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A divisibility property for a subgroup of Riordan matrices
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Abstract

We identify a subgroup of Riordan matrices whose entries share the well-known divisibility
property displayed by the entries of the Pascal matrix. We also establish a one-to-one corre-
spondence between the matrices of the subgroup and sets of weighted lattice walks. ? 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

It is a well-known fact that given the Pascal triangular array, (ank)n¿k¿0=((
n
k ))n¿k¿0,

and a prime p; that p divides apk for k=1; 2; : : : ; p−1: In this paper, we generalize this
result to a large set of important combinatorial triangular arrays. These triangular arrays
form a subgroup of a group called the Riordan group. We describe the Riordan group
su�ciently to keep this paper self-contained, but see [2–5] for many more examples
and applications. The Riordan group is a set of in�nite lower triangle matrices de�ned
so that each matrix has columns generated as follows: The generating function for the
elements of the �rst column (zeroth column) has the form g(x)=1+g1x+g2x2 + · · · ,
and the generating function for the ith column has the form g(x)[f(x)]i ; i¿1; where
f(x) = x + f2x2 + f3x3 + · · · . The coe�cients fi and gi are integers for all i. We
often denote a Riordan matrix by (g(x); f(x)). The set of all Riordan matrices forms
a group under matrix multiplication. See Section 3 for a brief description of the group
properties.
In this paper we are concerned with a subgroup H of the Riordan group with the

elements of H having the form (xf′(x)=f(x); f(x)). It is easy to verify that the Pascal
triangle (1=(1 − x); x=(1 − x)) belongs to the subgroup H: Like the Pascal matrix, the
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entries of each matrix in the subgroup H exhibit a divisibility property de�ned as
follows.

De�nition. A subset of Riordan matrices is said to have the “divisibility property”
if each matrix (mnk)n; k¿0 of the subset satis�es the property that n divides k · mnk
whenever 0¡k¡n:

Example 1.1. As an illustration of this divisibility property, consider the element of
the subgroup with g(x) = 1=

√
(1− 2x − 3x2), and f(x) = (1− x−√

1− 2x − 3x2)=2x.
The entries in the �rst eight rows and �rst eight columns are given by



1
1 1
3 2 1
7 6 3 1
19 16 10 4 1
51 45 30 15 5 1
141 126 90 50 21 6 1
393 357 266 161 77 28 7 1



:

The rows and columns are numbered starting with 0, so that the �rst row is the zeroth
row, the second is row 1, and so on. Now, observe that the bold-faced entries in the
pth row are divisible by p, where p is a prime. In Section 2, we give more details
and prove the divisibility property of the subgroup H: In Section 3, we prove that H
is a subgroup of the Riordan group.

There is a very interesting connection between the elements of the subgroup H and
certain weighted lattice walks. In Section 4, we describe this connection.

2. Divisibility property of the subgroup H

The following theorem establishes the divisibility property of the subgroup H:

Theorem 2.1. Let M = (mnk)n; k¿0 = (xf′(x)=f(x); f(x)). Then n divides k · mnk for
all 0¡k¡n:

Proof. The generating function for the kth column of M is given by

ck(x) =
∑
n¿0

mnkxn = xf′(x)[f(x)]k−1 = x

(
[f(x)]k

k

)′
:

Therefore, kmnk= coe�cient of xn in x((f(x))k)′=coe�cient of xn in x(
∑

n¿0 dnkx
n)′,

where dnk is the coe�cient of xn in (f(x))k . Therefore, kmnk = ndnk .

Corollary 2.1. If p is a prime; then p divides mpk for 0¡k¡p.
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There is an interesting generalization of Theorem 2.1. We can establish a divisibility
property for a larger subset of the Riordan group.

Theorem 2.2. Let M = (xh(f(x))f′(x)=f(x); f(x)) = (mnk)n; k¿0; where h(x) is a
polynomial of degree l with integer coe�cients and constant term 1. Then n divides
k(k + 1) : : : (k + l) · mnk for 0¡k¡n− l.

Proof. Let h(x) = 1 + h1x + · · ·+ hlxl. Then
ck(x) =

∑
n¿0

mnkxn = xh(f(x))f′(x)[f(x)]k−1

= x(f′(x)[f(x)]k−1 + h1f′(x)[f(x)]k + · · ·+ hlf′(x)[f(x)]l+k−1)

= x

(
[f(x)]k

k
+
h1[f(x)]k+1

k + 1
+ · · ·+ hl[f(x)]

k+l

k + l

)′
:

Therefore,

k(k + 1) : : : (k + l)
∑
n¿0

mnkxn = x

(∑
n¿0

bn(k; h1; : : : ; hl) · xn
)′
;

where bn(k; h1; : : : ; hl) is an integer depending on k; h1; : : : ; hl. Equating coe�cients, we
get

k(k + 1) : : : (k + l) · mnk = n · bn(k; h1; : : : ; hl):

Corollary 2.2. If p is a prime; then p divides mpk for 0¡k¡p− l. Example 5:3 in
Section 5 is an illustration of Corollary 2:2.

3. Riordan group and subgroup properties

Here, we give a brief description of the Riordan group. A more detailed description
together with examples can be found in [3]. The set of all Riordan matrices de�ned in
Section 1 forms a group under ordinary matrix multiplication ∗. The product is given by

(g(x); f(x)) ∗ (h(x); l(x)) = (g(x)h(f(x)); l(f(x))):
The identity is (1; x). The inverse of (g(x); f(x)) is (1=g( �f); �f), where �f is the com-
positional inverse of f.
To see that the members of the group with the form (xf′(x)=f(x); f(x)) belong to

a subgroup denoted by H , note the following:
(i) The identity

(1; x) =
(
x(x)′

x
; x
)

∈ H:
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(ii) The product(
xf′(x)
f(x)

; f(x)
)
∗
(
xh′(x)
h(x)

; h(x)
)
=
(
xf′(x)
f(x)

· f(x)h
′(f(x))

h(f(x))
; h(f(x))

)

=
(
x(h(f(x)))′

h(f(x))
; h(f(x))

)
∈ H:

(iii) The inverse of (xf′(x)=f(x); f(x)) is
 1
�f(x) · f′( �f(x))

f( �f(x))

; �f(x)


= (x · ( �f)′(x)�f(x)

; �f(x)
)

∈ H:

4. Lattice walks and the divisibility property

In this section, we will show that certain weighted lattice walks lead to a Riordan
matrix in the subgroup H: Recall that the matrices in H have the divisibility property
de�ned in Section 1. Conversely, we show that a Riordan matrix in the subgroup H
corresponds to a given set of lattice walks.
In general, consider a lattice walk that starts at the origin (0; 0) and ends at (n; k)

and has the form

(0; 0)→ (1; k1)→ (2; k2)→ · · · → (n− 1; kn−1)→ (n; k):

The step (i; ki) → (i + 1; ki+1) is assigned the weight wki+1−ki . The weight of a walk
is the product of the weights of its steps. For example, the walk (0; 0) → (1; 1) →
(2; 1) → (3; 2) has weight w1w0w1, while the walk (0; 0) → (1;−1) → (2;−1) →
(3;−1)→ (4;−5) has weight w−1w0w0w−4.
In this work, the step weights that we consider are integers and satisfy w1 = 1,

and w−i = 0 for i62: Let ank be the sum of the weights of all walks starting at
(0; 0) and ending at (n; k). Also let bnk be the sum of the weights of all walks from
(0; 0) to (n; k) with each lattice point having positive second coordinate except the
origin.

Example 4.1. Suppose wk = 1 for all k61 and wk = 0 for k¿2, then some values of
ank are given by

n \ k −5 −4 −3 −2 −1 0 1 2 3 4 5

0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0
2 8 7 6 5 4 3 2 1 0 0 0
3 45 36 28 21 15 10 6 3 1 0 0
4 220 165 120 84 56 35 20 10 4 1 0

:

The right-half of this array (ank)n¿k¿0 is the Riordan matrix with the divisibility
property which corresponds to the set of lattice walks. In the representation (g(x); f(x))
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of this Riordan matrix, we have from Theorem 4.1 that f(x) is given by f(x) =
xa(f(x))=x ·∑k¿−1 w−k(f(x))k+1=x=(1−f(x)). So, we get f(x)=(1−

√
1− 4x)=2

and g(x) = xf′(x)=f(x) = 2x=(4x − 1 +√
1− 4x).

The matrix (bnk)n¿k¿0 comes out as


1 0 0 0 0 0 0 :
0 1 0 0 0 0 0 :
0 1 1 0 0 0 0 :
0 2 2 1 0 0 0 :
0 5 5 3 1 0 0 :
0 14 14 9 4 1 0 :
0 42 42 28 14 5 1 :
: : : : : : : :



:

The entries of this matrix are the ballot numbers (see for example [6]), and f(x) =∑
n¿0 bn1x

n = xC(x), where C(x) = 1 + x + 2x2 + 5x3 + · · · is the generating function
for the Catalan numbers. Therefore, in the general case, f(x) can be regarded as
a generalized Catalan generating function and (bnk)n¿k¿0 contains generalized ballot
numbers.
We now proceed to examine the general case with step weights w−i ; where w1 =

1; w−i = 0 for i6− 2. We will use the Lagrange inversion formula as stated in [7].

Theorem 4.1. Let a(x) =
∑

k¿−1 w−kxk+1 be the generating function for the weights;
g(x) =

∑
n¿0 an0x

n the generating function for the zeroth column of (ank)n¿k¿0; and
f(x) =

∑
n¿0 bn1x

n the generating function for column 1 of (bnk)n¿k¿0. Then
(i)
∑

k6n ankx
n−k = (a(x))n for n¿1;

(ii)
∑

n¿0 ankx
n =

(∑
n¿0 an; k−1x

n
)
f(x) for k¿1;

(iii)
∑

n¿0 bnkx
n = (f(x))k for k¿1;

(iv) f(x) = xa(f(x));
(v) bnk = k

n ank for n¿k ¿ 0;

(vi) g(x) = xf′(x)
f(x) :

So, given the step weights, we obtain the Riordan matrix (g(x); f(x)) in the sub-
group H from f(x) = xa(f(x)) and g(x) = xf′(x)=f(x). Conversely, if we start with
the Riordan matrix (g(x) ; f(x)), where g(x) = xf′(x)=f(x), we produce the lattice
walk step weights w−k from w−k = [xk+1]{a(x)} where a(x) is given by f(x) =
xa(f(x)).

Proof. (i): Note that

a1k = wk and ank =
n−k−1∑
l=−1

w−lan−1;l+k =
∑
l

w1−lan−1;l−1+k :

Therefore, by induction on n, we get
∑

k an; n−kx
k = (a(x))n:
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So,
∑

k ankx
n−k = (a(x))n.

(ii):

ank =
n∑
m=0

am; k−1 · [sum of weights of walks from (m; k − 1) to (n; k)

with each lattice point having second coordinate

greater than k − 1 except (m; k − 1)]

=
n∑
m=0

am; k−1bn−m;1 = [xn]

{(∑
l¿0

al;k−1xl
)(∑

l¿0

bl1xl
)}

:

(iii): For k¿2, we have bnk =
∑n

m=0 bm; k−1bn−m;1. Therefore,
∑

n¿0 bnkx
n = f(x) ·∑

n¿0 bn; k−1x
n. Induction on k then gives (iii).

(iv): For n¿1, we have

[xn]{a(f(x))}=w0[xn]{f(x)}+ w−1[xn]{(f(x))2}+ · · ·+ w1−n[xn]{(f(x))n}
=w0bn1 + w−1bn2 + · · ·+ w1−nbnn = bn+1;1 = [xn+1]{f(x)}:

(v): Applying the Lagrange inversion formula to (iv), and using (i) and (ii), we
obtain

[xn]{(f(x))k}= 1
n
[xn−1]{kxk−1 · (a(x))n}= k

n
ank :

Therefore, bnk = (k=n)ank .
(vi): From (v), nbn1 = an1. Then, using (ii), we get

∑
n¿1 nbn1x

n =
∑

n¿1 an1x
n =

f(x) ·∑n¿0 an0x
n.

That is, xf′(x) = f(x)g(x).

Example 4.2. As a second example in this section, consider the lattice walks with step
weights w−1 = 1; w0 = 1; w1 = 1; w−i = 0 for all i62.
We have f= x(1+f+f2) = (1− x−√

1− 2x − 3x2)=2x, and g= xf′

f = x(lnf)′=

1=(
√
1− 2x − 3x2). The entries in the �rst eight columns and the �rst eight rows of

the Riordan matrix are given in Example 1.1. Observe the divisibility property that
for 0¡k¡n, n divides k · mnk . In the �rst column k = 0, and mnk represents the
sum of the weights of all walks from (0; 0) to (n; 0). The entry m7;2 = 266 is the
sum of the weights of all paths of length 7 from (0; 0) to (7; 2). The �rst column
contains the central trinomial coe�cients. The weight of each walk is 1. Therefore,
the central trinomial coe�cients count the number of walks of length n from (0; 0) to
(n; 0). The central trinomial coe�cients also count the number of king walks down a
chess board.
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5. Further examples

In each of the following examples, the bold-faced entries in the pth row of the
matrix are divisible by p:
Consider the lattice walks with step weights w1 = 1; w0 = a; w−1 = b; w−i = 0 for

all i¿2; where a and b are positive integers. For the Riordan matrix

f(x) =
1− ax −

√
(a2 − 4b)x2 − 2ax + 1
2bx

and

g(x) =
xf′(x)
f(x)

=
1√

(a2 − 4b)x2 − 2ax + 1 :

Example 5.1. With a = 2; b = 1, we obtain (g(x); f(x)) = (1=(
√
1− 4x); (1 − 2x

−√
1− 4x)=2x). The �rst eight rows of this matrix are given by



1
2 1
6 4 1
20 15 6 1
70 56 28 8 1
252 210 120 45 10 1
924 792 495 220 66 12 1
3432 3003 2002 1001 364 91 14 1



:

Here g(x) is the generating function for the central binomial coe�cients. Therefore
the total weight of all walks of length n from (0; 0) to (n; 0) is ( 2nn ):

Example 5.2. With a = 3; b = 2, we get the lattice walks with step weights w−1 =
2; w0 = 3; w1 = 1; wi = 0; otherwise. Then

(g(x); f(x)) =

(
1√

x2 − 6x + 1 ;
1− 3x −√

x2 − 6x + 1
4x

)
:

The entries in the �rst eight rows and eight columns of this matrix are given by




1
3 1
13 6 1
63 33 9 1
321 180 62 12 1
1683 985 390 100 15 1
8989 5418 2355 720 147 18 1
48639 29953 13923 4809 1197 203 21 1



:
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The numbers in the �rst column give the number of walks from (0; 0) to (n; n) using
steps {(0; 1); (1; 0); (1; 1)}. Details can be found in [1, p. 81].
Example 5.3. This example is an illustration of Theorem 2.2 and Corollary 2.2. Let
h(x)=1+2x+x2. Take f(x)=(1−x−√

1− 2x − 3x2)=2x as in Example 1.1. Then the
entries in the �rst eight rows and �rst eight columns of M=(xh(f(x))f′(x)=f(x); f(x))
are given by



1
3 1
8 4 1
22 13 5 1
61 40 19 6 1
171 120 65 26 7 1
483 356 211 98 34 8 1
1373 1050 665 343 140 43 9 1



:

The bold-faced entries in the pth row are divisible by p.

In the general case, we have an interpretation of M = (xh(f(x))f′(x)=f(x); f(x))
in terms of two-stage weighted lattice walks. For the �rst step of the walk, we use
the weights w−m = hm+1 for m = −1; 0; : : : ; l − 1; w−m = 0; otherwise, where h(x) =
1 + h1x + · · · + hlxl. For all other steps we use the weights w−k = [xk+1]{a(x)}, for
k¿− 1, where a(x) is given by f(x)= xa(f(x)). Now if m̃nk= sum of the weights of
all such two-stage lattice walks starting at (0; 0) and ending at (n; k); n¿k¿0; then
(m̃ij)i; j¿0 = (G(x); f(x)); where G(x)f(x)=x = xh(f(x))f′(x)=f(x): In other words,
the Riordan matrix (xh(f(x))f′(x)=f(x); f(x)) = (mnk)n; k¿0; can be obtained from
(m̃nk)n; k¿0 by deleting the zeroth column. This means that mnk = m̃n+1;k+1= sum of
the weights of the two stage lattice walks from (0; 0) to (n+ 1; k + 1):
In the example, for the �rst step of the walks we use step weights w−1 = 1;

w0 =2; w1 =1; w−i=0; otherwise. For all other steps w−1 =1; w0 =1; w1 =1; w−i=
0; otherwise. The entry m53 = 26= sum of the weights of all walks from (0; 0)
to (6; 4):
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