On the Hankel transform of generalized central trinomial coeffcients

Marko D. Petković
Predrag M. Rajković
Paul Barry

Faculty of Sciences and Mathematics
University of Niš, Serbia
dexterofnis@gmail.com
Faculty of Mechanical Engineering
University of Niš, Serbia
pecar@masfak.ni.ac.yu
Waterford Institute of Technology, Ireland
pbarry@wit.ie

Approximation \& Computation, 2008

Outline of the talk

(1) Introduction

- Integer sequences
- Hankel transform
- Computing the Hankel transform via orthogonal polynomials
\qquad
- Connection with generalized central trinomial coefficients

Outline of the talk

(1) Introduction

- Integer sequences
- Hankel transform
- Computing the Hankel transform via orthogonal polynomials

2) Generalized central trinomial coefficients

- Definition and generating function
- Hankel transform of generalized central trinomial coefficients
- Coefficient array
- Binomial transform and generalizations
- Generalized binomial transforms and Hankel transform
- Connection with generalized central trinomial coefficients

Outline of the talk

(1) Introduction

- Integer sequences
- Hankel transform
- Computing the Hankel transform via orthogonal polynomials

2) Generalized central trinomial coefficients

- Definition and generating function
- Hankel transform of generalized central trinomial coefficients
- Coefficient array

3 Hankel transform and k-binomial transforms

- Binomial transform and generalizations
- Generalized binomial transforms and Hankel transform
- Connection with generalized central trinomial coefficients

Outline of the talk

(1) Introduction

- Integer sequences
- Hankel transform
- Computing the Hankel transform via orthogonal polynomials

2) Generalized central trinomial coefficients

- Definition and generating function
- Hankel transform of generalized central trinomial coefficients
- Coefficient array

3 Hankel transform and k-binomial transforms

- Binomial transform and generalizations
- Generalized binomial transforms and Hankel transform
- Connection with generalized central trinomial coefficients

Integer sequences

Let $a: \mathbb{N}_{0} \longrightarrow \mathbb{Z}$ represent an integer sequence with $a_{n}=a(n)$. The ordinary generating function of a_{n} is $f(x)=\sum_{k=0}^{\infty} a_{n} x^{n}$.

Integer sequences

Let $a: \mathbb{N}_{0} \longrightarrow \mathbb{Z}$ represent an integer sequence with $a_{n}=a(n)$.
The ordinary generating function of a_{n} is $f(x)=\sum_{k=0}^{\infty} a_{n} x^{n}$.

Example . Central binomial coefficients

$$
a_{n}=\binom{2 n}{n} \quad f(x)=\frac{1}{\sqrt{1-4 x}} \quad 1,2,6,20,70, \ldots
$$

Integer sequences

Let $a: \mathbb{N}_{0} \longrightarrow \mathbb{Z}$ represent an integer sequence with $a_{n}=a(n)$.
The ordinary generating function of a_{n} is $f(x)=\sum_{k=0}^{\infty} a_{n} x^{n}$.

Example . Central binomial coefficients

$$
a_{n}=\binom{2 n}{n} \quad f(x)=\frac{1}{\sqrt{1-4 x}} \quad 1,2,6,20,70, \ldots
$$

Example . Central trinomial coefficients

$$
t_{n}=\left[x^{n}\right]\left(1+x+x^{2}\right)^{n} \quad f(x)=\frac{1}{\sqrt{1-2 x-3 x^{2}}} \quad 1,1,3,7,19, \ldots
$$

- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/

Integer sequences

Let $a: \mathbb{N}_{0} \longrightarrow \mathbb{Z}$ represent an integer sequence with $a_{n}=a(n)$.
The ordinary generating function of a_{n} is $f(x)=\sum_{k=0}^{\infty} a_{n} x^{n}$.

Example . Central binomial coefficients

$$
a_{n}=\binom{2 n}{n} \quad f(x)=\frac{1}{\sqrt{1-4 x}} \quad 1,2,6,20,70, \ldots
$$

Example . Central trinomial coefficients

$$
t_{n}=\left[x^{n}\right]\left(1+x+x^{2}\right)^{n} \quad f(x)=\frac{1}{\sqrt{1-2 x-3 x^{2}}} \quad 1,1,3,7,19, \ldots
$$

- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/.

Hankel transform

- J.W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer Sequences, Article 01.1.5, Volume 4, 2001..

Definition. Hankel transform

[^0]sequence $\left\{2^{n}\right\}_{n \in \mathbb{N}_{0}}$. That is

Hankel transform

- J.W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer Sequences, Article 01.1.5, Volume 4, 2001..

Definition. Hankel transform

The Hankel transform of a given sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the sequence of Hankel determinants $h=\mathbf{H}(a)=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}$ where $h_{n}=\operatorname{det}\left[a_{i+j-2}\right]_{i, j=1}^{n}$, i.e

$$
a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}} \Longrightarrow{ }^{\boldsymbol{H}} \quad h=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}: \quad h_{n}=\operatorname{det}\left[\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & & a_{n+1} \\
\vdots & & \ddots & \\
a_{n} & a_{n+1} & & a_{2 n}
\end{array}\right]
$$

[^1]sequence $\left\{2^{n}\right\}$. That is

Hankel transform

- J.W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer Sequences, Article 01.1.5, Volume 4, 2001..

Definition. Hankel transform

The Hankel transform of a given sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the sequence of Hankel determinants $h=\mathbf{H}(a)=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}$ where $h_{n}=\operatorname{det}\left[a_{i+j-2}\right]_{i, j=1}^{n}$, i.e

$$
a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}} \Longrightarrow^{\boldsymbol{H}} \quad h=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}: \quad h_{n}=\operatorname{det}\left[\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \\
a_{1} & a_{2} & & a_{n+1} \\
\vdots & & \ddots & \\
a_{n} & a_{n+1} & & a_{2 n}
\end{array}\right]
$$

Example

The Hankel transform of the central binomial coefficients $\left\{\binom{2 n}{n}\right\}_{n \in \mathbb{N}_{0}}$ is the sequence $\left\{2^{n}\right\}_{n \in \mathbb{N}_{0}}$. That is,

$$
|1|=1, \quad\left|\begin{array}{ll}
1 & 2 \\
2 & 6
\end{array}\right|=2, \quad\left|\begin{array}{ccc}
1 & 2 & 6 \\
2 & 6 & 20 \\
6 & 20 & 70
\end{array}\right|=4
$$

Example . (Cvetković, Rajković, Ivković, 2002)

Let $a_{n}=C_{n}+C_{n+1}$ where C_{n} is n-th Catalan number. Then $\mathbf{H}(a)=\left\{F_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$, where F_{n} is n-th Fibonacci number.

Generalization

Example . (Cvetković, Rajković, Ivković, 2002)

Let $a_{n}=C_{n}+C_{n+1}$ where C_{n} is n-th Catalan number. Then $\mathbf{H}(a)=\left\{F_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$, where F_{n} is n-th Fibonacci number.

Generalization:

- P.M. Rajković, M.D. Petković, P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms and Special Functions, Vol 18/4 (January 2007), 285 - $296 .$.

1. Aztec diamond counting.

- n nminumi a kimiri ard, Aztec diamonds and digraphs, and Hanke determinants of Schroder numbers, Journal of Combinatorial Theory, Series B 94 (2005) 334-351

2. Solving :he Toda equation

Determinant Formula for Solutions of the Toda Equation, Journal of Physics A: Mathematical and Theoretical, Vol 40 (2007), Issue 42. 12661-12675..

Example . (Cvetković, Rajković, Ivković, 2002)

Let $a_{n}=C_{n}+C_{n+1}$ where C_{n} is n-th Catalan number. Then $\mathbf{H}(a)=\left\{F_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$, where F_{n} is n-th Fibonacci number.

Generalization:

- P.M. Rajković, M.D. Petković, P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms and Special Functions, Vol 18/4 (January 2007), 285 - $296 .$.
Some applications:

1. Aztec diamond counting.

- R. Brualdi, S. Kirkland, Aztec diamonds and digraphs, and Hankel determinants of Schroder numbers, Journal of Combinatorial Theory, Series B 94 (2005) 334-351..

2. Solving the Toda equation

Example . (Cvetković, Rajković, Ivković, 2002)

Let $a_{n}=C_{n}+C_{n+1}$ where C_{n} is n-th Catalan number. Then $\mathbf{H}(a)=\left\{F_{2 n+1}\right\}_{n \in \mathbb{N}_{0}}$, where F_{n} is n-th Fibonacci number.

Generalization:

- P.M. Rajković, M.D. Petković, P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Integral Transforms and Special Functions, Vol 18/4 (January 2007), 285 - $296 .$.
Some applications:

1. Aztec diamond counting.

- R. Brualdi, S. Kirkland, Aztec diamonds and digraphs, and Hankel determinants of Schroder numbers, Journal of Combinatorial Theory, Series B 94 (2005) 334-351..

2. Solving the Toda equation.

- K. Kajiwara, M. Mazzocco, Y. Ohta, A Remark on the Hankel Determinant Formula for Solutions of the Toda Equation, Journal of Physics A: Mathematical and Theoretical, Vol 40 (2007), Issue 42, 12661-12675..

Computing the Hankel transform via orthogonal polynomials

Let $d \mu$ be the positive measure on $\mathbb{R},\left\{\pi_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ corresponding MOPS and $a_{n}=\int_{\mathbb{R}} x^{n} d \mu$. Consider the three-term recurrence relation

$$
\pi_{n+1}(x)=\left(x-\alpha_{n}\right) \pi_{n}(x)-\beta_{n} \pi_{n-1}(x), \quad n \in N_{0}
$$

Applicable to any sequence whose Hankel transform is positive (Hamburger
mnment nrohlem)

Computing the Hankel transform via orthogonal polynomials

Let $d \mu$ be the positive measure on $\mathbb{R},\left\{\pi_{n}(x)\right\}_{n \in \mathbb{N}_{0}}$ corresponding MOPS and $a_{n}=\int_{\mathbb{R}} x^{n} d \mu$. Consider the three-term recurrence relation

$$
\pi_{n+1}(x)=\left(x-\alpha_{n}\right) \pi_{n}(x)-\beta_{n} \pi_{n-1}(x), \quad n \in N_{0}
$$

Theorem . (Heilermann)

The Hankel determinant $\operatorname{det}_{0 \leq i, j \leq n-1}\left(a_{i+j}\right)$ is given by

$$
\operatorname{det}_{0 \leq i, j \leq n-1}\left[a_{i+j}\right]=a_{0}^{n} \beta_{1}^{n-1} \beta_{2}^{n-2} \ldots \beta_{n-2}^{2} \beta_{n-1} .
$$

Applicable to any sequence whose Hankel transform is positive (Hamburger moment problem).

Computing the Hankel transform via orthogonal polynomials

Let $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the sequence whose Hankel transform is positive. Let

$$
f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}, \quad g(z)=\frac{1}{z} f\left(\frac{1}{z}\right) .
$$

Moreover if $d \lambda=w(t) d t$ and $g(\bar{z})=\overline{g(z)}$ then holds

Computing the Hankel transform via orthogonal polynomials

Let $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the sequence whose Hankel transform is positive. Let

$$
f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}, \quad g(z)=\frac{1}{z} f\left(\frac{1}{z}\right) .
$$

Theorem . (Stieltjes-Perron inversion formula)

Then $a_{n}=\int_{\mathbb{R}} x^{n} d \lambda$ where

$$
\lambda(t)-\lambda(0)=-\frac{1}{2 \pi i} \lim _{y \rightarrow 0^{+}} \int_{0}^{t}[g(x+i y)-g(x-i y)] d x .
$$

Moreover if $d \lambda=w(t) d t$ and $g(\bar{z})=\overline{g(z)}$ then holds

Computing the Hankel transform via orthogonal polynomials

Let $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the sequence whose Hankel transform is positive. Let

$$
f(x)=\sum_{n=0}^{+\infty} a_{n} x^{n}, \quad g(z)=\frac{1}{z} f\left(\frac{1}{z}\right) .
$$

Theorem . (Stieltjes-Perron inversion formula)

Then $a_{n}=\int_{\mathbb{R}} x^{n} d \lambda$ where

$$
\lambda(t)-\lambda(0)=-\frac{1}{2 \pi i} \lim _{y \rightarrow 0^{+}} \int_{0}^{t}[g(x+i y)-g(x-i y)] d x .
$$

Moreover if $d \lambda=w(t) d t$ and $g(\bar{z})=\overline{g(z)}$ then holds

$$
w(t)=\frac{1}{\pi} \lim _{y \rightarrow 0^{+}} \Im g(t+i, y)
$$

- W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press - Oxford, 2003..

Lemma . (Transformation lemma)

(2) If $\tilde{w}(x)=w(a x+b)$ where $a, b \in \mathbb{R}$ and $a \neq 0$ there holds $\tilde{\alpha}_{n}=\frac{\alpha_{n}-b}{a}$ for $n \in \mathbb{N}_{0}$ and $\tilde{\beta}_{0}=\frac{\beta_{0}}{|a|}$ and $\tilde{\beta}_{n}=\frac{\beta_{n}}{a^{2}}$ for $n \in \mathbb{N}$. Additionally holds $\tilde{\pi}_{n}(x)=\frac{1}{a^{n}} \pi_{n}(a x+b)$.
(3) If $\tilde{w}(x)=(x-c) w(x)$ where $c<\inf \operatorname{supp}(w)$, there holds $\tilde{\beta}_{0}=\int_{\mathbb{R}} \tilde{w}(x) d x, \quad \tilde{\beta}_{n}=\beta_{n} \frac{r_{n}}{r_{n-1}},(n \in \mathbb{N}), \quad \tilde{\alpha}_{n}=\alpha_{n+1}+r_{n+1}-r_{n},\left(n \in \mathbb{N}_{0}\right)$
where temnorary sequence $\left\{r_{n}\right\} \quad$ is defined by

- W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press - Oxford, 2003..

Lemma . (Transformation lemma)

(1) If $\tilde{w}(x)=\operatorname{Cw}(x)$ where $C>0$ then holds $\tilde{\alpha}_{n}=\alpha_{n}$ for $n \in \mathbb{N}_{0}$ and $\tilde{\beta}_{0}=C \beta_{0}, \tilde{\beta}_{n}=\beta_{n}$ for $n \in \mathbb{N}$. Additionally holds $\tilde{\pi}_{n}(x)=\pi_{n}(x)$ for all $n \in \mathbb{N}_{0}$.

where temporary sequence $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}$ is defined by

- W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press - Oxford, 2003..

Lemma . (Transformation lemma)

(1) If $\tilde{w}(x)=C w(x)$ where $C>0$ then holds $\tilde{\alpha}_{n}=\alpha_{n}$ for $n \in \mathbb{N}_{0}$ and $\tilde{\beta}_{0}=C \beta_{0}, \tilde{\beta}_{n}=\beta_{n}$ for $n \in \mathbb{N}$. Additionally holds $\tilde{\pi}_{n}(x)=\pi_{n}(x)$ for all $n \in \mathbb{N}_{0}$.
(2) If $\tilde{w}(x)=w(a x+b)$ where $a, b \in \mathbb{R}$ and $a \neq 0$ there holds $\tilde{\alpha}_{n}=\frac{\alpha_{n}-b}{a}$ for $n \in \mathbb{N}_{0}$ and $\tilde{\beta}_{0}=\frac{\beta_{0}}{|a|}$ and $\tilde{\beta}_{n}=\frac{\beta_{n}}{a^{2}}$ for $n \in \mathbb{N}$. Additionally holds $\tilde{\pi}_{n}(x)=\frac{1}{a^{n}} \pi_{n}(a x+b)$.
where temporary sequence $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}$ is defined by

- W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press - Oxford, 2003..

Lemma . (Transformation lemma)

(1) If $\tilde{w}(x)=\operatorname{Cw}(x)$ where $C>0$ then holds $\tilde{\alpha}_{n}=\alpha_{n}$ for $n \in \mathbb{N}_{0}$ and $\tilde{\beta}_{0}=C \beta_{0}, \tilde{\beta}_{n}=\beta_{n}$ for $n \in \mathbb{N}$. Additionally holds $\tilde{\pi}_{n}(x)=\pi_{n}(x)$ for all $n \in \mathbb{N}_{0}$.
(2) If $\tilde{w}(x)=w(a x+b)$ where $a, b \in \mathbb{R}$ and $a \neq 0$ there holds $\tilde{\alpha}_{n}=\frac{\alpha_{n}-b}{a}$ for $n \in \mathbb{N}_{0}$ and $\tilde{\beta}_{0}=\frac{\beta_{0}}{|a|}$ and $\tilde{\beta}_{n}=\frac{\beta_{n}}{2^{2}}$ for $n \in \mathbb{N}$. Additionally holds $\tilde{\pi}_{n}(x)=\frac{1}{a^{n}} \pi_{n}(a x+b)$.
(3) If $\tilde{w}(x)=(x-c) w(x)$ where $c<\inf \operatorname{supp}(w)$, there holds

$$
\tilde{\beta}_{0}=\int_{\mathbb{R}} \tilde{w}(x) d x, \quad \tilde{\beta}_{n}=\beta_{n} \frac{r_{n}}{r_{n-1}},(n \in \mathbb{N}), \quad \tilde{\alpha}_{n}=\alpha_{n+1}+r_{n+1}-r_{n},\left(n \in \mathbb{N}_{0}\right)
$$

where temporary sequence $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}$ is defined by

$$
r_{0}=c-\alpha_{0}, \quad r_{n}=c-\alpha_{n}-\frac{\beta_{n}}{r_{n-1}} \quad(n \in \mathbb{N})
$$

Outline of the talk

Introduction

- Integer sequences
- Hankel transform
- Computing the Hankel transform via orthogonal polynomials

2 Generalized central trinomial coefficients

- Definition and generating function
- Hankel transform of generalized central trinomial coefficients
- Coefficient array

3 Hankel transform and k-binomial transforms

- Binomial transform and generalizations
- Generalized binomial transforms and Hankel transform
- Connection with generalized central trinomial coefficients

Generalized central trinomial coefficients

- T. D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7..

$$
\tau_{n}(a, b, c)=\left[t^{n}\right]\left(a+b t+c t^{2}\right)^{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{2 k}{k}\binom{n}{2 k} b^{n-2 k}(a c)^{k}
$$

First few members are $1, b, b^{2}+2 a c, b^{3}+6 a b c, b^{4}+12 a b^{2} c+6 a^{2} c^{2}, \ldots$

[^2]
Generalized central trinomial coefficients

- T. D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7..

$$
\tau_{n}(a, b, c)=\left[t^{n}\right]\left(a+b t+c t^{2}\right)^{n}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{2 k}{k}\binom{n}{2 k} b^{n-2 k}(a c)^{k}
$$

First few members are $1, b, b^{2}+2 a c, b^{3}+6 a b c, b^{4}+12 a b^{2} c+6 a^{2} c^{2}, \ldots$ Holds $t_{n}=\tau_{n}(1,1,1)$.

Theorem . (Noe 2006)

Generating function of the sequence $\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$ is given by

$$
f(x)=\frac{1}{\sqrt{1-2 b x+d x^{2}}}=\sum_{n=0}^{\infty} \tau_{n}(a, b, c) x^{n}
$$

where $d=b^{2}-4 a c$ is the discriminant.

Hankel transform of generalized trinomial coefficients

Since

$$
g(x)=\frac{1}{x} f\left(\frac{1}{x}\right)=\frac{1}{\sqrt{(x-b)^{2}-4 a c}},
$$

Applying the Stieltjes-Perron inversion formula and taking into account the regular branches of square root in $g(x)$ we obtain:

Theorem.

There holds

$$
\tau_{n}(a, b, c)=\frac{1}{\pi} \int_{b-2 \sqrt{c}}^{b+2 \sqrt{c}} \frac{y^{n}}{\sqrt{4 a c-(y-b)^{2}}} d y
$$

Note that

Hankel transform of generalized trinomial coefficients

Since

$$
g(x)=\frac{1}{x} f\left(\frac{1}{x}\right)=\frac{1}{\sqrt{(x-b)^{2}-4 a c}},
$$

Applying the Stieltjes-Perron inversion formula and taking into account the regular branches of square root in $g(x)$ we obtain:

Theorem.

There holds

$$
\tau_{n}(a, b, c)=\frac{1}{\pi} \int_{b-2 \sqrt{c}}^{b+2 \sqrt{c}} \frac{y^{n}}{\sqrt{4 a c-(y-b)^{2}}} d y
$$

Note that

$$
w_{t}(x)=\frac{1}{\sqrt{4 a c-(x-b)^{2}}}=\frac{1}{2 \sqrt{a c}} w\left(\frac{x}{2 \sqrt{a c}}-\frac{b}{2 \sqrt{a c}}\right)
$$

where $w(x)=\frac{1}{\sqrt{1-x^{2}}}$ is Chebyshev weight.

For $w(t)=\frac{1}{\sqrt{1-x^{2}}}$ we know that

$$
\alpha_{n}=0, \quad \beta_{0}=\pi, \quad \beta_{1}=\frac{1}{2}, \quad \beta_{n}=\frac{1}{4}, \quad(n \in \mathbb{N})
$$

Applying the previous lemma on the transformation

we obtain

Moreover, MOPS corresponding to weight $w_{t}(x)$ are given by

By direct application of the Heilermann formula we obtain:

Theorem Mtatat

\qquad

For $w(t)=\frac{1}{\sqrt{1-x^{2}}}$ we know that

$$
\alpha_{n}=0, \quad \beta_{0}=\pi, \quad \beta_{1}=\frac{1}{2}, \quad \beta_{n}=\frac{1}{4}, \quad(n \in \mathbb{N})
$$

Applying the previous lemma on the transformation

$$
w_{t}(x)=\frac{1}{2 \sqrt{a c}} w\left(\frac{x}{2 \sqrt{a c}}-\frac{b}{2 \sqrt{a c}}\right)
$$

we obtain

$$
\alpha_{t, n}=b, \quad \beta_{t, 0}=1, \quad \beta_{t, 1}=2 a c, \quad \beta_{t, n}=a c
$$

Moreover, MOPS corresponding to weight $w_{t}(x)$ are given by

$$
P_{t, n}(x)=2(a c)^{n} T_{n}\left(\frac{x-b}{a c}\right)
$$

By direct application of the Heilermann formula we obtain:

For $w(t)=\frac{1}{\sqrt{1-x^{2}}}$ we know that

$$
\alpha_{n}=0, \quad \beta_{0}=\pi, \quad \beta_{1}=\frac{1}{2}, \quad \beta_{n}=\frac{1}{4}, \quad(n \in \mathbb{N})
$$

Applying the previous lemma on the transformation

$$
w_{t}(x)=\frac{1}{2 \sqrt{a c}} w\left(\frac{x}{2 \sqrt{a c}}-\frac{b}{2 \sqrt{a c}}\right)
$$

we obtain

$$
\alpha_{t, n}=b, \quad \beta_{t, 0}=1, \quad \beta_{t, 1}=2 a c, \quad \beta_{t, n}=a c
$$

Moreover, MOPS corresponding to weight $w_{t}(x)$ are given by

$$
P_{t, n}(x)=2(a c)^{n} T_{n}\left(\frac{x-b}{a c}\right)
$$

By direct application of the Heilermann formula we obtain:

Theorem . (Main)

The Hankel transform of the sequence $\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$ is equal to $\left\{2^{n}(a c)^{\binom{n+1}{2}}\right\}_{n \in \mathbb{N}_{0}}$

Coefficient array

We now wish to look at the coefficient array of the $P_{t, n}(x)$.

Coefficient array

We now wish to look at the coefficient array of the $P_{t, n}(x)$.

Definition. Riordan Array

Consider a pair $f(x), g(x)$ such that $g(x)=1+g_{1} x+g_{2} x^{2}+\ldots,(g(0)=1)$, and $f(x)=f_{1} x+f_{2} x^{2}+\ldots$ with $f_{1} \neq 0($ so $f(0)=0)$, both with integer coefficients. We let (g, f) denote the infinite lower triangular matrix whose k-th column has g.f. $g(x) f(x)^{k}$.

The set of such matrices forms a group, with multiplication law

The identity is $(1, x)$, and
where \bar{f} is the series reversion (compositional inverse) of f :

Coefficient array

We now wish to look at the coefficient array of the $P_{t, n}(x)$.

Definition . Riordan Array

Consider a pair $f(x), g(x)$ such that $g(x)=1+g_{1} x+g_{2} x^{2}+\ldots,(g(0)=1)$, and $f(x)=f_{1} x+f_{2} x^{2}+\ldots$ with $f_{1} \neq 0$ (so $f(0)=0$), both with integer coefficients. We let (g, f) denote the infinite lower triangular matrix whose k-th column has g.f. $g(x) f(x)^{k}$.

The set of such matrices forms a group, with multiplication law

$$
(g, f) *(h, l)=(g(h \circ f), l \circ f)
$$

The identity is $(1, x)$, and

$$
(g, f)^{-1}=\left(\frac{1}{g \circ \bar{f}}, \bar{f}\right)
$$

where \bar{f} is the series reversion (compositional inverse) of f :

$$
f(\bar{f}(x))=x
$$

Example .

The Riordan array $\left(\frac{1}{1-x}, \frac{x}{1-x}\right)$ is given by

$$
\mathbf{B}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & \cdots \\
1 & 2 & 1 & 0 & \cdots \\
1 & 3 & 3 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

with general term $\binom{n}{k}$. This therefore represents the binomial transform. We have

$$
\left(\frac{1}{1-x}, \frac{x}{1-x}\right)^{-1}=\left(\frac{1}{1+x}, \frac{x}{1+x}\right) .
$$

man

The coefficient array $\left\{c_{n, k}\right\}_{n, k \in \mathbb{N}_{0}}$ where $P_{t, n}(x)=\sum_{k=0}^{n} c_{n, k} x^{k}$ is given by
$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -b & 1 & 0 & 0 & 0 \\ b^{2}-2(a c) & -2 b & 1 & 0 & 0 \\ b\left(3(a c)-b^{2}\right) & 3\left(b^{2}-(a c)\right) & -3 b & 1 & 0 \\ b^{4}-4 b^{2}(a c)+2(a c)^{2} & 4 b\left(2(a c)-b^{2}\right) & 2\left(3 b^{2}-2(a c)\right) & -4 b & 1 \\ -b\left(b^{4}-5 b^{2} a c+5(a c)^{2}\right) & 5\left(b^{4}-3 b^{2} a c+(a c)^{2}\right) & 5 b\left(3 a c-2 b^{2}\right) & 5\left(2 b^{2}-a c\right) & -5 k \\ \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right.$

The coefficient array $\left\{c_{n, k}\right\}_{n, k \in \mathbb{N}_{0}}$ where $P_{t, n}(x)=\sum_{k=0}^{n} c_{n, k} x^{k}$ is given by
$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ -b & 1 & 0 & 0 & 0 \\ b^{2}-2(a c) & -2 b & 1 & 0 & 0 \\ b\left(3(a c)-b^{2}\right) & 3\left(b^{2}-(a c)\right) & -3 b & 1 & 0 \\ b^{4}-4 b^{2}(a c)+2(a c)^{2} & 4 b\left(2(a c)-b^{2}\right) & 2\left(3 b^{2}-2(a c)\right) & -4 b & 1 \\ -b\left(b^{4}-5 b^{2} a c+5(a c)^{2}\right) & 5\left(b^{4}-3 b^{2} a c+(a c)^{2}\right) & 5 b\left(3 a c-2 b^{2}\right) & 5\left(2 b^{2}-a c\right) & -5 k \\ \vdots & \vdots & \vdots & \vdots & \vdots\end{array}\right.$
which is the Riordan array

$$
\begin{aligned}
\left\{c_{n, k}\right\}_{n, k \in \mathbb{N}_{0}} & =\left(\frac{1-a c x^{2}}{1+b x+a c x^{2}}, \frac{x}{1+b x+a c x^{2}}\right) \\
& =\left(\frac{1-a c x^{2}}{1+a c x^{2}}, \frac{x}{1+a c x^{2}}\right) *\left(\frac{1}{1+b x}, \frac{x}{1+b x}\right)
\end{aligned}
$$

Outline of the talk

Introduction

- Integer sequences
- Hankel transform
- Computing the Hankel transform via orthogonal polynomialsGeneralized central trinomial coefficients
- Definition and generating function
- Hankel transform of generalized central trinomial coefficients
- Coefficient array

3 Hankel transform and k-binomial transforms

- Binomial transform and generalizations
- Generalized binomial transforms and Hankel transform
- Connection with generalized central trinomial coefficients

Binomial transform and generalizations

Definition .

The binomial transform of a given sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ the sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{B}(a)$ given by

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} .
$$

Definition. (Spivey, Stail 2006) Rising and falling k-binomial transforms of sequence a sequences

Binomial transform and generalizations

Definition.

The binomial transform of a given sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ the sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{B}(a)$ given by

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} .
$$

Definition . (Spivey, Stail 2006)

Rising and falling k-binomial transforms of sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ are sequences $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}=\operatorname{Br}(a ; k)$ and $\left\{f_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{B f}(a ; k)$ given by

$$
r_{n}=\sum_{i=0}^{n}\binom{n}{i} k^{i} a_{i} ; \quad f_{n}=\sum_{i=0}^{n}\binom{n}{i} k^{n-i} a_{i} .
$$

Binomial transform and generalizations

Definition.

The binomial transform of a given sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ the sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{B}(a)$ given by

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k} a_{k} .
$$

Definition . (Spivey, Stail 2006)

Rising and falling k-binomial transforms of sequence $a=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$ are sequences $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}=\operatorname{Br}(a ; k)$ and $\left\{f_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{B f}(a ; k)$ given by

$$
r_{n}=\sum_{i=0}^{n}\binom{n}{i} k^{i} a_{i} ; \quad f_{n}=\sum_{i=0}^{n}\binom{n}{i} k^{n-i} a_{i} .
$$

$$
B(\cdot)=B f(\cdot ; 1)=\operatorname{Br}(\cdot ; 1)
$$

Generalized binomial transforms and Hankel transform

Theorem . (Spivey, Stail 2006)

Given an integer sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$, let $\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{H}(a)$. Then holds:

Generalized binomial transforms and Hankel transform

Theorem . (Spivey, Stail 2006)

Given an integer sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$, let $\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{H}(a)$. Then holds:
a) $\mathbf{H}(a)=\mathbf{H}(\mathbf{B f}(a ; k))=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}$
\square
Corollary . (Layman 2001) Hankel transform is invariant under the binomial transform, i.e $H(B(a))=H(a)$ for any sequence a. We will give an alternative proof for the moment sequences, i.e. sequences $a_{n}=\int_{\mathbb{D}} x^{n} d \mu$ where μ is any positive measure.

Generalized binomial transforms and Hankel transform

Theorem . (Spivey, Stail 2006)

Given an integer sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$, let $\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{H}(a)$. Then holds:
a) $\mathbf{H}(a)=\mathbf{H}(\mathbf{B f}(a ; k))=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}$
b) $\mathbf{H}(\operatorname{Br}(a ; k))=\left\{k^{n(n+1)} h_{n}\right\}_{n \in \mathbb{N}_{0}}$.

[^3]
Generalized binomial transforms and Hankel transform

Theorem . (Spivey, Stail 2006)

Given an integer sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}}$, let $\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{H}(a)$. Then holds:
a) $\mathbf{H}(a)=\mathbf{H}(\mathbf{B f}(a ; k))=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}$
b) $\mathbf{H}(\mathbf{B r}(a ; k))=\left\{k^{n(n+1)} h_{n}\right\}_{n \in \mathbb{N}_{0}}$.

Corollary . (Layman 2001)

Hankel transform is invariant under the binomial transform, i.e. $\mathbf{H}(\mathbf{B}(a))=\mathbf{H}(a)$ for any sequence a.

We will give an alternative proof for the moment sequences, i.e. sequences $a_{n}=\int_{\mathbb{R}} x^{n} d \mu$ where μ is any positive measure.

Proof:

a) Let $\left\{f_{n}\right\}_{n \in \mathbb{N}_{0}}=\mathbf{B f}(a ; k)$. Sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the n-th order moment sequence of the weight $w_{f}(x)=w(x-k)$.

$$
\begin{aligned}
f_{n} & =\sum_{i=0}^{n}\binom{n}{i} k^{n-i} \int_{\mathbb{R}} x^{i} w(x) d x \\
& =\int_{\mathbb{R}}\left(\sum_{i=0}^{n}\binom{n}{i} k^{n-i} x^{i}\right) d x=\int_{\mathbb{R}}(x+k)^{n} w(x) d x
\end{aligned}
$$

By applying the transformation lemma we obtain $\beta_{f, n}=\beta_{n}$, for every $n \in \mathbb{N}$. Hence $\mathbf{H}(a)=\mathbf{H}(f)$.
b) Let $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}=\operatorname{Br}(a ; k)$. We can prove that sequence $\left\{r_{n}\right\}_{n \in \mathbb{N}_{0}}$ is the moment sequence of the weight $w_{r}(x)=w\left(\frac{x-1}{k}\right)$.

$$
\begin{align*}
r_{n} & =\sum_{i=0}^{n}\binom{n}{i} k^{i} \int_{\mathbb{R}} x^{i} w(x) d x=\int_{\mathbb{R}}\left(\sum_{i=0}^{n}\binom{n}{i} k^{i} x^{i}\right) d x \tag{1}\\
& =\int_{\mathbb{R}}(1+k x)^{n} w(x) d x=\int_{\mathbb{R}} x^{n} w\left(\frac{x-1}{k}\right) d x
\end{align*}
$$

Applying the transformation lemma yields to $\beta_{r, n}=k^{2} \beta_{n}$ and therefore $\mathbf{H}(\operatorname{Br}(a ; k))=\left\{k^{n(n+1)} h_{n}\right\}_{n \in \mathbb{N}_{0}}$.

Introduction
Generalized central trinomial coefficients Hankel transform and k-binomial transforms

Connection with generalized central trinomial coefficients

Let $t_{n}=\tau_{n}(1,1,1)$ be central trinomial coefficients.

Connection with generalized central trinomial coefficients

Let $t_{n}=\tau_{n}(1,1,1)$ be central trinomial coefficients.

Lemma.

Sequence $\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$ is the falling α-th binomial transform ($\alpha=b-\sqrt{\mathrm{ac}}$) of the sequence $\left\{(\mathrm{ac})^{n / 2} t_{n}\right\}_{n \in \mathbb{N}_{0}}$, i.e. holds
$\operatorname{Bf}\left(\left\{(a c)^{n / 2} t_{n}\right\}_{n \in \mathbb{N}_{0}} ; \alpha\right)=\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$.

Connection with generalized central trinomial coefficients

Let $t_{n}=\tau_{n}(1,1,1)$ be central trinomial coefficients.

Lemma.

Sequence $\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$ is the falling α-th binomial transform ($\alpha=b-\sqrt{\mathrm{ac}}$) of the sequence $\left\{(a c)^{n / 2} t_{n}\right\}_{n \in \mathbb{N}_{0}}$, i.e. holds
$\operatorname{Bf}\left(\left\{(a c)^{n / 2} t_{n}\right\}_{n \in \mathbb{N}_{0}} ; \alpha\right)=\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$.

Lemma.

The Hankel transform of $\left\{t_{n}\right\}_{n \in \mathbb{N}_{0}}$ is $\left\{2^{n}\right\}_{n \in \mathbb{N}_{0}}$.
Last two lemmas and previous results directly yields to
Theorem .

The Hankel transform of $\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{n}}$ is equal to $\left\{2^{n}(a c)\right.$
which is equivalent to the main theorem about Hankel transform of

Connection with generalized central trinomial coefficients

Let $t_{n}=\tau_{n}(1,1,1)$ be central trinomial coefficients.

Lemma .

Sequence $\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}$ is the falling α-th binomial transform $(\alpha=b-\sqrt{\mathbf{a c}})$ of the sequence $\left\{(a c)^{n / 2} t_{n}\right\}_{n \in \mathbb{N}_{0}}$, i.e. holds

$$
\mathbf{B f}\left(\left\{(a c)^{n / 2} t_{n}\right\}_{n \in \mathbb{N}_{0}} ; \alpha\right)=\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}}
$$

Lemma .

The Hankel transform of $\left\{t_{n}\right\}_{n \in \mathbb{N}_{0}}$ is $\left\{2^{n}\right\}_{n \in \mathbb{N}_{0}}$.
Last two lemmas and previous results directly yields to

Theorem .

$$
\text { The Hankel transform of }\left\{\tau_{n}(a, b, c)\right\}_{n \in \mathbb{N}_{0}} \text { is equal to }\left\{2^{n}(a c)^{n(n+1) / 2}\right\}_{n \in \mathbb{N}_{0}}
$$

which is equivalent to the main theorem about Hankel transform of generalized central trinomial coefficients.

Thanks for attention!

[^0]: Example
 The Hankel transform of the central binomial coefficients

[^1]: Example

 The Hankel transform of the central binomial coefficients $\{$

[^2]: Theorem . (Noe 2006)
 Genorating fuinction of the sequence $\{T n(a, b, c)\}$ is given by

[^3]: Corollary . (Layman 2001) Hankel transform is invariant under the binomial transform, i.e. $H(B(a))=H(a)$ for any sequence a.

 We will give an alternative proof for the moment sequences, i.e. sequences $a_{n}=\int_{\mathbb{D}} x^{n} d \mu$ where μ is any positive measure.

