International conference PRIM 2006

HANKEL TRANSFORM OF NARAYANA POLYNOMIALS AND GENERALIZED CATALAN NUMBERS

Marko D. Petković, Predrag M. Rajković,
Department of Mathematics
University of Niš
Serbia.

1 Introduction

First we will define Hankel transform of a integer sequence and show some examples.
Definition 1 The Hankel transform of a given sequence $A=\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}$ is the sequence of Hankel determinants $\left\{h_{0}, h_{1}, h_{2}, \ldots\right\}$ where $h_{n}=\left|a_{i+j-2}\right|_{i, j=1}^{n}$, i.e

$$
A=\left\{a_{n}\right\}_{n \in \mathbb{N}_{0}} \rightarrow h=\left\{h_{n}\right\}_{n \in \mathbb{N}_{0}}: h_{n}=\left|\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n} \tag{1.1}\\
a_{1} & a_{2} & \cdots & a_{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n} & a_{n+1} & \cdots & a_{2 n}
\end{array}\right|
$$

Example 1 The Hankel transform of a Catalan sequence given by $c(n)=\frac{1}{n+1}\binom{2 n}{n}$ is the sequence of all 1 's. Thus each of the determinants has value 1 :

$$
|1|, \quad\left|\begin{array}{ll}
1 & 1 \tag{1.2}\\
1 & 2
\end{array}\right|, \quad\left|\begin{array}{ccc}
1 & 1 & 2 \\
1 & 2 & 5 \\
2 & 5 & 14
\end{array}\right|, \quad \ldots
$$

Example 2 Sequence of central binomial coefficients defined by $a_{n}=\binom{2 n}{n}$ has Hankel transform $h_{n}=2^{n}$, i.e.

$$
|1|=1, \quad\left|\begin{array}{cc}
1 & 2 \tag{1.3}\\
6 & 20
\end{array}\right|=2, \quad\left|\begin{array}{ccc}
1 & 2 & 6 \\
2 & 6 & 20 \\
20 & 70 & 252
\end{array}\right|=4, \quad \ldots
$$

Example 3 In paper [3], A. Cvetković, P. Rajković and M. Ivković have proven that Hankel transform of sequence A005087 in On-Line Encyclopedia of Integer Sequences [11] defined by:

$$
\begin{equation*}
a_{n}=c(n)+c(n+1)=\frac{1}{n+1}\binom{2 n}{n}+\frac{1}{n+2}\binom{2 n+2}{n+1} \tag{1.4}
\end{equation*}
$$

equals to the sequence $A 001906$, i.e. bisection of Fibonacci sequence $F(2 n+1)$.
We generalized previous result, i.e. computed the Hankel transform of the generalized sequence $a_{n}(L)=c(n ; L)+c(n+1 ; L)$, where $c(n ; L)$ is a sequence of generalized Catalan numbers.

2 Hankel transform of Narayana Polynomials

In this section we will present the metod for computing Hankel transform of the sequence of Narayana polynomials based on Krattenthaler formula in [6]. Similar method will be used also for generalized sequence from [3].

- First we will find the real measure whose moments are values of Narayana polynomials
- Then we will construct the sequence of orthogonal polynomials with respect to found measure
- Finally, from the three-terms recurrence relation we will derive Hankel transform in the closed form.
2.1 Narayana numbers and polynomials

We will consider the sequence of the Narayana and shifted Narayana numbers

$$
N(n, k)=\frac{1}{n}\binom{n}{k}\binom{n}{k+1}, \quad \tilde{N}(n, k)=N(n+1, k)
$$

To this sequence we can join the Narayana triangles

$$
\mathbf{N}=[N(n, k)]_{n, k \in \mathbb{N}}, \quad \tilde{\mathbf{N}}=[\tilde{N}(n, k)]_{n, k \in \mathbb{N}}
$$

and the Narayana polynomials

$$
a(n ; r)=\sum_{k=0}^{n} \tilde{N}(n, k) r^{k}, \quad a_{1}(n ; r)=\sum_{k=0}^{n} N(n, k) r^{k}
$$

It is valid

$$
a(n ; r)=a_{1}(n+1 ; r) \quad(n \in \mathbb{N})
$$

Definition 2 For a given function $y=f(x), f(0)=0$, the series reversion is the sequence $\left\{s_{k}\right\}$ such that

$$
x=f^{-1}(y)=s_{0}+s_{1} y+\cdots+s_{n} y^{n}+\cdots
$$

where $x=f^{-1}(y)$ is the inverse function of $y=f(x)$.
In the paper [1], P. Barry showed the next facts.
Lemma 1 The series reversion of the next functions are Narayana and shifted Narayana numbers

$$
\begin{aligned}
y=f(x)=\frac{x}{1+(r+1) x+r x^{2}} & \Rightarrow f^{-1}(y)=\sum_{n=0}^{+\infty} a(n ; r) y^{n} \\
y=g(x)=\frac{x(1-r x)}{1-(r-1) x} & \Rightarrow g^{-1}(y)=\sum_{n=0}^{+\infty} a_{1}(n ; r) y^{n}
\end{aligned}
$$

From the previous Lemma, we can easily derive the generating functions of the sequences $a(n ; r)$ and $a_{1}(n ; r)$.

Corolary 1 The generating functions of the sequences $a(n ; r)$ and $a_{1}(n ; r)$ are given by:

$$
\begin{align*}
A(x, r) & =\frac{-1+(r+1) x+\sqrt{(1-(r+1) x)^{2}-4 r x^{2}}}{2 r x^{2}} \tag{2.5}\\
A_{1}(x, r) & =\frac{A(x, r)-1}{x}
\end{align*}
$$

2.2 Deriving the weight function of $\{a(n ; r)\}_{n \in \mathbb{N}_{0}}$

Our goal is to find weight function w such that $a(n, r), n=0,1, \ldots$ are moments corresponding to this function, i.e. that holds $a(n, r)=\int_{\mathbb{R}} x^{n} w(x) d x$.

Theorem 1 The weight function whose n-th moment is $a(n, r)$ is:

$$
w(x)= \begin{cases}\frac{\sqrt{4 r-(x-r-1)^{2}}}{2 \pi r}, & x \in\left((\sqrt{r}-1)^{2},(\sqrt{r}+1)^{2}\right) \tag{2.6}\\ 0, & \text { otherwise }\end{cases}
$$

Proof. We will use Stieltjes inversion formula (see [2]). First define the function:

$$
\begin{equation*}
F(z, r)=\frac{1}{z} A\left(\frac{1}{z}, r\right)=-\frac{(r+1)-z+\sqrt{(z-r-1)^{2}-4 r}}{2 r z} \tag{2.7}
\end{equation*}
$$

Then, from the theory of distributions, we have that distribution function $\psi(x)$ and measure (weight) $w(x)$ satisfies following relations:

$$
\begin{equation*}
\psi(t)-\psi(0)=-\frac{1}{\pi} \lim _{y \rightarrow 0^{+}} \int_{0}^{t} \Im F(x+i y ; L) d x, \quad w(t)=\frac{d \psi(t)}{d t} \tag{2.8}
\end{equation*}
$$

It can be shown that an integral of $F(z ; r)$ is equal to:

$$
\begin{equation*}
\mathcal{F}(z ; L)=\int F(z ; L) d z=\frac{1}{4 r}\left[z^{2}+(1+r-z) \rho(z ; r)-2 z(r+1)\right]+l_{1}(z ; r) \tag{2.9}
\end{equation*}
$$

Where we denoted:

$$
\begin{align*}
\rho(z ; r) & =\sqrt{(z-r-1)^{2}-4 r} \tag{2.10}\\
l_{1}(z ; r) & =\ln (-(r+1)+z+\rho(z ; r))
\end{align*}
$$

We can notice that in the complex plane, function $\rho(z ; r)$ has two branch points $z=(\sqrt{r}-1)^{2}$ and $z=(\sqrt{r}+1)^{2}$, and $l_{1}(z)$ has one more, $z=r+1$.

Now by choosing appropriate regular branches of $\rho(z ; r)$ and $l_{1}(z ; r)$ we can find the limits:

$$
\lim _{y \rightarrow 0^{+}} \Im \rho(x+i y ; r)= \begin{cases}\sqrt{4 r-(x-r-1)^{2}} & , x \in\left((\sqrt{r}-1)^{2},(\sqrt{r}+1)^{2}\right) \\ 0 & , \text { otherwise }\end{cases}
$$

and

$$
\lim _{y \rightarrow 0^{+}} \Im l_{1}(x+i y ; r)= \begin{cases}\pi+\arctan \frac{\sqrt{4 r-(x-r-1)^{2}}}{x-(r+1)} & , x \in\left((\sqrt{r}-1)^{2}, r+1\right) \\ \arctan \frac{\sqrt{4 r-(x-r-1)^{2}}}{x-(r+1)} & , x \in\left(r+1,(\sqrt{r}+1)^{2}\right) \\ 0 & , \text { otherwise }\end{cases}
$$

Now to complete the proof we need to substitute these values into the formula for $w(x)$.
2.3 Orthogonal polynomials w.r.t. the weight $w(x)$

In the paper [6],C. Krattenthaler proved that Hankel transform h_{n} of a sequence $a_{n}=\int_{\mathbb{R}} x^{n} w(x) d x$ is given with the following relation $h_{n}=a_{0}^{n} \prod_{i=1}^{n-1} \beta_{i}^{n-i}$.
Coefficients β_{i} are from the three-terms recurrence relation between monic orthogonal polynomials with respect to the weight $\omega(x)$.

$$
\begin{equation*}
Q_{n+1}(x)=\left(x-\alpha_{n}\right) Q_{n}(x)-\beta_{n} Q_{n-1}(x) \tag{2.11}
\end{equation*}
$$

Lemma 2 Coefficients α_{n} and $\beta_{n}, n=0,1, \ldots$ in the three-term recurrence relation (2.11) with respect to weight function:

$$
w(x)= \begin{cases}\frac{\sqrt{4 r-(x-r-1)^{2}}}{2 \pi r}, & x \in\left((\sqrt{r}-1)^{2},(\sqrt{r}+1)^{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

are given with:

$$
\beta_{0}=1 \quad \beta_{n}=r, n \geq 1 \quad \alpha_{n}=r+1, n \geq 0
$$

Proof. Second kind Chebyshev polynomials are orthogonal w.r.t the weight $w^{(1)}(x)=$ $\sqrt{1-x^{2}}$.

$$
Q_{n}^{(1)}(x)=S_{n}(x)=\frac{\sin ((n+1) \arccos x)}{2^{n} \cdot \sqrt{1-x^{2}}}
$$

Corresponding coefficients are:

$$
\beta_{0}^{(1)}=\frac{\pi}{2}, \quad \beta_{n}^{(1)}=\frac{1}{4}, n \geq 1 \quad \alpha_{n}^{(1)}=0, n \geq 0
$$

Let we introduce new weight function:

$$
w^{(2)}(x)=\sqrt{4 r-(x-r-1)^{2}}=w\left(\frac{1}{2 \sqrt{r}} x-\frac{r+1}{2 \sqrt{r}}\right)=w(a x+b)
$$

Using the transformation formulas from [4] we obtain new coefficients:

$$
\beta_{0}^{(2)}=\sqrt{r} \pi, \quad \beta_{n}^{(2)}=\frac{\beta_{n}^{(1)}}{a^{2}}=r, n \geq 1 \quad \alpha_{n}^{(2)}=\frac{\alpha_{n}^{(1)}-b}{a^{2}}=r+1, n \geq 0
$$

Finally by dividing weight function $w^{(2)}(x)$ with constant $\frac{1}{\pi \sqrt{r}}$ we have

$$
\beta_{n}^{(3)}=\beta_{n}^{(2)}=r, n \geq 1, \quad \beta_{0}^{(3)}=1, \quad \alpha_{n}^{(3)}=\alpha_{n}^{(2)}=r+1
$$

which completes the proof.
2.4 The Hankel transform of $\{a(n ; r)\}_{n \in \mathbb{N}_{0}}$

Now we are ready to prove the main theorem of this section:
Theorem 2 The Hankel transform of the sequence $a(n ; r)$ is

$$
h(n ; r)=r^{\binom{n}{2}}
$$

Proof. Using Krattenthaler formula we have:

$$
h(n ; r)=a(0 ; r)^{n} \prod_{i=1}^{n-1} \beta_{i}^{n-i}=1^{n} \prod_{i=1}^{n-1} r^{n-i}=r^{\binom{n}{2}}
$$

3 Hankel Transform of sum of consecutive generalized Catalan numbers

In this section we will consider the generalized Catalan numbers and we will find the Hankel transform of a sequence $a_{n}(L)$, the generalization of the sequence $A 005087$.

- First we will define the generalized binomial coefficients and generalized Catalan numbers and consider its basic properties.
- Then we will derive the generating function of $a_{n}(L)$.
- Finally we will find the Hankel transform similarly as in the case of Narayana polynomials.
3.1 Definitions and basic properties

Definition 3 For a given sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}_{0}}$ define the generalized binomial coefficient with:

$$
T\left(n, k,\left\{b_{m}\right\}\right)=\sum_{j}\binom{k}{j}\binom{n-k}{j} b_{j}
$$

Also define the sequence of generalized Catalan numbers with:

$$
c\left(n ;\left\{b_{m}\right\}\right)=T\left(2 n, n ;\left\{b_{m}\right\}\right)-T\left(2 n, n-1 ;\left\{b_{m}\right\}\right)
$$

It can be directly verified that holds $T\left(n, k,\left\{b_{m}\right\}\right)=T\left(n, n-k,\left\{b_{m}\right\}\right)$.
Example 4 For the sequence $b_{m}=1$, we have that $T(n, k ;\{1\})=\binom{n}{k}$. This comes from the Vandermode convolution identity:

$$
\binom{n}{k}=\sum_{j}\binom{k}{j}\binom{n-k}{j}
$$

In that case also holds $c(n)=c(n ;\{1\})$.

Now consider the sequence $b_{m}=L^{m}$ where L is positive real number. To simplify notation, we will denote:

$$
T\left(n, k ;\left\{L^{m}\right\}\right)=T(n, k ; L), \quad c\left(n ;\left\{L^{m}\right\}\right)=c(n ; L)
$$

Definition 4 Denote with $a_{n}(L)$ generalization of the sequence A005087 defined by:

$$
a_{n}(L)=c(n+1 ; L)+c(n ; L)
$$

Our goal is to find the Hankel transform $h_{n}(L)$ of this sequence.
3.2 The generating function

Proposition 1 The generalized binomial coefficient $T(2 n+a, n+a ; L)$ can be rewritten using Jacobi polynomial $P_{n}^{(a, b)}(x)$ by:

$$
T(2 n+a, n ; L)=(L-1)^{n} P_{n}^{(a, 0)}\left(\frac{L+1}{L-1}\right)
$$

The generating function of Jacobi polynomials is given by:

$$
\begin{equation*}
G^{(a, b)}(x, t)=\sum_{n=0}^{\infty} P_{n}^{(a, b)}(x) t^{n}=\frac{2^{a+b}}{\phi \cdot(1-t+\phi)^{a} \cdot(1+t+\phi)^{b}} \tag{3.12}
\end{equation*}
$$

where $\phi=\phi(x, t)=\sqrt{1-2 x t+t^{2}}$.
Now we can derive the generating functions of $T(2 n+a, n ; L)$ and also $a_{n}(L)$:

$$
\begin{equation*}
\sum_{n=0}^{\infty} T(2 n+a, n ; L) t^{n}=G^{(a, 0)}\left(\frac{L+1}{L-1},(L-1) t\right) \tag{3.13}
\end{equation*}
$$

$$
\begin{align*}
\mathcal{G}(t ; L) & =\sum_{n=0}^{+\infty} a_{n}(L) t^{n} \\
& =\frac{t+1}{t} G^{(0,0)}\left(\frac{L+1}{L-1},(L-1) t\right)-(t+1) G^{(2,0)}\left(\frac{L+1}{L-1},(L-1) t\right)-\frac{1}{t} \\
& =\frac{t+1}{\rho(t ; L)}\left\{\frac{1}{t}-\frac{4}{(1-(L-1) t+\rho(t ; L))^{2}}\right\}-\frac{1}{t} \tag{3.14}
\end{align*}
$$

where

$$
\begin{equation*}
\rho(t ; L)=\phi\left(\frac{L+1}{L-1},(L-1) t\right)=\sqrt{1-2(L+1) t+(L-1)^{2} t^{2}} \tag{3.15}
\end{equation*}
$$

3.3 The Hankel transform of $a_{n}(L)$

Theorem 3 Numbers $a_{n}(L)$ are the moments of the following weight function:

$$
\begin{equation*}
\omega(x ; L)=\frac{\sqrt{L}}{\pi}\left(1+\frac{1}{x}\right) \sqrt{1-\left(\frac{x-L-1}{2 \sqrt{L}}\right)^{2}} \tag{3.16}
\end{equation*}
$$

Now we need to describe the orthogonal polynomials $\left\{Q_{n}(x)\right\}$ corresponding to this weight function.
Example 5 For $L=4$, we can find the first members

$$
\begin{array}{lr}
Q_{0}(x)=1, & \left\|Q_{0}\right\|^{2}=5 \\
Q_{1}(x)=x-\frac{24}{5}, & \left\|Q_{1}\right\|^{2}=\frac{104}{5} \\
Q_{2}(x)=x^{2}-\frac{127}{13} x+\frac{256}{13}, & \left\|Q_{2}\right\|^{2}=\frac{1088}{13} \\
Q_{3}(x)=x^{3}-\frac{541}{17} x^{2}+\frac{1096}{17} x-\frac{1344}{17}, & \left\|Q_{3}\right\|^{2}=\frac{5696}{17}
\end{array}
$$

We can again start from the second kind Chebyshev polynomials orthogonal w.r.t. the weight $p^{(1 / 2,1 / 2)}(x)=\sqrt{1-x^{2}}$. They satisfy the three-term recurrence relation [2]:

$$
\begin{equation*}
S_{n+1}(x)=\left(x-\alpha_{n}^{*}\right) S_{n}(x)-\beta_{n}^{*} S_{n-1}(x) \quad(n=0,1, \ldots) \tag{3.17}
\end{equation*}
$$

with initial values

$$
S_{-1}(x)=0, \quad S_{0}(x)=1
$$

where

$$
\alpha_{n}^{*}=0 \quad(n \geq 0) \quad \text { and } \quad \beta_{0}^{*}=\frac{\pi}{2}, \quad \beta_{n}^{*}=\frac{1}{4} \quad(n \geq 1)
$$

Let we introduce new weight function $\hat{w}(x)=(x-c) p^{(1 / 2,1 / 2)}(x)$. Corresponding coefficients $\hat{\boldsymbol{\alpha}}_{n}$ and $\hat{\boldsymbol{\beta}}_{\boldsymbol{n}}$ can be evaluated as follows [4]:

$$
\begin{align*}
& \lambda_{n}=S_{n}(c) \\
& \hat{\alpha}_{n}=c-\frac{\lambda_{n+1}}{\lambda_{n}}-\beta_{n+1}^{*} \frac{\lambda_{n}}{\lambda_{n+1}} \tag{3.18}\\
& \hat{\beta}_{n}=\beta_{n}^{*} \frac{\lambda_{n-1} \lambda_{n+1}}{\lambda_{n}^{2}}
\end{align*}
$$

If we choose $c=-\frac{L+2}{2 \sqrt{L}}$, it can be shown that holds:

$$
\lambda_{n}=\frac{(-1)^{n}}{2 \cdot 4^{n} L^{\frac{n}{2}} \sqrt{L^{2}+4}} \psi_{n+1} \quad(n=-1,0,1, \ldots)
$$

where:

$$
\psi_{n}=\left(L+2+\sqrt{L^{2}+4}\right)^{n}-\left(L+2-\sqrt{L^{2}+4}\right)^{n}
$$

The next transformation will be $\tilde{w}(x)=\hat{w}(a x+b)$, where $a=\frac{1}{2 \sqrt{L}}$ and $b=-\frac{L+1}{2 \sqrt{L}}$. After exchanging we obtain:

$$
\begin{equation*}
\tilde{w}(x)=\hat{w}\left(\frac{x-L-1}{2 \sqrt{L}}\right)=\frac{1}{2 \sqrt{L}}(x+1) \sqrt{1-\left(\frac{x-L-1}{2 \sqrt{L}}\right)^{2}} \tag{3.19}
\end{equation*}
$$

Coefficients of three-term relation are now:

$$
\begin{equation*}
\tilde{\alpha}_{n}=\frac{\hat{\alpha}_{n}-b}{a}, \quad \tilde{\boldsymbol{\beta}}_{n}=\frac{\hat{\boldsymbol{\beta}}_{n}}{a^{2}} \quad(n \geq 0) \tag{3.20}
\end{equation*}
$$

Multiplying the weight function $\tilde{\boldsymbol{w}}(x)$ with the constant $\frac{2 L}{\pi}$ we are only changing $\tilde{\boldsymbol{\beta}}_{0}$. Finally, we have that coefficients corresponding to the:

$$
\begin{equation*}
\breve{w}(x)=\frac{2 L}{\pi} \tilde{w}(x)=\frac{\sqrt{L}}{\pi}(x+1) \sqrt{1-\left(\frac{x-L-1}{2 \sqrt{L}}\right)^{2}} \tag{3.21}
\end{equation*}
$$

are given with:

$$
\begin{align*}
& \breve{\beta_{0}}=L(L+2), \quad \breve{\beta_{n}}=\tilde{\beta}_{n}=L \frac{\psi_{n} \psi_{n+2}}{\psi_{n+1}^{2}} \quad(n \in \mathbb{N}), \tag{3.22}\\
& \breve{\alpha_{n}}=\tilde{\alpha}_{n}=-1+\frac{1}{2} \cdot \frac{\psi_{n+2}}{\psi_{n+1}}+2 L \cdot \frac{\psi_{n+1}}{\psi_{n+2}} \quad\left(n \in \mathbb{N}_{0}\right) .
\end{align*}
$$

Final transformation will be $\omega(x ; L)=\frac{\omega(x)}{x}$. If we know all about the MOPS orthogonal with respect to $\breve{w}(x)$ what can we say about the sequence $\left\{Q_{n}(x)\right\}$ orthogonal w.r.t. a weight

$$
w_{d}(x)=\frac{\breve{w}(x)}{x-d} \quad(d \notin \operatorname{support}(\breve{w})) ?
$$

In the book [5], W. Gautshi has proved that, by the auxiliary sequence:

$$
r_{-1}=-\int_{\mathbb{R}} w_{d}(x) d x, \quad r_{n}=d-\breve{\alpha}_{n}-\frac{\breve{\beta}_{n}}{r_{n-1}} \quad(n=0,1, \ldots)
$$

it can be determined:

$$
\begin{array}{ll}
\alpha_{d, 0}=\breve{\alpha}_{0}+r_{0}, & \alpha_{d, k}=\breve{\alpha}_{k}+r_{k}-r_{k-1}, \\
\beta_{d, 0}=-r_{-1}, & \beta_{d, k}=\breve{\beta}_{k-1} \frac{r_{k-1}}{r_{k-2}} \quad(k \in \mathbb{N}) .
\end{array}
$$

We need the case $d=0$. Next Lemma can be proved by induction:
Lemma 3 The parameters r_{n} have the explicit form

$$
\begin{align*}
& r_{n}=-\frac{\psi_{n+1}}{\psi_{n+2}} \cdot \frac{L \psi_{n+2}+\xi \varphi_{n+2}}{L \psi_{n+1}+\xi \varphi_{n+1}} \quad\left(n \in \mathbb{N}_{0}\right) \tag{3.23}\\
& \varphi_{n}=\left(L+2+\sqrt{L^{2}+4}\right)^{n}+\left(L+2-\sqrt{L^{2}+4}\right)^{n}, \quad \xi=\sqrt{L^{2}+4}
\end{align*}
$$

Now we have the coefficients $\beta_{n}=\beta_{0, n}$. By exchanging and using Krattenthaler formula we finally obtain:

$$
\begin{align*}
h_{n}(L) & =\beta_{0} \beta_{1} \beta_{2} \cdots \beta_{n-2} \beta_{n-1} \cdot h_{n-1}(L)=\beta_{0} \frac{r_{n-2}}{r_{-1}} \prod_{k=0}^{n-2} \breve{\beta}_{k} \cdot h_{n-1}(L) \\
& =\frac{L^{n-1}}{2} \cdot \frac{L \psi_{n}+\xi \varphi_{n}}{L \psi_{n-1}+\xi \varphi_{n-1}} \cdot h_{n-1}(L)=\frac{L^{n(n-1) / 2}}{2^{n+1} \xi} \cdot\left(L \psi_{n}+\xi \varphi_{n}\right) \\
& =\frac{L^{\left(n^{2}-n\right) / 2}}{2^{n+1} \sqrt{L^{2}+4}} \cdot \\
& \left\{\left(\sqrt{L^{2}+4}+L\right)\left(\sqrt{L^{2}+4}+L+2\right)^{n}+\left(\sqrt{L^{2}+4}-L\right)\left(L+2-\sqrt{L^{2}+4}\right)^{n}\right\} \tag{3.24}
\end{align*}
$$

References

[1] P. Barry, On Ineger Sequences Based Constructions of Generalized Pascal Triangles, Preprint, Waterford Institute of Technology, 2005.
[2] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[3] A. Cvetković, P. Rajković and M. Ivković, Catalan Numbers, the Hankel Transform and Fibonacci Numbers, Journal of Integer Sequences, 5, May 2002, Article 02.1.3.
[4] W. Gautschi, Orthogonal polynomials: applications and computations, in Acta Numerica, 1996, Cambridge University Press, 1996, pp. 45-119.
[5] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press - Oxford, 2003.
[6] C. Krattenthaler, Advanced Determinant Calculus, at http://www.mat.univie.ac.at/People/kratt/artikel/detsurv.html.
[7] J. W. Layman, The Hankel Transform and Some of its Properties, Journal of Integer Sequences, Article 01.1.5, Volume 4, 2001.
[8] P. Peart and W. J. Woan, Generating functions via Hankel and Stieltjes matrices, Journal of Integer Sequences, Article 00.2.1, Issue 2, Volume 3, 2000.
[9] P.M. Rajković, M.D. Petković, P. Barry, The Hankel Transform of the Sum of Consecutive Generalized Catalan Numbers, Journal of Integral Transforms, to appear. Available electronically at Mathematics ArXiv, 2006.
[10] W. J. Woan, Hankel Matrices and Lattice Paths, Journal of Integer Sequences, Article 01.1.2, Volume 4, 2001.
[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. Published electronically at http://www.research.att.com/~njas/sequences/
[12] R. A. Sulanke, Counting Lattice Paths by Narayana Polynomials The Electronic Journal of Combinatorics, Vol. 7(1), 2000.

Thanks for your attention!

