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Introduction

The notes on the Riemann zeta function reproduced below are informal lecture
notes from two lectures from the graduate complex variable course that I taught
20 years ago. Much of the material is cribbed from the books of Edwards and
Conway (see bibliography) and, of course, from Riemann’s 1859 paper on the
distribution of primes. The only original mathematics that I can claim is any
errors that I may have added. I have not updated the notes except to correct
errors. 1

These notes were prepared using LATEX2ε. The original notes, distributed in
February of 1976, were duplicated using hand–written ditto masters. We’ve
come a long way in desktop mathematical document preparation!

The purpose of these lectures on the zeta function was to illustrate some inter-
esting contour integral arguments in a nontrivial context and to make sure that
the students learned about the Riemann hypothesis – an important part of our
mathematical heritage and culture.

1Thanks to Mary Flahive for pointing out numerous errors.
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2 Riemann Zeta Function

The Zeta Function

If <e z ≥ 1 + ε where ε > 0 then

n∑
k=m

∣∣ k−z
∣∣ =

n∑
k=m

∣∣ k−<e z
∣∣ ≤

n∑
k=m

k−1−ε (1)

implies
∑∞

n=1 |n−z | converges uniformly on { z ∈ C | <e z ≥ 1 + ε }. Thus the
series

ζ(z) =
∞∑

n=1

n−z (2)

converges normally in the half plane H = { z ∈ C | <e z > 1 } and so defines
an analytic function ζ in H . The function ζ is called the Riemann zeta function.

Note substituting nt for t yields

Γ(z) =
∫ ∞

0

e−t tz−1 dt = nz

∫ ∞

0

e−nt tz−1 dt. (3)

Therefore

ζ(z)Γ(z) =
∞∑

n=1

∫ ∞

0

e−nt tz−1 dt (4)

for <e z > 1. Now

∞∑
n=1

e−nt =
e−t

1 − e−t
=

(
et − 1

)−1 (5)

if t > 0. If z = x + iy then

∫ ∞

0

∞∑
n=1

∣∣ e−nttz−1
∣∣ dt =

∫ ∞

0

(
et − 1

)−1
tx−1 dt. (6)

For large t we have
(
et − 1

)−1 ≈ e−t and for small t we have
(
et − 1

)−1 ≈ t−1.
It follows the integral in equation (6) converges if x > 1. Then by the Fubini–
Tonelli theorem we may interchange the order of integration in equation (4)
(where we think of the summation as an integral relative to the appropriate
measure). Thus

ζ(z)Γ(z) =
∫ ∞

0

(
et − 1

)−1
tz−1 dt (7)
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for <e z > 1. Equation (7) is the very first result derived in Riemann’s famous
8–page paper Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse,
1859.

The integral in equation (7) is badly behaved for <e z near 1 since then the
integrand behaves roughly as t−1 for small t. Riemann therefore considers a
related contour integral where we avoid the origin

I(z) =
∫

γ

(ew − 1)−1 (−w)z dw

w
. (8)

Figure 1: The contour for equation (8).

Here γ is the contour along the real axis from ∞ to δ > 0, counterclockwise
around the circle of radius δ with center at the origin, and then along the real
axis from δ to ∞. We take −w to have argument −π when we are going towards
the origin and argument π when we are going towards ∞. (Strictly speaking
we should open this contour up a little and then pass to a limit, or else view
it as lying in the appropriate Riemann surface.) The integral (8) converges
for all z and defines an entire function. Moreover, by Cauchy’s theorem it is
independent of the choice of δ > 0. Note moreover that w(ew − 1)−1 has a
removeable singularity at the origin and so by Cauchy’s theorem

I(k) = 0 for k = 2, 3, 4, · · · (9)

(since when z is an integer, the integrals along the real axis in (8) cancel and
so we may regard γ as just the circle of radius δ).
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Now

I(z) =
∫ δ

∞

(
et − 1

)−1
ez(log(t)−iπ) dt

t

+
∫
|w |=δ

(ew − 1)−1 (−w)z dw

w

+
∫ ∞

δ

(
et − 1

)−1
ez(log(t)+iπ) dt

t
.

(10)

We cannot use the Cauchy formula to evaluate the middle integral in (10), but
with w = δeiθ we have dw

w = i dθ and so since w(ew − 1)−1 has a removeable
singularity at the origin we see the integral is bounded by C δ<e z−1. In partic-
ular the integral goes to 0 as δ → 0 provided that <e z > 1. Thus letting δ → 0
we obtain

I(z) =
(
eπiz − e−πiz

) ∫ ∞

0

(
et − 1

)−1
tz−1 dt

= 2i sin(πz) ζ(z) Γ(z) if <e z > 1.

(11)

Recalling the functional equation for the gamma function

Γ(1 − z) Γ(z) =
π

sin(πz)
, (12)

we obtain

ζ(z) =
Γ(1 − z)

2πi
I(z). (13)

Now equation (13) has been proved for <e z > 1, but the right side is analytic
in the whole plane, except that Γ(1− z) has simple poles at z = 1, 2, 3, · · · . On
the other hand I(z) has zeros at z = 2, 3, · · · . Thus ζ(z) is actually analytic in
C ∼ {1}. At z = 1 there is at worst a simple pole. We see the pole is actually
there by computing the residue

lim
z→1

(z − 1)Γ(1 − z)
2πi

I(z) = − 1
2πi

I(1)

= − 1
2πi

∫
|w |=δ

(ew − 1)−1 dw

w

= − lim
w→0

(ew − 1)−1 (−w)

= 1.

(14)

We have shown

Theorem 1. The zeta function ζ continues analytically to a meromorphic func-
tion in C with a simple pole at z = 1. The residue at the pole is 1.
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Riemann now goes on to deduce the functional equation for the zeta function,
but first he remarks that ζ vanishes at the negative even integers. This fact
may be seen as follows: if n ≥ 0 is an integer then

ζ(−n) =
n!
2πi

I(−n) (15)

where (by the parenthetical remark following equation (9))

I(−n) =
∫

γ

(ew − 1)−1 (−w)−n dw

w

= (−1)n

∫
|w |=δ

w

ew − 1
dw

wn+2

(16)

Now w (ew − 1)−1 is analytic in a neighborhood of the origin. Thus

w

ew − 1
=

∞∑
n=0

1
n!

Bn wn (17)

for |w | < 2π. The numbers Bn defined by equation (17) are called the Bernoulli
numbers (though there is some disagreement on how these numbers should be
defined). Since

w

ew − 1
+

w

2
(18)

is an even function we see that B1 = −1/2 and the other odd Bernoulli numbers
all vanish. We can easily compute the even ones: for example

B2 =
1
6

B4 =
−1
30

B6 =
1
42

B8 =
−1
30

.

(19)

Now by Cauchy’s integral formula we have

(n + 1)!
2πi

∫
|w |=δ

w

ew − 1
dw

wn+2
= Bn+1 (20)

and therefore

ζ(−n) = (−1)n Bn+1

n + 1
(21)

for each integer n ≥ 0. It follows

ζ(−2) = ζ(−4) = ζ(−6) = · · · = 0.

These roots are called the trivial zeros of the zeta function. The remaining roots
are called the nontrivial zeros or critical roots of the zeta function.
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The Functional Equation

Figure 2: The contour for equation (22).

Let γn be the contour consisting of two circles centered at the origin and a
radius segment along the positive reals. The outer circle has radius (2n + 1)π
and the innner circle has radius δ < π. The outer circle is traversed clockwise
and the inner one counterclockwise. The radial segment is traversed in both
directions. We make the same conventions concerning the argument of −w as
above. If we open the contour a little bit along the real axis we can employ the
residue theorem, and then pass to a limit, to obtain

− 1
2πi

∫
γn

(ew − 1)−1 (−w)z

w
dw

=
∑

k=−n···n,k 6=0

Res

(
(ew − 1)−1 (−w)z

w
, w = 2πik

)

= −
n∑

k=1

(
(2πik)z−1 + (−2πik)z−1

)
.

(22)
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Since

i
z−1 + (−i)z−1 =

1
i

(
ez log(i) − ez log(−i)

)

=
1
i

(
e

zπi

2 − e−
zπi

2

)

= 2 sin
(πz

2

)
,

(23)

we obtain

1
2πi

∫
γn

(ew − 1)−1 (−w)z

w
dw = 2(2π)z−1 sin

(πz

2

) n∑
k=1

kz−1. (24)

Now on the circle |w | = (2n+1)π we have | (ez − 1) | is bounded independently
of n and we have | (−w)z/w | ≤ |w |<e z−1. Thus if <e z < 0 the integral over
the large circle tends to 0 as n → ∞. It follows that

1
2πi

∫
γ

(ew − 1)−1 (−w)z

w
dw = 2(2π)z−1 sin

(πz

2

) ∞∑
n=1

nz−1. (25)

By equation (13) it now follows that

ζ(z) = 2(2π)z−1 sin
(πz

2

)
Γ(1 − z) ζ(1 − z) (26)

for <e z < 0. By uniqueness of analytic continuation equation (26) is valid for
all z 6= 1. Note ζ(1 − z) has a simple pole at z = 0 and roots at the positive
odd integers greater than 1, Γ(1 − z) has simple poles at the positive integers,
and sin(πz/2) has roots at the even integers. Thus we see explicitly that all the
singularities on the right side of equation (26), except z = 1, are removeable.

Equation (26) is Riemann’s functional equation for the zeta function. Riemann
gives a second proof of the functional equation. Since he is otherwise economical
in the extreme, this duplication is something of a mystery. Edwards comments
on this mystery in a footnote in section 1.6 in his book (see bibliography).

The Zeros of the Zeta Function

Riemann’s paper starts by quoting the following result of Euler:

ζ(z) =
∞∏

n=1

(
1 − p−z

n

)−1 (27)
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if <e z > 1. Here p1, p2, p3, · · · is the sequence of prime numbers. To prove this
result note that

(
1 − p−z

n

)−1 =
∞∑

m=0

p−mz
n (28)

(geometric series) and therefore

N∏
k=1

(
1 − p−z

k

)−1
=

∞∑
j=1

n−z
N,j (29)

where the integers nN,1, nN,2, nN,3, · · · are all the integers that can be factored
as a product of powers of the primes p1, p2, · · · , pN . Letting N → ∞ we obtain
equation (27).

Since the product (27) contains no zero factors we see

ζ(z) 6= 0 if <e z > 1. (30)

Suppose now that ζ(z) = 0 and <e z < 0. Since ζ(1 − z) 6= 0 the functional
equation (26) implies

Γ(1 − z) sin
(πz

2

)
= 0. (31)

Since Γ has no roots we have z = 2k where k < 0 is an integer, that is, z is a
trivial zero. The strip { z ∈ C | 0 ≤ <e z ≤ 1 } is called the critical strip. We
have seen that all the nontrivial roots of ζ lie in the critical strip.

Suppose now z is in the critical strip and ζ(z) = 0. Since sin(πz/2) 6= 0 we see
that ζ(1− z) = 0. That is, the nontrivial roots (or critical roots) are symmetric
with respect to the critical line <e z = 1

2 . Note also, since ζ(z) is real for real
z, it is trivial that the roots of the zeta function are symmetric with respect to
the real axis.

For his study of the distribution of primes Riemann needs to estimate the num-
bers of roots of the zeta function in a box in the critical strip symmetric about
the critical line. He obtains such an estimate (finally proved in 1905 by van
Mangoldt) and then remarks that the number of zeros on the critical line in the
box is about the same (no one has ever proved this statement). He then goes
on to say that it is “very likely” that all the roots in the critical strip lie on the
critical line. This statement is the Riemann hypothesis. Riemann goes on to
say:
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“One would of course like to have a rigorous proof of this, but I
have put aside the search for a such a proof after some fleeting vain
attempts because it is not necessary for the immediate objective of
my investigation.” (This translation is from Edward’s book.)

Now, 117 years later, after a great deal of effort by many mathematicians, there
is still no compelling reason to believe or to disbelieve the Riemann hypothesis.

Hardy in 1914 proved that ζ has an infinite number of roots on the critical line.
Also in 1914 Bohr and Landau proved that in a certain sense “most” of the
critical roots lie on the critical line. That is, if δ > 0 then

lim
T→∞

(
number of roots z with 0 ≤ =m z ≤ T, δ + 1/2 ≤ <e z ≤ 1

number of roots z with 0 ≤ =m z ≤ T, 0 ≤ <e z ≤ 1

)
= 0.

(32)

In 1921 Hardy and Littlewood showed that the number of roots on the imaginary
segment [ 1/2 , 1/2 + iT ] is at least KT for all large T , for some constant K. In
1942 Selberg showed the number of roots on this segment is a least KT log(T )
for all large T . Selberg’s work implies that a positive fraction (in an appropriate
sense) of the critical roots lie on the critical line.

The MIT Mathematics Department Alumni Newsletter in February 1975 an-
nounced that N. Levinson had proved at least 1/3 of of the critical roots lie on
the critical line. During 1975 I heard a rumor that Levinson had improved his
estimate to at least 98 per cent. On October 10, 1975, Levinson died.

Rosser, Yohe and Schoenfeld in 1968 showed that for a certain T0 the zeta func-
tion has 3,500,000 roots in the box { z ∈ C | 0 ≤ =m z ≤ T0, 0 ≤ <e z ≤ 1 }
and that all these roots are simple and lie on the critical line. Lehman in 1966
had obtained the same result, but just for the first 250,000 roots. It turns out
that certain behavior observed during the calculations may imply that eventu-
ally a few critical roots, not on the critical line, will be found. No one really
knows.

Stieltjes and Hadamard

From the Euler product formula we have

1
ζ(z)

=
∞∏

n=1

(
1 − p−z

n

)
(33)
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for <e z > 1. It follows that

1
ζ(z)

=
∞∑

n=1

µ(n)
nz

(34)

where

µ(n) =




+1 if n = 1
+1 if n is the product of an even

number of distinct primes
−1 if n is the product of an odd

number of distinct primes
0 otherwise.

(35)

Since ζ has a pole at 1, 1/ζ has a root at 1. It turns out that the series (34)
actually converges for z = 1 (van Mangoldt 1897, de la Vallée Poussin 1899).
Thus we obtain Euler’s curious formula (1748)

0 = 1 − 1
2
− 1

3
− 1

5
+

1
6
− 1

7
+

1
10

− 1
11

− 1
13

+
1
14

+
1
15

− 1
17

· · · (36)

Let M be the step function defined by M(0) = 0, M piecewise constant, M has
a jump µ(n) at n, and M is equal to the average of its left and right limits at
each jump. Then

1
ζ(z)

=
∫ ∞

0

x−z dM(x) = z

∫ ∞

0

M(x)x−z−1 dx (37)

for <e z > 1.

If M grows less rapidly than xα for some α > 0 then the second integral above
will converge absolutely for <e z > α. Then, by uniqueness of analytic contin-
uation, we can conclude that ζ has no roots in { z ∈ C | <e z > α }. In 1912
Littlewood proved the converse and therefore:

Theorem 2. The Riemann hypothesis is true if and only if for each ε > 0 we
have

lim
x→∞ M(x)x−1/2−ε = 0. (38)

In 1885 Stieltjes wrote to Hermite that he had proved that M(x)x−1/2 is
bounded for large x and that therefore the Riemann hypothesis is true. Stielt-
jes, however, was unable to recall his proof in later years. Hadamard in 1896
published a paper on the zeta function in which he shows that ζ has no roots on
the line <e z = 1. He says that he is publishing his proof only because Stieltjes’
proof that there are no zeros in <e z > 1/2 has not yet been published.
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Stieltjes avait démontré, en conformément aux prévisions de Rie-
mann, que ces zéros sont tous de la forme 1

2 + ti (le nombre t étant
réel); mais sa démonstration n’a jamais été publiée, et il n’a même
pas été établi que la fonction ζ n’ait pas de zéros sur la droite
<e (s) = 1.

C’est cette dernière conclusion que je me propose de démontrer.

It now seems likely that Stieltjes had in fact made an error.

Odds and Ends. Euler Relation

If we form the Dirichlet product we have

ζ(z)2 =
∞∑

n=1

d(n)
nz

(39)

where d(n) is the number of divisors of n.

We have similar series involving sums of divisors of n or the number of positive
integers less than n relatively prime to n. See for example Conway’s book.

Note

2
∞∑

n=1

1
(2n)z

= 21−z ζ(z) (40)

and therefore

(
1 − 21−z

)
ζ(z) =

∞∑
n=1

(−1)n+1

nz
. (41)

Thus we have

ζ(z) =
(
1 − 21−z

)−1
∞∑

n=1

(−1)n+1

nz
(42)

where the series converges uniformly, but not absolutely, for <e z ≥ δ for any
δ > 0. Equation (42) therefore yields a representation of ζ(z) valid for <e z > 0.
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The equation (4) can be analytically continued explicitly to obtain

ζ(z) =
1

Γ(z)

∫ ∞

0

(
1

et − 1
− 1

t

)
tz−1 dt if 0 < <e z < 1

=
1

Γ(z)

∫ ∞

0

(
1

et − 1
− 1

t
+

1
2

)
tz−1 dt if − 1 < <e z < 0

(43)

These representations are useful for dealing with ζ(z) and ζ(1 − z) for z in the
critical strip.

If n ≥ 0 is an integer then

ζ(−(2n − 1)) = (−1)2n−1 B2n

2n
(44)

by equation (15). By the functional equation (26)

ζ(−(2n − 1)) = 2(2π)−2n Γ(2n) (−1)nζ(2n). (45)

Thus we obtain the Euler relation

ζ(2n) =
(2π)2n(−1)n+1B2n

2(2n)!
. (46)

Taking n = 1, 2, · · · we obtain familiar expressions

∞∑
n=1

1
n2

=
π2

6

∞∑
n=1

1
n4

=
π4

90

and so on.
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