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ABSTRACT 

In this paper we obtain conditions under which the operator equations of the 
types AX = C and AXA * = C have hermitian and nonnegative definite solutions; here 
A is assumed to be relatively invertible. In addition we obtain some properties of 
generalized inverses of operators. Lastly we pose some conjectures; one of them is 
that the set of all nonzero relatively invertible operators is not connected. 

1. INTRODUCTION 

Let H be an infinite dimensional complex Hilbert space. Let a(A), u,(A), 

q(A), o,(A), WA), and W(A) denote the spectrum, right spectrum, left 
spectrum, point spectrum, numerical range, and closure of the numerical 
range of an operator A on H. 

Khatri and Mitra [6] consider matrix equations of various types and 
obtain conditions for hermitian and nonnegative definite solutions. This 
motivates us to consider operators on an infinite dimensional Hilbert space. 
We deal with operator equations in Sec. 2. In Sec. 3 we are concerned with 
the generalized inverses of elements of a Banach algebra. In particular we 
show that right (or left) invertible elements of a Banach algebra % form an 
open subset of ‘53. Lastly we talk about generalized inverses of operators on 
H. 
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An element a of ‘%3 is left (right, relatively) invertible or regular if and 
only if there is an element b of ‘33 such that ba= e (ub= e, abu= a, 
respectively) where e is the identity of 31. An element is said to be invertible 
or regular if it is right as well as left invertible. All these definitions are valid 
for the operator algebra ‘33 (H) as well. 

Halmos [4] has shown that the set of all invertible operators is connected. 
In this context, what can one say about the set of operators having gener- 
alized inverses? Here we pose some conjectures concerning connectedness of 
the set of nonzero relatively invertible operators on H and the set of 
operators which are power bounded, along with theirgeneralized inverses. 

In what follows %(A) denotes the range and A denotes the relative 
inverse of an operator A on H. For more details on relative invertibility see 
Halmos [4] and Koliha [I. The definitions of hermitian and nonnegative 
definite operators are the usual ones. 

2. HERMITIAN AND NONNEGATIVE DEFINITE SOLUTIONS 
OF OPERATOR EQUATIONS 

Khatri and Mitra [6] have tackled matrix equations of various types and 
obtained the conditions under which these equations have hermitian and 
nonnegative definite solutions. In this section we consider operator equations 
on infinite dimensional Hilbert space and obtain conditions for hermitian 
and nonnegative definite solutions of these equations. In what follows, by a 
general hermitian (nonnegative definite) solution X’ we mean X’= X0+ Xi, 
where X0 is any hermitian (nonnegative definite) solution of the given 
equation and X, is a hermitian (nonnegative definite) solution of the corre- 
sponding homogeneous equation. 

THEOREM 2.1. Let A and C be operators on H. l’f A is relatively 
invertible, then the equutim 

AX= C (1) 

has a hermitian solution if and only if CA* is hennitiun. 

Proof. If X is a hermitian solution of (l), then obviously CA* is 
hermitian. Conversely, if CA* is hermitian, CA* = AC*. Then X0= AC+ 
c*@j* -A%*(K)* is a hermitian solution of (l), for 

AX, = tic + AC*(A)* - MAC*(A)* = tic = C. 
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The last equality follows from the fact that G is a projection of H onto 
%(A), %(G)=%(A) (See Koliha [7]) and %(C)c%(A). That X0 is hermi- 
tian follows easily by using our hypothesis CA * = AC*. n 

COROLLARY 2.1. The general hermitian solution of (1) is given by 
xC+C*($*-&IC*(x)*+(Z-&I)S(Z-.&I)*, S being an arbitrary hermi- 
tian operator on H. 

Proof. Consider the homogeneous equation 

AX = 0. (2) 

For any hermitian operator S, X, = (I- ,&4)S(z- &)* satisfies (2). Moreover 
X, is hermitian. Therefore, the hermitian solution of (1) is given by X = X0 + 

XP n 

THEOREM 2.2. Zf Eq. (1) has a nonnegative definite solution, then CA* 
is nonnegative definite. Conversely, if CA* is nonnegative definite and 
relatively invertible, and %( CA*) = q(C), then Eq. (1) has a nonnegative 
definite solution. 

In order to prove Theorem 2.2, we need the following Lemma, the proof 
of which follows from the properties of relative inverses. 

LEMMA. Zf a nonnegative definite operator S is relatively invertible, 
then its relative inverse S is nonnegative &finite on q(S). 

Proof of Theorem 2.2. If X is a nonnegative definite solution of (l), then 
obviously CA* is nonnegative definite. Conversely, let CA* be nonnegative 
definite and relatively invertible. Then X0 = C* (CA *) C will be nonnegative 
definite, since q(C) = %(CA*) and the Lemma is applicable. Also this X0 
satisfies (l), and we are through. n 

COROLLARY 2.2. The general nonnegative definite solution of (1) is 
given by 

c* (CA*) c+ (I-AA)S(Z-AA)*, 

where S is an arbitray nonnegative definite operator on H. 
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Proof. For any nonnegative definite operator S, X, = (I - a)S(Z - 
h)* is also nonnegative definite. This X, satisfies the equation AX =O. 
Therefore the general nonnegative definite solution of (1) is given by 
x=x()+x,. n 

The following theorem involves operators on the direct sum H @ H. 

THEOREM 2.3. Let A, B, C, D be any operators on H such that A and B 
are relatively invertible. The equations 

AX=C and XB=D (3) 

(I) have a common hermitian solution if and only if the operator 

O D*B 

is hennitian, in which case the general hermitian solution i.s 

where S is an arbitra y hennitian operator on H %3 H; 
(II) have a cmmxm nonnegative definite solution if and only if M is 

nonnegative &finite and relatively invertible, and 

in which case the general nonnegative definite solution is 

where S is an a&tray nonnegative definite operator on H @ H. 
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Proof. It is to be noted that the necessary and sufficient condition under 
which the equations (3) will have a common hermitian (nonnegative definite) 
solution is that the operator equation 

on H @ H has a hermitian (nonnegative definite) solution. Theorem 2.3 now 
follows from Theorems 2.1 and 2.2. n 

Khatri and Mitra [6] have dealt with matrix equations of the type 
AXB = C, where A and B are nonnegative definite matrices. Also, Douglas 
[3] has considered operator equations of the type S*XT= X. Here we 
consider the operator equation AXA* = C. 

THEOREM 2.4. Let A be a relatively invertible operator on H, and C be 
a nonnegative operator on H. Then the equation 

AXA*=C (4 

@ a gen_eral nonnegative definite solution given by X = AC@)* + (I - 
AA)S(I -AA)*, where S is an arbitrary nonnegative definite operator on H. 

Proof. Let us consider X0 = AC(x)*. Then it follows that AXaA* = C. 
Again X,=(Z-&)S(I-a)* is a solution of the homogeneous equation 
(A+ B)X(A+ B)=O, for 

(A+B)x,(A+B) = (A+B)(~-AA)S(I-A*A*)(A+B) 

= B(I-AA)S(A-A*x*A+B-A*x*B) 

= B(I-xA)S(A+B-A-B) = 0. 

Therefore the general solution of (4) is given by X = X0 + X,. n 
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3. GENERALIZED INVERSES OF ELEMENTS 

In this section we describe the classes of left, right, and relatively regular 
elements of a Banach algebra % with identity e. 

It is easy to see that the product of two right (left) regular elements of ‘21 
is again right (left) regular. In the case of relatively regular elements of 93, a 
similar result holds under a certain condition. In fact we have: 

RESULT 3.1. Let x1 and x2 in % be relatively regular with relative 
inverses y1 and yz respectively. Then x1x2 is relatively regular if and only if 
ylxlxz yz is relatively regular. 

Proof. We have xi yixi = xi and x2 y2xz= x2. Let x,x, be relatively 
regular with u as relative inverse. Then 

(x1x2) fJ (%X2) = x1x2* (5) 

Consider 

(Y 1X1X2 Y,)(X2~4( YlXlF2 Y2) 

= YAX2 Y2~2MXl Yl”lb2 Y2 

= YlXdX24~2 Y2 = YlXlX2 Y23 

from which it is clear that y1xix2 y2 is relatively regular. Conversely, let 
yixrx2 y2 be relatively regular with v as the relative inverse. Then we have 

(~1x1~2 Y&( ~1~2 ~2) = ~1~2 ~2, which implies that (xi yixi)(xs YZ 
vylUx2 y2x2) = h yl~l)(~~ y2;r,). 3I-d is x1x2( y2vy lKv2) = x1x2. 

This shows that xix2 is relatively regular. 

REMARK. We have used simple arguments to prove the above result 
which was proved by Koliha [I for operators. 

THEOREM 3.2. The set ‘2B3,(or (~73~) of right (or left) regular elements of 
3 is an open subset of Ci3 . More specifically, if x E a3,, then { y : I( y - x(( < 
11 x1 I/ -‘} c a3,, x1 being the right inverse of x. 

Proof. If 11 y-x/I < IIx~II-~, then we have 

Ile - YXIII = IlXXl - ydl G lb - yll ll%ll < 1, 
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which shows regularity of yx i; from this it is clear that y is right regular. m 

It is to be noted that for regular elements of 3, Berberian [l, p. 2141 has 
given a similar version. 

4. GENERALIZED INVERSES FOR OPERATORS 

Halmos (see [4, problem 1431) d e a.l s with two operators whose difference 
is a compact operator, one of them being invertible. Here we weaken the 
condition of invertibility to right invertibility and obtain some interesting 
corollaries. The technique used is essentially that of Hahnos. 

THEOREM 4.1. If A and B are operators such that A - B is compact and 
if A E u,(A) - u,(A), then X E u,(B). 

Proof. Translate by A and reduce the assertion to this: “If A is not right 
invertible, kerA = {0}, then B is not right invertible.” Contrapositively, if B 
is right invertible, then either kerA # (0) or A is right invertible. Let B, be 
the right inverse of B, i.e., BB, = 1. Now A can be expressed as A = B {I + 
B,(A -B)}. Since A-B is compact, obviously B,(A -B) is also compact. 
Write S = B,(A - B). For this compact S, either - 1 is an eigenvalue of S or 
I+ S is invertible. If - 1 is an eigenvalue of S, then there exists a nonzero x 
in H such that SX = - X, yielding Ax = 0. This will imply that ker A # { 0} . On 
the other hand, if Z + S is invertible, then (I + S)- ‘B, acts as the right inverse 
of B(Z + S) = A. Thus we arrive at our conclusion. n 

Following is a consequence of the very well-known Wold decomposition 
of isometries and also of Theorem 4.1. 

COROLLARY 1. For no nonunitay isomety U can Im U be compact. 

REMARK. The result stated in Corollary 1 seems to be related to the 
known fact that the hyponormal operator with compact imaginary part is 
normal (see [9, p. 5831). 

COROLLARY 2. A right invertible operator (in particular, the adjoint of 
unilateral shift) cannot be perturbed by a compact operator to a one-to-one 
quasinilpotent operator. 

Halmos [5] has proved that if U is a isometry and A is quasinilpotent, 
then I] U-A]] > 1. In the following theorem we observe that a similar 
conclusion holds in the case where U is coisometric. 
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THEOREM 4.2. Zf U is co&metric and A is quusinilpotent, then 11 U- 
A]] > 1. 

The proof of Theorem 4.2 follows on the lines of Hahnos [5], and hence 
we omit it. Again by using the arguments due to Hahnos (see [4, Problem 
119]), we have the following: 

THEOREM 4.3. Zf U is unilateral shift and if V is any unitary operator, 
then N = (V* U - 1) is nerrnuloid. This N is dissipative also. 

Hahnos [4] has shown that if a partial isometry is sufficiently near an 
isometry, then it is an isometry. Analogously we have: 

THEOREM 4.4. Let U and V be relatively invertible and left invertible 
operators, respectively, with 11 U - VI] < k (where k is a lower bound of V). 
Then U is left invertible. 

Proof. Since V is left invertible, it is bounded from below; i.e., there 
exists a real nonzero number k such that I] Vx]] > kll xl1 for all x E H. In view 
of the hypothesis, it follows that ker U = {O}. For if not, then 3x E Z-Z with 
Ux=O, x#O. Now kllrll < II Vx]] = I] Ux- Vx]] < ]I U- VI] ]]x]] < kllxll, a con- 
tradiction, Thus U has trivial kernel. Moreover U is relatively invertible. In 
view of Hahnos [4, Problem 701, it follows that U is left invertible. n 

Halmos [4, Problem lOO] deals with the closedness and connectedness of 
the set of all nonzero partial isometries. Naturally this motivates us to similar 
considerations in case of relatively invertible operators. Also, we try to 
replace isometries and coisometries by left and right invertible operators 
respectively. 

Halmos (see [4, solution to Problem 1191) remarks that the set of all 
isometries is not only closed but also open in the set of all partial isometries, 
and hence the set of all nonzero partial isometries is not connected. This 
suggests: 

CONJECTURE 1. The set of all nonzero relatively invertible operators is 
not connected. 

In order to have positive answer to this conjecture (in view of Theorem 
3.2) it will suffice to show that the set of all left invertible operators is closed 
in the set of all nonzero relatively invertible operators. 

It is obvious that each operator similar to a unitary operator is power 
bounded, i.e., if A = S -‘US, then ]]A”]] < C for every positive integer n 
(where C = ]I S - ’ ]I ]I S I]) (see Hahnos [5]). It will be interesting to consider an 
operator A which is similar to isometry, coisometxy, or partial isometry. In 
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these cases A will be left, right, and relatively invertible, respectively, and 
both A and its respective inverse will be power bounded. 

Sz-Nagy [2] has proved that if A is invertible and both A and A -1 are 
power bounded, then A is similar to a unitary operator. (See Hahnos [5] 
also.) What will be the implication of power boundedness of A and its 
generalized inverses ? Pate1 [8] has proved that if T is a left invertible 
operator with a left inverse T,, and if there exists an operator S such that 
T* = S - ‘T,S, and 0 4 W( S ), then T is similar to an isometry. One can show 
that if T is relatively invertible operator with a relative inverse Tl and if 
there exists a positive operator S such that T* = S -‘T,S, 0 @ W( S ), then T is 
L-similar to a partial isometry, i.e., there exist operators B and R, such that 
T=RBR,, whereR,=R*S-‘, RR*=S ( o b viously here R is right invertible) 
and B is partial isometry. 

This motivates us to consider the following conjecture. 

CONJECTURE 2. If A and B are power bounded, where B is the left, 
right, or relative inverse of A, then A is similar to a isometry, coisometry, or 
partial isometry respectively. 

The authors are grateful to the referee for his kind suggestions. 
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