b�t
1− c�x− b�t y y1; : : : ; ysy

ztq�1+ c�b− a�t��σ−1�q

�1− c�x− b�t��ρ+σ�q
]
;

(3.23)

provided that each member of (3.23) exists.
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Theorem 3. Under the hypotheses of Theorem 1, let

3
�3�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α−ρqk;β−σqk�
n+qk �xy a; b; c�

·�µ+pk�y1; : : : ; ys� zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.24)

and

2
�3�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
n+ k
k− qj

)
ajF

�α−k+ρqj; β−k+σqj�
n+k �xy a; b; c�

·�µ+pj�y1; : : : ; ys�zj; (3.25)

where ρ and σ are suitable complex parameters.
Then

∞∑
k=0

2
�3�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
; tk

= �1+ c�x− b�t�α�1+ c�x− a�t�β

· 3�3�n; 1−ρ; 1−σ
[
x+ c�x− a��x− b�ty y1; : : : ; ysy

ztq�1+ c�x− b�t��ρ−1�q�1+ c�x− a�t��σ−1�q]; (3.26)

provided that each member of (3.26) exists.

Theorem 4. Under the hypotheses of Theorem 1, let

3
�4�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α+ρqk;β−σqk�
n �xy a; b; c�

·�µ+pk�y1; : : : ; ys� zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.27)

and

2
�4�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
k− β+ σqj − n− 1

k− qj
)
aj�µ+pj�y1; : : : ; ys�

· F �α+k+ρqj; β−k−σqj�n �xy a; b; c� zj; (3.28)

where ρ and σ are suitable complex parameters.



410 pittaluga, sacripante, and srivastava

Then

∞∑
k=0

2
�4�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1− t�β

· 3�4�n; ρ+1; σ+1

[
x− �x− b�ty y1; : : : ; ysy

z tq

�1− t��σ+1�q

]
; (3.29)

provided that each member of (3.29) exists.

Theorem 5. Under the hypotheses of Theorem 1, let

3
�5�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α−ρqk;β+σqk�
n �xy a; b; c�

·�µ+pk�y1; : : : ; ys�zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.30)

and

2
�5�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
k− α+ ρqj − n− 1

k− qj
)
aj�µ+pj�y1; : : : ; ys�

· F �α−k−ρqj; β+k+σqj�n �xy a; b; c�zj; (3.31)

where ρ and σ are suitable complex parameters.
Then

∞∑
k=0

2
�5�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1− t�α

· 3�5�n; ρ+1; σ+1

[
x− �x− a�ty y1; : : : ; ysy

ztq

�1− t��ρ+1�q

]
; (3.32)

provided that each member of (3.32) exists.
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Theorem 6. Under the hypotheses of Theorem 1, let

3
�6�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α−ρqk;β−σqk�
n �xy a; b; c�

·�µ+pk�y1; : : : ; ys�zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.33)

and

2
�6�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
k− α+ ρqj − n− 1

k− qj
)
aj�µ+pj�y1; : : : ; ys�

· F �α−k−ρqj; β−σqj�n �xy a; b; c�zj; (3.34)

where ρ and σ are suitable complex parameters.
Then
∞∑
k=0

2
�6�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1− t�α
(

1+ �x− a�t
a− b

)n
· 3�6�n; ρ+1; σ

[�a− b�x+ b�x− a�t
a− b+ �x− a�t y y1; : : : ; ysy

z tq

�1− t��ρ+1�q

]
; (3.35)

provided that each member of (3.35) exists.

Theorem 7. Under the hypotheses of Theorem 1, let

3
�7�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α−ρqk;β−σqk�
n �xy a; b; c�

·�µ+pk�y1; : : : ; ys� zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.36)

and

2
�7�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
k− β+ σqj − n− 1

k− qj
)
aj�µ+pj�y1; : : : ; ys�

· F �α−ρqj; β−k−σqj�n �xy a; b; c�zj; (3.37)

where ρ and σ are suitable complex parameters.
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Then
∞∑
k=0

2
�7�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1− t�β
(

1− �x− b�t
a− b

)n
· 3�7�n; ρ; σ+1

[�a− b�x− a�x− b�t
a− b− �x− b�t y y1; : : : ; ysy

ztq

�1− t��σ+1�q

]
; (3.38)

provided that each member of (3.38) exists.

Theorem 8. Under the hypotheses of Theorem 1, let

3
�8�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α+ρqk;β+σqk�
n �xy a; b; c�

·�µ+pk�y1; : : : ; ys�zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.39)

and

2
�8�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
α+ β− �ρ+ σ�qj + n+ k

k− qj
)
aj�µ+pj�y1; : : : ; ys�

·F �α+k−ρqj; β−σqj�n �xy a; b; c� zj; (3.40)

where ρ and σ are suitable complex parameters.
Then

∞∑
k=0

2
�8�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk = �1− t�−α−β−n−1

· 3�8�n; 1−ρ; σ

[
x− bt
1− t y y1; : : : ; ysy

z tq

�1− t��1−ρ−σ�q
]
; (3.41)

provided that each member of (3.41) exists.

Theorem 9. Under the hypotheses of Theorem 1, let

3
�9�
n; ρ; σ

[
xy y1; : : : ; ysy z

]
x=

∞∑
k=0

akF
�α−ρqk;β+σqk�
n �xy a; b; c�

·�µ+pk�y1; : : : ; ys�zk(
ak 6= 0yn ∈ �0yp; q ∈ �

)
(3.42)
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and

2
�9�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
x=
�k/q�∑
j=0

(
α+ β− �ρ+ σ�qj + n+ k

k− qj
)
aj�µ+pj�y1; : : : ; ys�

· F �α−ρqj; β+k−σqj�n �xy a; b; c�zj; (3.43)

where ρ and σ are suitable complex parameters.
Then

∞∑
k=0

2
�9�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
tk

= �1− t�−α−β−n−1

· 3�9�n; ρ; 1−σ

[
x− at
1− t y y1; : : : ; ysy

z tq

�1− t��1−ρ−σ�q
]
; (3.44)

provided that each member of (3.44) exists.

Proofs of Theorems 1 to 9. We give a direct proof of Theorem 1 only;
each of the other Theorems 2 to 9 can indeed be proven in a similar
manner.

Denote, for convenience, the left-hand side of the assertion (3.20) of
Theorem 1 by S . Then, upon substituting for the polynomials

2
�1�
k; ρ; σ

(
xy y1; : : : ; ysy z

)
from (3.19) into the left-hand side of (3.20), we obtain

S =
∞∑
k=0

tk
�k/q�∑
j=0

(
n+ k
k− qj

)
ajF

�α−k+ρqj; β+σqj�
n+k �xy a; b; c�

·�µ+pj�y1; : : : ; ys�zj

=
∞∑
j=0

aj�µ+pj�y1; : : : ; ys��ztq�j

·
∞∑
k=0

(
n+ k+ qj

k

)
F
�α−k−�1−ρ�qj; β+σqj�
n+k+qj �xy a; b; c�tk; (3.45)

by inverting the order of the double summation involved.
The inner series in (3.45) can be summed by applying the generating

function (2.3) [with α;β; and n replaced by

α− �1− ρ�qj; β+ σqj; and n+ qj;
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respectively �q ∈ �y j ∈ �0yρ; σ ∈ ��], and we thus find from (3.45) and
(2.3) that

S = �1− c�b− a�t�α�1− c�x− a�t�−α−β−n−1

·
∞∑
j=0

ajF
�α−�1−ρ�qj; β+σqj�
n+qj

(
x− bc�x− a�t
1− c�x− a�t y a; b; c

)

·�µ+pj�y1; : : : ; ys�
(
ztq�1− c�b− a�t��ρ−1�q

�1− c�x− a�t��ρ+σ�q
)j

(�t� < min
{�c�b− a��−1; �c�x− a��−1}): (3.46)

Now, upon interpreting this last infinite series in (3.46) by means of the
definition (3.18), we arrive immediately at the right-hand side of the asser-
tion (3.20) of Theorem 1.

This evidently completes the direct proof of Theorem 1 under the as-
sumption that the double series involved in the first two steps of our proof
are absolutely convergent. Thus, in general, Theorem 1 holds true (at least
as a relation between formal power series) for those values of the various
parameters and variables involved for which each member of the assertion
(3.20) exists.

The direct proof of each of Theorems 2 to 9 is much akin to that of
Theorem 1, which we already have detailed here fairly adequately. In place
of the generating function (2.3) used in proving Theorem 1, we shall require
the generating functions (2.4), (2.10), (2.12), (2.13), (2.17), (2.18), (2.19),
and (2.20) in proving Theorems 2 to 9, respectively. The details are being
omitted here.

For each suitable choice of the coefficients ak �k ∈ �0�, if the multivari-
able function

�µ�y1; : : : ; ys�
(
s ∈ � \ �1�)

is expressed as an appropriate product of several simpler functions, each
of our results (Theorems 1 to 9 above) can be applied to derive various
families of mixed multilateral generating functions for the extended Jacobi
polynomials F �α;β�n �xy a; b; c�. We choose to leave the details involved in
these applications of Theorems 1 to 9 as an exercise for the interested
reader.

In terms of the classical Jacobi polynomials P�α;β�n �x�, Theorem 3 (and
hence also its essentially equivalent forms asserted by Theorems 1 and 2)
was given, over one decade ago, by Srivastava and Popov [23] (see also
Srivastava and Handa [21] for further extensions of Theorems 1, 2, and
3 involving a general sequence of functions defined by a Rodrigues for-
mula). Furthermore, the special cases of Theorem 1, 2, and 3 above when
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ρ = σ = 0 correspond to the known families of mixed multilateral gener-
ating functions for P�α−n;β�n �x�, P�α;β−n�n �x�, and P�α−n;β−n�n �x�, which were
given, almost two decades ago, by Srivastava [20, p. 230, Corollaries 5, 6,
and 7] and which were subsequently reproduced in the treatise on the sub-
ject of generating functions by Srivastava and Manocha [22, pp. 423–424,
Corollaries 5, 6, and 7].

Each of our Theorems 4 to 9, on the other hand, can be deduced alter-
natively from a general family of mixed multilateral generating functions,
which was given recently by Chen and Srivastava [3, p. 180, Theorem 1]
(see also [3, p. 182, Theorem 2] for a general multivariable extension) for
the sequence �ζ�λ; r�k �z��∞k=0 defined by (cf. [3, p. 171, Eq. (5.14)])

ζ
�λ; r�
k �z� = ζ

�λ; r�
k

[
α1; : : : ; αuyβ1; : : : ; βv x z

]
x= uFv+r

(
α1; : : : ; αuy1�ry 1− λ− k�; β1; : : : ; βvy z

)
; (3.47)

where, for convenience, 1�ryλ� abbreviates the array of r parameters

λ

r
;
λ+ 1
r

; : : : ;
λ+ r − 1

r
�r ∈ ��:

Indeed the sequence �ζ�λ; r�k �z��∞k=0 possesses the following generating func-
tion (cf. [3, p. 171, Eq. (5.15)]):

∞∑
k=0

(
λ+m+ k− 1

k

)
ζ
�λ; r�
m+k �z�tk

= �1− t�−λ−mζ�λ; r�m

(
z�1− t�r) (

m ∈ �0y �t� < 1
)
; (3.48)

which obviously is a special case of the Singhal–Srivastava generating func-
tion (3.8) when

Am;k =
(
λ+m+ k− 1

k

)
; f = �1− t�−λ; g = 1− t;

h = x�1− t�r; and Sk�x� = ζ�λ; r�k �x�: (3.49)

It is not difficult to verify that each of the generating functions (2.12),
(2.13), (2.17), (2.18), (2.19), and (2.20), upon which the assertions of Theo-
rems 4 to 9 are based rather heavily, would follow from (3.48) in its special
cases when

r = 1; u− 2 = v = 0; and α1 = −n �n ∈ �0� (3.50)

with appropriate choices for α2; λ; and z.
We conclude this paper by remarking further that various very specialized

versions of the many families of bilinear, bilateral, or mixed multilateral
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generating functions for the Jacobi (or the extended Jacobi) and related
polynomials, which we have considered in this section rather systematically,
continue to be rederived by one method or the other in the literature on
bilateral generating functions since the publication of the monograph by
Srivastava and Manocha [22] (especially see [22, Chap. 8]). To the numer-
ous references cited by Chen and Srivastava [3] for rederivations of obvi-
ous special cases of readily accessible known results on bilateral generating
functions, we should add the main results in the works of (among others)
Hazra [10], Chongdar �4; 5�, Majumdar and Chongdar [11], and Mukher-
jee �14; 15�. In particular, Chongdar �4; 5� gave two very specialized cases
of Theorem 1 when

n = 0; q = 1; ρ = σ = 0; and �µ�y1; : : : ; ys� ≡ 1 (3.51)

and

n = 0; q = 1; ρ = σ = 0; and s = 1; (3.52)

respectively, while (much more recently) Mukherjee �14; 15� gave two very
specialized cases of the equivalent results (Theorem 2 and Theorem 1)
when

n = 0; q = 1; ρ = σ − 1 = 0; and �µ�y1; : : : ; ys� ≡ 1

(3.53)

and

q = 1; ρ− 1 = σ = 0; and �µ�y1; : : : ; ys� ≡ 1; (3.54)

respectively. The main result of Hazra [10], on the other hand, happens to
be a very specialized case of Theorem 3.
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