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M.D. Petkovi ć, P.M. Rajkovi ć, P.Barry On the Hankel transform of generalized central trinomial co effcients



Introduction
Generalized central trinomial coefficients

Hankel transform and k -binomial transforms

Integer sequences
Hankel transform
Computing the Hankel transform via orthogonal polynomials

Integer sequences

Let a : N0 −→ Z represent an integer sequence with an = a(n).
The ordinary generating function of an is f (x) =

∑∞
k=0 anxn.

Example . Central binomial coefficients

an =

(

2n
n

)

f (x) =
1√

1 − 4x
1, 2, 6, 20, 70, . . .

Example . Central trinomial coefficients

tn = [xn](1 + x + x2)n f (x) =
1√

1 − 2x − 3x2
1, 1, 3, 7, 19, . . .

N. J. A. SLOANE, The On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/∼njas/sequences/.
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Hankel transform

J.W. LAYMAN, The Hankel Transform and Some of its Properties,
Journal of Integer Sequences, Article 01.1.5, Volume 4, 2001..

Definition . Hankel transform

The Hankel transform of a given sequence a = {an}n∈N0
is the sequence of

Hankel determinants h = H(a) = {hn}n∈N0
where hn = det[ai+j−2]

n
i,j=1, i.e

a = {an}n∈N0 =⇒H h = {hn}n∈N0 : hn = det











a0 a1 · · · an
a1 a2 an+1
...

. . .
an an+1 a2n











Example

The Hankel transform of the central binomial coefficients
{

(2n
n

)

}

n∈N0

is the

sequence {2n}n∈N0
. That is,

|1| = 1,

∣

∣

∣

∣

1 2
2 6

∣

∣

∣

∣

= 2,

∣
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2 6 20
6 20 70
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Example . (Cvetković, Rajković, Ivković, 2002)

Let an = Cn + Cn+1 where Cn is n-th Catalan number. Then
H(a) = {F2n+1}n∈N0

, where Fn is n-th Fibonacci number.

Generalization:

P.M. RAJKOVIĆ, M.D. PETKOVIĆ, P. BARRY, The Hankel Transform of
the Sum of Consecutive Generalized Catalan Numbers, Integral
Transforms and Special Functions, Vol 18/4 (January 2007), 285 – 296..

Some applications:
1. Aztec diamond counting.

R. BRUALDI, S. KIRKLAND, Aztec diamonds and digraphs, and Hankel
determinants of Schroder numbers, Journal of Combinatorial Theory,
Series B 94 (2005) 334 - 351..

2. Solving the Toda equation.

K. KAJIWARA, M. MAZZOCCO, Y. OHTA, A Remark on the Hankel
Determinant Formula for Solutions of the Toda Equation, Journal of
Physics A: Mathematical and Theoretical, Vol 40 (2007), Issue 42,
12661–12675..
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Computing the Hankel transform via orthogonal polynomials

Let dµ be the positive measure on R, {πn(x)}n∈N0
corresponding MOPS and

an =
∫

R
xndµ. Consider the three-term recurrence relation

πn+1(x) = (x − αn)πn(x) − βnπn−1(x), n ∈ N0

Theorem . (Heilermann)

The Hankel determinant det0≤i,j≤n−1(ai+j) is given by

det
0≤i,j≤n−1

[ai+j ] = an
0β

n−1
1 β

n−2
2 . . . β

2
n−2βn−1.

Applicable to any sequence whose Hankel transform is positive (Hamburger
moment problem).
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M.D. Petkovi ć, P.M. Rajkovi ć, P.Barry On the Hankel transform of generalized central trinomial co effcients



Introduction
Generalized central trinomial coefficients

Hankel transform and k -binomial transforms

Integer sequences
Hankel transform
Computing the Hankel transform via orthogonal polynomials

Computing the Hankel transform via orthogonal polynomials

Let {an}n∈N0
is the sequence whose Hankel transform is positive. Let

f (x) =
+∞
∑

n=0

anxn
, g(z) = 1

z f ( 1
z ).

Theorem . (Stieltjes-Perron inversion formula)

Then an =
∫

R
xndλ where

λ(t) − λ(0) = − 1
2πi

lim
y→0+

∫ t

0

[

g(x + iy) − g(x − iy)
]

dx .

Moreover if dλ = w(t)dt and g(z) = g(z) then holds

w(t) =
1
π

lim
y→0+

ℑg(t + i , y)
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W. GAUTSCHI, Orthogonal Polynomials: Computation and
Approximation, Clarendon Press - Oxford, 2003..

Lemma . (Transformation lemma)

(1) If w̃(x) = Cw(x) where C > 0 then holds α̃n = αn for n ∈ N0 and
β̃0 = Cβ0, β̃n = βn for n ∈ N. Additionally holds π̃n(x) = πn(x) for all
n ∈ N0.

(2) If w̃(x) = w(ax + b) where a, b ∈ R and a 6= 0 there holds α̃n = αn−b
a for

n ∈ N0 and β̃0 = β0
|a| and β̃n = βn

a2 for n ∈ N. Additionally holds

π̃n(x) = 1
an πn(ax + b).

(3) If w̃(x) = (x − c)w(x) where c < inf supp(w), there holds

β̃0 =

∫

R

w̃(x)dx , β̃n = βn
rn

rn−1
, (n ∈ N), α̃n = αn+1+rn+1−rn, (n ∈ N0)

where temporary sequence {rn}n∈N0
is defined by

r0 = c − α0, rn = c − αn − βn

rn−1
(n ∈ N).
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Generalized central trinomial coefficients

T. D. NOE, On the Divisibility of Generalized Central Trinomial
Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7..

τn(a, b, c) = [tn](a + bt + ct2)n =

⌊n/2⌋
∑

k=0

(

2k
k

)(

n
2k

)

bn−2k(ac)k

First few members are 1, b, b2 + 2ac, b3 + 6abc, b4 + 12ab2c + 6a2c2, ...

Holds tn = τn(1, 1, 1).

Theorem . (Noe 2006)

Generating function of the sequence {τn(a, b, c)}n∈N0
is given by

f (x) =
1√

1 − 2bx + dx2
=

∞
∑

n=0

τn(a, b, c)xn
.

where d = b2 − 4ac is the discriminant.
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Hankel transform of generalized trinomial coefficients

Since

g(x) = 1
x f ( 1

x ) =
1

√

(x − b)2 − 4ac
,

Applying the Stieltjes-Perron inversion formula and taking into account the
regular branches of square root in g(x) we obtain:

Theorem .

There holds

τn(a, b, c) =
1
π

∫ b+2
√

c

b−2
√

c

yn

√

4ac − (y − b)2
dy

Note that

wt(x) =
1

√

4ac − (x − b)2
=

1
2
√

ac
w
(

x
2
√

ac
− b

2
√

ac

)

where w(x) = 1√
1−x2

is Chebyshev weight.
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For w(t) = 1√
1−x2

we know that

αn = 0, β0 = π, β1 =
1
2

, βn =
1
4

, (n ∈ N).

Applying the previous lemma on the transformation

wt (x) =
1

2
√

ac
w
(

x
2
√

ac
− b

2
√

ac

)

we obtain

αt,n = b, βt,0 = 1, βt,1 = 2ac, βt,n = ac.

Moreover, MOPS corresponding to weight wt (x) are given by

Pt,n(x) = 2(ac)nTn

(

x − b
ac

)

.

By direct application of the Heilermann formula we obtain:

Theorem . (Main)

The Hankel transform of the sequence {τn(a, b, c)}n∈N0
is equal to

{

2n(ac)(
n+1

2 )
}

n∈N0
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Coefficient array

We now wish to look at the coefficient array of the Pt,n(x).

Definition . Riordan Array

Consider a pair f (x), g(x) such that g(x) = 1 + g1x + g2x2 + . . ., (g(0) = 1),
and f (x) = f1x + f2x2 + . . . with f1 6= 0 (so f (0) = 0), both with integer
coefficients. We let (g, f ) denote the infinite lower triangular matrix whose
k-th column has g.f. g(x)f (x)k .

The set of such matrices forms a group, with multiplication law

(g, f ) ∗ (h, l) = (g(h ◦ f ), l ◦ f ).

The identity is (1, x), and

(g, f )−1 = (
1

g ◦ f̄
, f̄ )

where f̄ is the series reversion (compositional inverse) of f :

f (f̄ (x)) = x .
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Example .

The Riordan array ( 1
1−x , x

1−x ) is given by

B =















1 0 0 0 . . .

1 1 0 0 . . .

1 2 1 0 . . .

1 3 3 1 . . .
...

...
...

...
. . .















with general term
(n

k

)

. This therefore represents the binomial transform. We
have

(
1

1 − x
,

x
1 − x

)−1 = (
1

1 + x
,

x
1 + x

).
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The coefficient array {cn,k}n,k∈N0 where Pt,n(x) =
∑n

k=0 cn,k xk is given by






















1 0 0 0 0
−b 1 0 0 0

b2 − 2(ac) −2b 1 0 0
b(3(ac) − b2) 3(b2 − (ac)) −3b 1 0

b4 − 4b2(ac) + 2(ac)2 4b(2(ac) − b2) 2(3b2 − 2(ac)) −4b 1
−b(b4 − 5b2ac + 5(ac)2) 5(b4 − 3b2ac + (ac)2) 5b(3ac − 2b2) 5(2b2 − ac) −5b

...
...

...
...

...

which is the Riordan array

{cn,k}n,k∈N0
=

(

1 − acx2

1 + bx + acx2
,

x

1 + bx + acx2

)

=

(

1 − acx2

1 + acx2
,

x

1 + acx2

)

∗

(

1

1 + bx
,

x

1 + bx

)

M.D. Petkovi ć, P.M. Rajkovi ć, P.Barry On the Hankel transform of generalized central trinomial co effcients



Introduction
Generalized central trinomial coefficients

Hankel transform and k -binomial transforms

Definition and generating function
Hankel transform of generalized central trinomial coeffici ents
Coefficient array

The coefficient array {cn,k}n,k∈N0 where Pt,n(x) =
∑n

k=0 cn,k xk is given by






















1 0 0 0 0
−b 1 0 0 0

b2 − 2(ac) −2b 1 0 0
b(3(ac) − b2) 3(b2 − (ac)) −3b 1 0

b4 − 4b2(ac) + 2(ac)2 4b(2(ac) − b2) 2(3b2 − 2(ac)) −4b 1
−b(b4 − 5b2ac + 5(ac)2) 5(b4 − 3b2ac + (ac)2) 5b(3ac − 2b2) 5(2b2 − ac) −5b

...
...

...
...

...

which is the Riordan array

{cn,k}n,k∈N0
=

(

1 − acx2

1 + bx + acx2
,

x

1 + bx + acx2

)

=

(

1 − acx2

1 + acx2
,

x

1 + acx2

)

∗

(

1

1 + bx
,

x

1 + bx

)
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Binomial transform and generalizations

Definition .

The binomial transform of a given sequence a = {an}n∈N0
the sequence

{bn}n∈N0
= B(a) given by

bn =
n
∑

k=0

(

n
k

)

ak .

Definition . (Spivey, Stail 2006)

Rising and falling k-binomial transforms of sequence a = {an}n∈N0
are

sequences {rn}n∈N0
= Br(a; k) and {fn}n∈N0

= Bf(a; k) given by

rn =

n
∑

i=0

(

n
i

)

k i ai ; fn =

n
∑

i=0

(

n
i

)

kn−iai .

B(·) = Bf (·; 1) = Br(·; 1)
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Generalized binomial transforms and Hankel transform

Theorem . (Spivey, Stail 2006)

Given an integer sequence {an}n∈N0
, let {hn}n∈N0

= H(a). Then holds:

a) H(a) = H(Bf(a; k)) = {hn}n∈N0

b) H(Br(a; k)) =
{

kn(n+1)hn

}

n∈N0

.

Corollary . (Layman 2001)

Hankel transform is invariant under the binomial transform, i.e.
H(B(a)) = H(a) for any sequence a.

We will give an alternative proof for the moment sequences, i.e. sequences
an =

∫

R
xndµ where µ is any positive measure.
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Proof:
a) Let {fn}n∈N0

= Bf(a; k). Sequence {fn}n∈N0
is the n-th order moment

sequence of the weight wf (x) = w(x − k).

fn =
n
∑

i=0

(

n
i

)

kn−i
∫

R

x i w(x)dx

=

∫

R

(

n
∑

i=0

(

n
i

)

kn−i x i

)

dx =

∫

R

(x + k)nw(x)dx

By applying the transformation lemma we obtain βf ,n = βn, for every n ∈ N.
Hence H(a) = H(f ).
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b) Let {rn}n∈N0
= Br(a; k). We can prove that sequence {rn}n∈N0

is the

moment sequence of the weight wr (x) = w
(

x−1
k

)

.

rn =

n
∑

i=0

(

n
i

)

k i
∫

R

x i w(x)dx =

∫

R

(

n
∑

i=0

(

n
i

)

k i x i

)

dx

=

∫

R

(1 + kx)nw(x)dx =

∫

R

xnw
(

x − 1
k

)

dx

(1)

Applying the transformation lemma yields to βr ,n = k2βn and therefore

H(Br(a; k)) =
{

kn(n+1)hn

}

n∈N0

.
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Connection with generalized central trinomial coefficients

Let tn = τn(1, 1, 1) be central trinomial coefficients.

Lemma .

Sequence {τn(a, b, c)}n∈N0
is the falling α-th binomial transform

(α = b −
√

ac) of the sequence
{

(ac)n/2tn
}

n∈N0

, i.e. holds

Bf
(

{

(ac)n/2tn
}

n∈N0

; α

)

= {τn(a, b, c)}n∈N0
.

Lemma .

The Hankel transform of {tn}n∈N0
is {2n}n∈N0

.

Last two lemmas and previous results directly yields to

Theorem .

The Hankel transform of {τn(a, b, c)}n∈N0
is equal to

{

2n(ac)n(n+1)/2
}

n∈N0

.

which is equivalent to the main theorem about Hankel transform of
generalized central trinomial coefficients.
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Thanks for attention!
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