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1 Introduction

First we will define Hankel transform of a integer sequence and show some examples.

Definition 1 The Hankel transform of a given sequence A = {a0, a1, a2, ...} is the

sequence of Hankel determinants {h0, h1, h2, . . . } where hn = |ai+j−2|ni,j=1, i.e

A = {an}n∈N0
→ h = {hn}n∈N0

: hn =
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1.1)
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Example 1 The Hankel transform of a Catalan sequence given by c(n) = 1
n+1

(2n
n

)

is the sequence of all 1’s. Thus each of the determinants has value 1:
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Example 2 Sequence of central binomial coefficients defined by an =
(2n

n

)

has Hankel

transform hn = 2n, i.e.

|1| = 1,
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Example 3 In paper [3], A. Cvetković, P. Rajković and M. Ivković have proven that

Hankel transform of sequence A005087 in On-Line Encyclopedia of Integer Sequences

[11] defined by:

an = c(n) + c(n+ 1) =
1

n+ 1

(

2n

n

)

+
1

n+ 2

(

2n+ 2

n+ 1

)

(1.4)

equals to the sequence A001906, i.e. bisection of Fibonacci sequence F (2n+ 1).

We generalized previous result, i.e. computed the Hankel transform of the generalized

sequence an(L) = c(n;L)+c(n+1;L), where c(n;L) is a sequence of generalized

Catalan numbers.
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2 Hankel transform of Narayana Polynomials

In this section we will present the metod for computing Hankel transform of the

sequence of Narayana polynomials based on Krattenthaler formula in [6]. Similar

method will be used also for generalized sequence from [3].

• First we will find the real measure whose moments are values of Narayana poly-

nomials

• Then we will construct the sequence of orthogonal polynomials with respect to

found measure

• Finally, from the three-terms recurrence relation we will derive Hankel transform

in the closed form.
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2.1 Narayana numbers and polynomials

We will consider the sequence of the Narayana and shifted Narayana numbers

N(n, k) =
1

n

(

n

k

)(

n

k + 1

)

, Ñ(n, k) = N(n+ 1, k).

To this sequence we can join the Narayana triangles

N =
[

N(n, k)
]

n,k∈N
, Ñ =

[

Ñ(n, k)
]

n,k∈N
.

and the Narayana polynomials

a(n; r) =

n
∑

k=0

Ñ(n, k)rk, a1(n; r) =

n
∑

k=0

N(n, k)rk.

It is valid

a(n; r) = a1(n+ 1; r) (n ∈ N).
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Definition 2 For a given function y = f(x), f(0) = 0, the series reversion is the

sequence {sk} such that

x = f−1(y) = s0 + s1y + · · · + sny
n + · · · ,

where x = f−1(y) is the inverse function of y = f(x).

In the paper [1], P. Barry showed the next facts.

Lemma 1 The series reversion of the next functions are Narayana and shifted Narayana

numbers

y = f(x) =
x

1 + (r + 1)x+ rx2
⇒ f−1(y) =

+∞
∑

n=0

a(n; r)yn,

y = g(x) =
x(1 − rx)

1 − (r − 1)x
⇒ g−1(y) =

+∞
∑

n=0

a1(n; r)yn.
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From the previous Lemma, we can easily derive the generating functions of the

sequences a(n; r) and a1(n; r).

Corolary 1 The generating functions of the sequences a(n; r) and a1(n; r) are given

by:

A(x, r) =
−1 + (r + 1)x+

√

(1 − (r + 1)x)
2 − 4rx2

2rx2

A1(x, r) =
A(x, r) − 1

x

(2.5)
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Hankel transform of Narayana polynomials and Generalized Catalan Numbers 9

2.2 Deriving the weight function of {a(n; r)}n∈N0

Our goal is to find weight function w such that a(n, r), n = 0, 1, . . . are moments

corresponding to this function, i.e. that holds a(n, r) =
∫

R
xnw(x)dx.

Theorem 1 The weight function whose n-th moment is a(n, r) is:

w(x) =







√
4r−(x−r−1)2

2πr
, x ∈

(

(
√
r − 1)2, (

√
r + 1)2

)

;

0, otherwise.
(2.6)

Proof. We will use Stieltjes inversion formula (see [2]). First define the function:

F (z, r) =
1

z
A

(

1

z
, r

)

= −(r + 1) − z +
√

(z − r − 1)2 − 4r

2rz
(2.7)

Then, from the theory of distributions, we have that distribution function ψ(x) and

measure (weight) w(x) satisfies following relations:

ψ(t) − ψ(0) = − 1

π
lim

y→0+

∫ t

0

ℑF (x+ iy;L)dx, w(t) =
dψ(t)

dt
. (2.8)
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It can be shown that an integral of F (z; r) is equal to:

F(z;L) =

∫

F (z;L)dz =
1

4r

[

z2+(1+r−z)ρ(z; r)−2z(r+1)
]

+l1(z; r), (2.9)

Where we denoted:

ρ(z; r) =
√

(z − r − 1)2 − 4r

l1(z; r) = ln (−(r + 1) + z + ρ(z; r))
(2.10)

We can notice that in the complex plane, function ρ(z; r) has two branch points

z = (
√
r − 1)2 and z = (

√
r + 1)2, and l1(z) has one more, z = r + 1.
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Now by choosing appropriate regular branches of ρ(z; r) and l1(z; r) we can find the

limits:

lim
y→0+

ℑρ(x+ iy; r) =







√

4r − (x− r − 1)2 , x ∈
(

(
√
r − 1)2, (

√
r + 1)2

)

0 , otherwise.
,

and

lim
y→0+

ℑl1(x+ iy; r) =



















π + arctan

√
4r−(x−r−1)2

x−(r+1)
, x ∈

(

(
√
r − 1)2, r + 1

)

arctan

√
4r−(x−r−1)2

x−(r+1)
, x ∈

(

r + 1, (
√
r + 1)2

)

0 , otherwise.

Now to complete the proof we need to substitute these values into the formula for

w(x).
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2.3 Orthogonal polynomials w.r.t. the weight w(x)

In the paper [6],C. Krattenthaler proved that Hankel transform hn of a sequence

an =
∫

R
xnw(x)dx is given with the following relation hn = an

0

∏n−1
i=1 β

n−i
i .

Coefficients βi are from the three-terms recurrence relation between monic orthog-

onal polynomials with respect to the weight ω(x).

Qn+1(x) = (x− αn)Qn(x) − βnQn−1(x), (2.11)

Lemma 2 Coefficients αn and βn, n = 0, 1, . . . in the three-term recurrence relation

(2.11) with respect to weight function:

w(x) =







√
4r−(x−r−1)2

2πr
, x ∈

(

(
√
r − 1)2, (

√
r + 1)2

)

;

0, otherwise.

are given with:

β0 = 1 βn = r, n ≥ 1 αn = r + 1, n ≥ 0
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Proof. Second kind Chebyshev polynomials are orthogonal w.r.t the weightw(1)(x) =√
1 − x2.

Q(1)
n (x) = Sn(x) =

sin
(

(n+ 1) arccosx
)

2n ·
√

1 − x2

Corresponding coefficients are:

β
(1)
0 =

π

2
, β(1)

n =
1

4
, n ≥ 1 α(1)

n = 0, n ≥ 0

Let we introduce new weight function:

w(2)(x) =
√

4r − (x− r − 1)2 = w

(

1

2
√
r
x− r + 1

2
√
r

)

= w(ax+ b)

Using the transformation formulas from [4] we obtain new coefficients:

β
(2)
0 =

√
rπ, β(2)

n =
β(1)

n

a2
= r, n ≥ 1 α(2)

n =
α(1)

n − b

a2
= r + 1, n ≥ 0
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Hankel transform of Narayana polynomials and Generalized Catalan Numbers 14

Finally by dividing weight function w(2)(x) with constant 1
π

√
r

we have

β(3)
n = β(2)

n = r, n ≥ 1, β
(3)
0 = 1, α(3)

n = α(2)
n = r + 1

which completes the proof.
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2.4 The Hankel transform of {a(n; r)}n∈N0

Now we are ready to prove the main theorem of this section:

Theorem 2 The Hankel transform of the sequence a(n; r) is

h(n; r) = r(
n

2).

Proof. Using Krattenthaler formula we have:

h(n; r) = a(0; r)n
n−1
∏

i=1

βn−i
i = 1n

n−1
∏

i=1

rn−i = r(
n

2).
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3 Hankel Transform of sum of consecutive generalized

Catalan numbers

In this section we will consider the generalized Catalan numbers and we will find the

Hankel transform of a sequence an(L), the generalization of the sequence A005087.

• First we will define the generalized binomial coefficients and generalized Catalan

numbers and consider its basic properties.

• Then we will derive the generating function of an(L).

• Finally we will find the Hankel transform similarly as in the case of Narayana

polynomials.
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3.1 Definitions and basic properties

Definition 3 For a given sequence {bn}n∈N0
define the generalized binomial coeffi-

cient with:

T (n, k, {bm}) =
∑

j

(

k

j

)(

n− k

j

)

bj.

Also define the sequence of generalized Catalan numbers with:

c(n; {bm}) = T (2n, n; {bm}) − T (2n, n− 1; {bm})

It can be directly verified that holds T (n, k, {bm}) = T (n, n− k, {bm}).

Example 4 For the sequence bm = 1, we have that T (n, k; {1}) =
(n

k

)

. This comes

from the Vandermode convolution identity:
(

n

k

)

=
∑

j

(

k

j

)(

n− k

j

)

.

In that case also holds c(n) = c(n; {1}).
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Now consider the sequence bm = Lm where L is positive real number. To simplify

notation, we will denote:

T (n, k; {Lm}) = T (n, k;L), c(n; {Lm}) = c(n;L)

Definition 4 Denote with an(L) generalization of the sequence A005087 defined by:

an(L) = c(n+ 1;L) + c(n;L)

Our goal is to find the Hankel transform hn(L) of this sequence.

M.D. Petković, P.M. Rajković PRIM2006
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3.2 The generating function

Proposition 1 The generalized binomial coefficient T (2n+a, n+a;L) can be rewrit-

ten using Jacobi polynomial P (a,b)
n (x) by:

T (2n+ a, n;L) = (L− 1)nP (a,0)
n

(

L+ 1

L− 1

)

The generating function of Jacobi polynomials is given by:

G(a,b)(x, t) =

∞
∑

n=0

P (a,b)
n (x)tn =

2a+b

φ · (1 − t+ φ)a · (1 + t+ φ)b
, (3.12)

where φ = φ(x, t) =
√

1 − 2xt+ t2.

Now we can derive the generating functions of T (2n+ a, n;L) and also an(L):

∞
∑

n=0

T (2n+ a, n;L) tn = G(a,0)
(

L+1
L−1

, (L− 1)t
)

, (3.13)

M.D. Petković, P.M. Rajković PRIM2006
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G(t;L) =

+∞
∑

n=0

an(L)tn

=
t+ 1

t
G(0,0)

(

L+1
L−1

, (L− 1)t
)

− (t+ 1)G(2,0)
(

L+1
L−1

, (L− 1)t
)

− 1

t

=
t+ 1

ρ(t;L)

{

1

t
− 4

(1 − (L− 1)t+ ρ(t;L))2

}

− 1

t
(3.14)

where

ρ(t;L) = φ
(

L+1
L−1

, (L− 1)t
)

=
√

1 − 2(L+ 1)t+ (L− 1)2t2 (3.15)
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3.3 The Hankel transform of an(L)

Theorem 3 Numbers an(L) are the moments of the following weight function:

ω(x;L) =

√
L

π

(

1 +
1

x

)

√

1 −
(x− L− 1

2
√
L

)2

(3.16)

Now we need to describe the orthogonal polynomials {Qn(x)} corresponding to this

weight function.

Example 5 For L = 4, we can find the first members

Q0(x) = 1, ‖Q0‖2 = 5,

Q1(x) = x− 24

5
, ‖Q1‖2 =

104

5
,

Q2(x) = x2 − 127

13
x+

256

13
, ‖Q2‖2 =

1088

13
,

Q3(x) = x3 − 541

17
x2 +

1096

17
x− 1344

17
, ‖Q3‖2 =

5696

17
,

M.D. Petković, P.M. Rajković PRIM2006
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We can again start from the second kind Chebyshev polynomials orthogonal w.r.t.

the weight p(1/2,1/2)(x) =
√

1 − x2. They satisfy the three-term recurrence relation

[2]:

Sn+1(x) = (x− α∗
n) Sn(x) − β∗

nSn−1(x) (n = 0, 1, . . .), (3.17)

with initial values

S−1(x) = 0, S0(x) = 1,

where

α∗
n = 0 (n ≥ 0) and β∗

0 =
π

2
, β∗

n =
1

4
(n ≥ 1).

M.D. Petković, P.M. Rajković PRIM2006
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Let we introduce new weight function ŵ(x) = (x− c) p(1/2,1/2)(x). Corresponding

coefficients α̂n and β̂n can be evaluated as follows [4]:

λn = Sn(c),

α̂n = c− λn+1

λn

− β∗
n+1

λn

λn+1

,

β̂n = β∗
n

λn−1λn+1

λ2
n

(n ∈ N0).

(3.18)

If we choose c = − L+2

2
√

L
, it can be shown that holds:

λn =
(−1)n

2 · 4nL
n

2

√
L2 + 4

ψn+1 (n = −1, 0, 1, . . .).

where:

ψn =
(

L+ 2 +
√

L2 + 4
)n

−
(

L+ 2 −
√

L2 + 4
)n

.

M.D. Petković, P.M. Rajković PRIM2006



Hankel transform of Narayana polynomials and Generalized Catalan Numbers 24

The next transformation will be w̃(x) = ŵ(ax + b), where a = 1

2
√

L
and b = − L+1

2
√

L
. After

exchanging we obtain:

w̃(x) = ŵ

(

x − L − 1

2
√
L

)

=
1

2
√
L

(x + 1)

√

1 −
(x − L − 1

2
√
L

)2

. (3.19)

Coefficients of three-term relation are now:

α̃n =
α̂n − b

a
, β̃n =

β̂n

a2
(n ≥ 0). (3.20)

Multiplying the weight function w̃(x) with the constant 2L
π

we are only changing β̃0. Finally,

we have that coefficients corresponding to the:

w̆(x) =
2L

π
w̃(x) =

√
L

π
(x + 1)

√

1 −
(x − L − 1

2
√
L

)2

(3.21)

are given with:

β̆0 = L(L + 2), β̆n = β̃n = L
ψnψn+2

ψ2
n+1

(n ∈ N),

ᾰn = α̃n = −1 +
1

2
· ψn+2

ψn+1
+ 2L · ψn+1

ψn+2
(n ∈ N0).

(3.22)
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Final transformation will be ω(x;L) =
˘w(x)
x

. If we know all about the MOPS orthogonal with

respect to w̆(x) what can we say about the sequence {Qn(x)} orthogonal w.r.t. a weight

wd(x) =
w̆(x)

x − d
(d /∈ support(w̆)) ?

In the book [5], W. Gautshi has proved that, by the auxiliary sequence:

r−1 = −
∫

R

wd(x) dx, rn = d − ᾰn − β̆n

rn−1
(n = 0, 1, . . .),

it can be determined:

αd,0 = ᾰ0 + r0, αd,k = ᾰk + rk − rk−1,

βd,0 = −r−1, βd,k = β̆k−1
rk−1

rk−2
(k ∈ N).

We need the case d = 0. Next Lemma can be proved by induction:

Lemma 3 The parameters rn have the explicit form

rn = −ψn+1

ψn+2
· Lψn+2 + ξϕn+2

Lψn+1 + ξϕn+1
(n ∈ N0).

ϕn =
(

L + 2 +
√

L2 + 4
)n

+
(

L + 2 −
√

L2 + 4
)n

, ξ =
√

L2 + 4

(3.23)
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Now we have the coefficients βn = β0,n . By exchanging and using Krattenthaler formula we

finally obtain:

hn(L) = β0β1β2 · · · βn−2βn−1 · hn−1(L) = β0
rn−2

r−1

n−2
∏

k=0

β̆k · hn−1(L)

=
Ln−1

2
· Lψn + ξϕn

Lψn−1 + ξϕn−1
· hn−1(L) =

Ln(n−1)/2

2n+1ξ
· (Lψn + ξϕn)

=
L(n2−n)/2

2n+1
√
L2 + 4

·
{

(
√

L2 + 4 + L)(
√

L2 + 4 + L + 2)n + (
√

L2 + 4 − L)(L + 2 −
√

L2 + 4)n
}

.

(3.24)
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Thanks for your attention!
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