DISCRETE
APPLIED
MATHEMATICS

A divisibility property for a subgroup of Riordan matrices

Paul Peart*, Wen-jin Woan
Department of Mathematics, Howard University, Washington, DC 20059, USA

Received 11 June 1997; revised 1 March 1998; accepted 8 March 1999

Abstract

We identify a subgroup of Riordan matrices whose entries share the well-known divisibility property displayed by the entries of the Pascal matrix. We also establish a one-to-one correspondence between the matrices of the subgroup and sets of weighted lattice walks. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Riordan matrix; Generating function; Weighted lattice walk; Catalan numbers; Ballot numbers; Lagrange inversion

1. Introduction

It is a well-known fact that given the Pascal triangular array, $\left(a_{n k}\right)_{n \geqslant k \geqslant 0}=\left(\binom{n}{k}\right)_{n \geqslant k \geqslant 0}$, and a prime p, that p divides $a_{p k}$ for $k=1,2, \ldots, p-1$. In this paper, we generalize this result to a large set of important combinatorial triangular arrays. These triangular arrays form a subgroup of a group called the Riordan group. We describe the Riordan group sufficiently to keep this paper self-contained, but see [2-5] for many more examples and applications. The Riordan group is a set of infinite lower triangle matrices defined so that each matrix has columns generated as follows: The generating function for the elements of the first column (zeroth column) has the form $g(x)=1+g_{1} x+g_{2} x^{2}+\cdots$, and the generating function for the i th column has the form $g(x)[f(x)]^{i}, i \geqslant 1$, where $f(x)=x+f_{2} x^{2}+f_{3} x^{3}+\cdots$. The coefficients f_{i} and g_{i} are integers for all i. We often denote a Riordan matrix by $(g(x), f(x))$. The set of all Riordan matrices forms a group under matrix multiplication. See Section 3 for a brief description of the group properties.

In this paper we are concerned with a subgroup H of the Riordan group with the elements of H having the form $\left(x f^{\prime}(x) / f(x), f(x)\right)$. It is easy to verify that the Pascal triangle $(1 /(1-x), x /(1-x))$ belongs to the subgroup H. Like the Pascal matrix, the

[^0]entries of each matrix in the subgroup H exhibit a divisibility property defined as follows.

Definition. A subset of Riordan matrices is said to have the "divisibility property" if each matrix $\left(m_{n k}\right)_{n, k \geqslant 0}$ of the subset satisfies the property that n divides $k \cdot m_{n k}$ whenever $0<k<n$.

Example 1.1. As an illustration of this divisibility property, consider the element of the subgroup with $g(x)=1 / \sqrt{\left(1-2 x-3 x^{2}\right)}$, and $f(x)=\left(1-x-\sqrt{1-2 x-3 x^{2}}\right) / 2 x$. The entries in the first eight rows and first eight columns are given by
$\left[\begin{array}{cccccccc}1 & & & & & & & \\ 1 & 1 & & & & & & \\ 3 & \mathbf{2} & 1 & & & & & \\ 7 & \mathbf{6} & \mathbf{3} & 1 & & & & \\ 19 & 16 & 10 & 4 & 1 & & & \\ 51 & \mathbf{4 5} & \mathbf{3 0} & \mathbf{1 5} & \mathbf{5} & 1 & & \\ 141 & 126 & 90 & 50 & 21 & 6 & 1 & \\ 393 & \mathbf{3 5 7} & \mathbf{2 6 6} & \mathbf{1 6 1} & \mathbf{7 7} & \mathbf{2 8} & \mathbf{7} & 1\end{array}\right]$.

The rows and columns are numbered starting with 0 , so that the first row is the zeroth row, the second is row 1 , and so on. Now, observe that the bold-faced entries in the p th row are divisible by p, where p is a prime. In Section 2, we give more details and prove the divisibility property of the subgroup H. In Section 3, we prove that H is a subgroup of the Riordan group.

There is a very interesting connection between the elements of the subgroup H and certain weighted lattice walks. In Section 4, we describe this connection.

2. Divisibility property of the subgroup \boldsymbol{H}

The following theorem establishes the divisibility property of the subgroup H.

Theorem 2.1. Let $M=\left(m_{n k}\right)_{n, k \geqslant 0}=\left(x f^{\prime}(x) / f(x), f(x)\right)$. Then n divides $k \cdot m_{n k}$ for all $0<k<n$.

Proof. The generating function for the k th column of M is given by

$$
c_{k}(x)=\sum_{n \geqslant 0} m_{n k} x^{n}=x f^{\prime}(x)[f(x)]^{k-1}=x\left(\frac{[f(x)]^{k}}{k}\right)^{\prime} .
$$

Therefore, $k m_{n k}=$ coefficient of x^{n} in $x\left((f(x))^{k}\right)^{\prime}=$ coefficient of x^{n} in $x\left(\sum_{n \geqslant 0} d_{n k} x^{n}\right)^{\prime}$, where $d_{n k}$ is the coefficient of x^{n} in $(f(x))^{k}$. Therefore, $k m_{n k}=n d_{n k}$.

Corollary 2.1. If p is a prime, then p divides $m_{p k}$ for $0<k<p$.

There is an interesting generalization of Theorem 2.1. We can establish a divisibility property for a larger subset of the Riordan group.

Theorem 2.2. Let $M=\left(x h(f(x)) f^{\prime}(x) / f(x), f(x)\right)=\left(m_{n k}\right)_{n, k \geqslant 0}$, where $h(x)$ is a polynomial of degree l with integer coefficients and constant term 1 . Then n divides $k(k+1) \ldots(k+l) \cdot m_{n k}$ for $0<k<n-l$.

Proof. Let $h(x)=1+h_{1} x+\cdots+h_{l} x^{l}$. Then

$$
\begin{aligned}
c_{k}(x) & =\sum_{n \geqslant 0} m_{n k} x^{n}=x h(f(x)) f^{\prime}(x)[f(x)]^{k-1} \\
& =x\left(f^{\prime}(x)[f(x)]^{k-1}+h_{1} f^{\prime}(x)[f(x)]^{k}+\cdots+h_{l} f^{\prime}(x)[f(x)]^{l+k-1}\right) \\
& =x\left(\frac{[f(x)]^{k}}{k}+\frac{h_{1}[f(x)]^{k+1}}{k+1}+\cdots+\frac{h_{l}[f(x)]^{k+l}}{k+l}\right)^{\prime} .
\end{aligned}
$$

Therefore,

$$
k(k+1) \ldots(k+l) \sum_{n \geqslant 0} m_{n k} x^{n}=x\left(\sum_{n \geqslant 0} b_{n}\left(k, h_{1}, \ldots, h_{l}\right) \cdot x^{n}\right)^{\prime},
$$

where $b_{n}\left(k, h_{1}, \ldots, h_{l}\right)$ is an integer depending on k, h_{1}, \ldots, h_{l}. Equating coefficients, we get

$$
k(k+1) \ldots(k+l) \cdot m_{n k}=n \cdot b_{n}\left(k, h_{1}, \ldots, h_{l}\right) .
$$

Corollary 2.2. If p is a prime, then p divides $m_{p k}$ for $0<k<p-l$. Example 5.3 in Section 5 is an illustration of Corollary 2.2.

3. Riordan group and subgroup properties

Here, we give a brief description of the Riordan group. A more detailed description together with examples can be found in [3]. The set of all Riordan matrices defined in Section 1 forms a group under ordinary matrix multiplication *. The product is given by

$$
(g(x), f(x)) *(h(x), l(x))=(g(x) h(f(x)), l(f(x)))
$$

The identity is $(1, x)$. The inverse of $(g(x), f(x))$ is $(1 / g(\bar{f}), \bar{f})$, where \bar{f} is the compositional inverse of f.

To see that the members of the group with the form $\left(x f^{\prime}(x) / f(x), f(x)\right)$ belong to a subgroup denoted by H, note the following:
(i) The identity

$$
(1, x)=\left(\frac{x(x)^{\prime}}{x}, x\right) \in H .
$$

(ii) The product

$$
\begin{aligned}
\left(\frac{x f^{\prime}(x)}{f(x)}, f(x)\right) *\left(\frac{x h^{\prime}(x)}{h(x)}, h(x)\right) & =\left(\frac{x f^{\prime}(x)}{f(x)} \cdot \frac{f(x) h^{\prime}(f(x))}{h(f(x))}, h(f(x))\right) \\
& =\left(\frac{x(h(f(x)))^{\prime}}{h(f(x))}, h(f(x))\right) \in H .
\end{aligned}
$$

(iii) The inverse of $\left(x f^{\prime}(x) / f(x), f(x)\right)$ is

$$
\left(\frac{1}{\bar{f}(x) \cdot \frac{f^{\prime}(\bar{f}(x))}{f(\bar{f}(x))}}, \bar{f}(x)\right)=\left(x \cdot \frac{(\bar{f})^{\prime}(x)}{\bar{f}(x)}, \bar{f}(x)\right) \in H
$$

4. Lattice walks and the divisibility property

In this section, we will show that certain weighted lattice walks lead to a Riordan matrix in the subgroup H. Recall that the matrices in H have the divisibility property defined in Section 1. Conversely, we show that a Riordan matrix in the subgroup H corresponds to a given set of lattice walks.

In general, consider a lattice walk that starts at the origin $(0,0)$ and ends at (n, k) and has the form

$$
(0,0) \rightarrow\left(1, k_{1}\right) \rightarrow\left(2, k_{2}\right) \rightarrow \cdots \rightarrow\left(n-1, k_{n-1}\right) \rightarrow(n, k)
$$

The step $\left(i, k_{i}\right) \rightarrow\left(i+1, k_{i+1}\right)$ is assigned the weight $w_{k_{i+1}-k_{i}}$. The weight of a walk is the product of the weights of its steps. For example, the walk $(0,0) \rightarrow(1,1) \rightarrow$ $(2,1) \rightarrow(3,2)$ has weight $w_{1} w_{0} w_{1}$, while the walk $(0,0) \rightarrow(1,-1) \rightarrow(2,-1) \rightarrow$ $(3,-1) \rightarrow(4,-5)$ has weight $w_{-1} w_{0} w_{0} w_{-4}$.

In this work, the step weights that we consider are integers and satisfy $w_{1}=1$, and $w_{-i}=0$ for $i \leqslant 2$. Let $a_{n k}$ be the sum of the weights of all walks starting at $(0,0)$ and ending at (n, k). Also let $b_{n k}$ be the sum of the weights of all walks from $(0,0)$ to (n, k) with each lattice point having positive second coordinate except the origin.

Example 4.1. Suppose $w_{k}=1$ for all $k \leqslant 1$ and $w_{k}=0$ for $k \geqslant 2$, then some values of $a_{n k}$ are given by

$n \backslash k$	-5	-4	-3	-2	-1	0	1	2	3	4	5
0	0	0	0	0	0	1	0	0	0	0	0
1	1	1	1	1	1	1	1	0	0	0	0
2	8	7	6	5	4	3	2	1	0	0	0
3	45	36	28	21	15	10	6	3	1	0	0
4	220	165	120	84	56	35	20	10	4	1	0

The right-half of this array $\left(a_{n k}\right)_{n \geqslant k \geqslant 0}$ is the Riordan matrix with the divisibility property which corresponds to the set of lattice walks. In the representation $(g(x), f(x))$
of this Riordan matrix, we have from Theorem 4.1 that $f(x)$ is given by $f(x)=$ $x a(f(x))=x \cdot \sum_{k \geqslant-1} w_{-k}(f(x))^{k+1}=x /(1-f(x))$. So, we get $f(x)=(1-\sqrt{1-4 x}) / 2$ and $g(x)=x f^{\prime}(x) / f(x)=2 x /(4 x-1+\sqrt{1-4 x})$.

The matrix $\left(b_{n k}\right)_{n \geqslant k \geqslant 0}$ comes out as

$$
\left[\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & . \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & . \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & . \\
0 & 2 & 2 & 1 & 0 & 0 & 0 & . \\
0 & 5 & 5 & 3 & 1 & 0 & 0 & . \\
0 & 14 & 14 & 9 & 4 & 1 & 0 & . \\
0 & 42 & 42 & 28 & 14 & 5 & 1 & . \\
. & . & . & . & . & . & . & .
\end{array}\right] .
$$

The entries of this matrix are the ballot numbers (see for example [6]), and $f(x)=$ $\sum_{n \geqslant 0} b_{n 1} x^{n}=x C(x)$, where $C(x)=1+x+2 x^{2}+5 x^{3}+\cdots$ is the generating function for the Catalan numbers. Therefore, in the general case, $f(x)$ can be regarded as a generalized Catalan generating function and $\left(b_{n k}\right)_{n \geqslant k \geqslant 0}$ contains generalized ballot numbers.

We now proceed to examine the general case with step weights w_{-i}, where $w_{1}=$ $1, w_{-i}=0$ for $i \leqslant-2$. We will use the Lagrange inversion formula as stated in [7].

Theorem 4.1. Let $a(x)=\sum_{k \geqslant-1} w_{-k} x^{k+1}$ be the generating function for the weights, $g(x)=\sum_{n \geqslant 0} a_{n 0} x^{n}$ the generating function for the zeroth column of $\left(a_{n k}\right)_{n \geqslant k \geqslant 0}$, and $f(x)=\sum_{n \geqslant 0} b_{n 1} x^{n}$ the generating function for column 1 of $\left(b_{n k}\right)_{n \geqslant k \geqslant 0}$. Then
(i) $\sum_{k \leqslant n} a_{n k} x^{n-k}=(a(x))^{n} \quad$ for $n \geqslant 1$,
(ii) $\sum_{n \geqslant 0} a_{n k} x^{n}=\left(\sum_{n \geqslant 0} a_{n, k-1} x^{n}\right) f(x) \quad$ for $k \geqslant 1$,
(iii) $\sum_{n \geqslant 0} b_{n k} x^{n}=(f(x))^{k} \quad$ for $k \geqslant 1$,
(iv) $f(x)=x a(f(x))$,
(v) $b_{n k}=\frac{k}{n} a_{n k}$ for $n \geqslant k>0$,
(vi) $g(x)=\frac{x f^{\prime}(x)}{f(x)}$.

So, given the step weights, we obtain the Riordan matrix $(g(x), f(x))$ in the subgroup H from $f(x)=x a(f(x))$ and $g(x)=x f^{\prime}(x) / f(x)$. Conversely, if we start with the Riordan matrix $(g(x), f(x))$, where $g(x)=x f^{\prime}(x) / f(x)$, we produce the lattice walk step weights w_{-k} from $w_{-k}=\left[x^{k+1}\right]\{a(x)\}$ where $a(x)$ is given by $f(x)=$ $x a(f(x))$.

Proof. (i): Note that

$$
a_{1 k}=w_{k} \quad \text { and } \quad a_{n k}=\sum_{l=-1}^{n-k-1} w_{-l} a_{n-1, l+k}=\sum_{l} w_{1-l} a_{n-1, l-1+k} .
$$

Therefore, by induction on n, we get $\sum_{k} a_{n, n-k} x^{k}=(a(x))^{n}$.

So, $\sum_{k} a_{n k} x^{n-k}=(a(x))^{n}$.
(ii):

$$
\begin{aligned}
a_{n k}=\sum_{m=0}^{n} a_{m, k-1} \cdot & {[\text { sum of weights of walks from }(m, k-1) t o(n, k)} \\
& \text { with each lattice point having second coordinate } \\
& \text { greater than } k-1 \text { except }(m, k-1)] \\
= & \sum_{m=0}^{n} a_{m, k-1} b_{n-m, 1}=\left[x^{n}\right]\left\{\left(\sum_{l \geqslant 0} a_{l, k-1} x^{l}\right)\left(\sum_{l \geqslant 0} b_{l 1} x^{l}\right)\right\} .
\end{aligned}
$$

(iii): For $k \geqslant 2$, we have $b_{n k}=\sum_{m=0}^{n} b_{m, k-1} b_{n-m, 1}$. Therefore, $\sum_{n \geqslant 0} b_{n k} x^{n}=f(x)$. $\sum_{n \geqslant 0} b_{n, k-1} x^{n}$. Induction on k then gives (iii).
(iv): For $n \geqslant 1$, we have

$$
\begin{aligned}
{\left[x^{n}\right]\{a(f(x))\} } & =w_{0}\left[x^{n}\right]\{f(x)\}+w_{-1}\left[x^{n}\right]\left\{(f(x))^{2}\right\}+\cdots+w_{1-n}\left[x^{n}\right]\left\{(f(x))^{n}\right\} \\
& =w_{0} b_{n 1}+w_{-1} b_{n 2}+\cdots+w_{1-n} b_{n n}=b_{n+1,1}=\left[x^{n+1}\right]\{f(x)\} .
\end{aligned}
$$

(v): Applying the Lagrange inversion formula to (iv), and using (i) and (ii), we obtain

$$
\left[x^{n}\right]\left\{(f(x))^{k}\right\}=\frac{1}{n}\left[x^{n-1}\right]\left\{k x^{k-1} \cdot(a(x))^{n}\right\}=\frac{k}{n} a_{n k} .
$$

Therefore, $b_{n k}=(k / n) a_{n k}$.
(vi): From (v), $n b_{n 1}=a_{n 1}$. Then, using (ii), we get $\sum_{n \geqslant 1} n b_{n 1} x^{n}=\sum_{n \geqslant 1} a_{n 1} x^{n}=$ $f(x) \cdot \sum_{n \geqslant 0} a_{n 0} x^{n}$.

That is, $x f^{\prime}(x)=f(x) g(x)$.

Example 4.2. As a second example in this section, consider the lattice walks with step weights $w_{-1}=1, w_{0}=1, w_{1}=1, w_{-i}=0$ for all $i \leqslant 2$.

We have $f=x\left(1+f+f^{2}\right)=\left(1-x-\sqrt{1-2 x-3 x^{2}}\right) / 2 x$, and $g=\frac{x f^{\prime}}{f}=x(\ln f)^{\prime}=$ $1 /\left(\sqrt{1-2 x-3 x^{2}}\right)$. The entries in the first eight columns and the first eight rows of the Riordan matrix are given in Example 1.1. Observe the divisibility property that for $0<k<n$, n divides $k \cdot m_{n k}$. In the first column $k=0$, and $m_{n k}$ represents the sum of the weights of all walks from $(0,0)$ to $(n, 0)$. The entry $m_{7,2}=266$ is the sum of the weights of all paths of length 7 from $(0,0)$ to $(7,2)$. The first column contains the central trinomial coefficients. The weight of each walk is 1 . Therefore, the central trinomial coefficients count the number of walks of length n from $(0,0)$ to $(n, 0)$. The central trinomial coefficients also count the number of king walks down a chess board.

5. Further examples

In each of the following examples, the bold-faced entries in the p th row of the matrix are divisible by p.

Consider the lattice walks with step weights $w_{1}=1, w_{0}=a, w_{-1}=b, w_{-i}=0$ for all $i \geqslant 2$, where a and b are positive integers. For the Riordan matrix

$$
f(x)=\frac{1-a x-\sqrt{\left(a^{2}-4 b\right) x^{2}-2 a x+1}}{2 b x}
$$

and

$$
g(x)=\frac{x f^{\prime}(x)}{f(x)}=\frac{1}{\sqrt{\left(a^{2}-4 b\right) x^{2}-2 a x+1}} .
$$

Example 5.1. With $a=2, b=1$, we obtain $(g(x), f(x))=(1 /(\sqrt{1-4 x}),(1-2 x$ $-\sqrt{1-4 x}) / 2 x$). The first eight rows of this matrix are given by
$\left[\begin{array}{cccccccc}1 & & & & & & & \\ 2 & 1 & & & & & & \\ 6 & \mathbf{4} & 1 & & & & & \\ 20 & \mathbf{1 5} & \mathbf{6} & 1 & & & & \\ 70 & 56 & 28 & 8 & 1 & & & \\ 252 & \mathbf{2 1 0} & \mathbf{1 2 0} & \mathbf{4 5} & \mathbf{1 0} & 1 & & \\ 924 & 792 & 495 & 220 & 66 & 12 & 1 & \\ 3432 & \mathbf{3 0 0 3} & \mathbf{2 0 0 2} & \mathbf{1 0 0 1} & \mathbf{3 6 4} & \mathbf{9 1} & \mathbf{1 4} & 1\end{array}\right]$.

Here $g(x)$ is the generating function for the central binomial coefficients. Therefore the total weight of all walks of length n from $(0,0)$ to $(n, 0)$ is $\binom{2 n}{n}$.

Example 5.2. With $a=3, b=2$, we get the lattice walks with step weights $w_{-1}=$ $2, w_{0}=3, w_{1}=1, w_{i}=0$, otherwise. Then

$$
(g(x), f(x))=\left(\frac{1}{\sqrt{x^{2}-6 x+1}}, \frac{1-3 x-\sqrt{x^{2}-6 x+1}}{4 x}\right) .
$$

The entries in the first eight rows and eight columns of this matrix are given by

$$
\left[\begin{array}{cccccccc}
1 & & & & & & & \\
3 & 1 & & & & & & \\
13 & \mathbf{6} & 1 & & & & & \\
63 & \mathbf{3 3} & \mathbf{9} & 1 & & & & \\
321 & 180 & 62 & 12 & 1 & & & \\
1683 & \mathbf{9 8 5} & \mathbf{3 9 0} & \mathbf{1 0 0} & \mathbf{1 5} & 1 & & \\
8989 & 5418 & 2355 & 720 & 147 & 18 & 1 & \\
48639 & \mathbf{2 9 9 5 3} & \mathbf{1 3 9 2 3} & \mathbf{4 8 0 9} & \mathbf{1 1 9 7} & \mathbf{2 0 3} & \mathbf{2 1} & 1
\end{array}\right] .
$$

The numbers in the first column give the number of walks from $(0,0)$ to (n, n) using steps $\{(0,1),(1,0),(1,1)\}$. Details can be found in [1, p. 81].

Example 5.3. This example is an illustration of Theorem 2.2 and Corollary 2.2. Let $h(x)=1+2 x+x^{2}$. Take $f(x)=\left(1-x-\sqrt{1-2 x-3 x^{2}}\right) / 2 x$ as in Example 1.1. Then the entries in the first eight rows and first eight columns of $M=\left(x h(f(x)) f^{\prime}(x) / f(x), f(x)\right)$ are given by
$\left[\begin{array}{cccccccc}1 & & & & & & & \\ 3 & 1 & & & & & & \\ 8 & 4 & 1 & & & & & \\ 22 & 13 & 5 & 1 & & & & \\ 61 & 40 & 19 & 6 & 1 & & & \\ 171 & \mathbf{1 2 0} & \mathbf{6 5} & 26 & 7 & 1 & & \\ 483 & 356 & 211 & 98 & 34 & 8 & 1 & \\ 1373 & \mathbf{1 0 5 0} & \mathbf{6 6 5} & \mathbf{3 4 3} & \mathbf{1 4 0} & 43 & 9 & 1\end{array}\right]$.

The bold-faced entries in the p th row are divisible by p.
In the general case, we have an interpretation of $M=\left(x h(f(x)) f^{\prime}(x) / f(x), f(x)\right)$ in terms of two-stage weighted lattice walks. For the first step of the walk, we use the weights $w_{-m}=h_{m+1}$ for $m=-1,0, \ldots, l-1 ; w_{-m}=0$, otherwise, where $h(x)=$ $1+h_{1} x+\cdots+h_{l} x^{l}$. For all other steps we use the weights $w_{-k}=\left[x^{k+1}\right]\{a(x)\}$, for $k \geqslant-1$, where $a(x)$ is given by $f(x)=x a(f(x))$. Now if $\tilde{m}_{n k}=$ sum of the weights of all such two-stage lattice walks starting at $(0,0)$ and ending at $(n, k), n \geqslant k \geqslant 0$, then $\left(\tilde{m}_{i j}\right)_{i, j \geqslant 0}=(G(x), f(x))$, where $G(x) f(x) / x=x h(f(x)) f^{\prime}(x) / f(x)$. In other words, the Riordan matrix $\left(x h(f(x)) f^{\prime}(x) / f(x), f(x)\right)=\left(m_{n k}\right)_{n, k \geqslant 0}$, can be obtained from $\left(\tilde{m}_{n k}\right)_{n, k \geqslant 0}$ by deleting the zeroth column. This means that $m_{n k}=\tilde{m}_{n+1, k+1}=$ sum of the weights of the two stage lattice walks from $(0,0)$ to $(n+1, k+1)$.

In the example, for the first step of the walks we use step weights $w_{-1}=1$, $w_{0}=2, w_{1}=1, w_{-i}=0$, otherwise. For all other steps $w_{-1}=1, w_{0}=1, w_{1}=1, w_{-i}=$ 0 , otherwise. The entry $m_{53}=26=$ sum of the weights of all walks from $(0,0)$ to $(6,4)$.

Acknowledgements

We thank the other members of the Howard University Combinatorics Group: Louis Shapiro, Seyoum Getu, Leon Woodson, and Asamoah Nkwanta for their valuable comments and suggestions.

References

[1] L. Comtet, Advanced Combinatorics, D. Riedel, Dodrecht, 1994.
[2] S. Getu, L. Shapiro, Lattice paths and Bessel functions congressus, Numerantium 108 (1995) 161-169.
[3] S. Getu, L. Shapiro, W. Woan, L. Woodson, The riordan group, Discrete Appl. Math. 34 (1991) 229-239.
[4] P. Peart, L. Woodson, Triple factorization of some Riordan matrices, Fibonacci Quart. 31 (1993) 121128.
[5] R. Sprugnoli, M. Verri, Riordan arrays and combinatorial sums, Discrete Math. 132 (1994) 267-290.
[6] L. Takacs, On the Ballot Theorems, in: N. Balakrishnan (Ed.), Advances in Combinatorial Methods and Applications to Probability and Statistics, Birkhauser, Basel 1997, pp. 97-114.
[7] H. Wilf, Generatingfunctionology, Academic Press, New York, 1990.

[^0]: * Corresponding author.

