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A divisibility property for a subgroup of Riordan matrices
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Abstract

We identify a subgroup of Riordan matrices whose entries share the well-known divisibility
property displayed by the entries of the Pascal matrix. We also establish a one-to-one corre-
spondence between the matrices of the subgroup and sets of weighted lattice walks. © 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

It is a well-known fact that given the Pascal triangular array, (aux ), > k>0:((z Nnsk=05
and a prime p, that p divides a,; for k=1,2,..., p—1. In this paper, we generalize this
result to a large set of important combinatorial triangular arrays. These triangular arrays
form a subgroup of a group called the Riordan group. We describe the Riordan group
sufficiently to keep this paper self-contained, but see [2-5] for many more examples
and applications. The Riordan group is a set of infinite lower triangle matrices defined
so that each matrix has columns generated as follows: The generating function for the
elements of the first column (zeroth column) has the form g(x)=1+gix +gox>+-- -,
and the generating function for the ith column has the form g(x)[f(x)]’,i>1, where
f(x)=x+ fox> + f3x3 + .- . The coefficients f; and g; are integers for all i. We
often denote a Riordan matrix by (g(x), f(x)). The set of all Riordan matrices forms
a group under matrix multiplication. See Section 3 for a brief description of the group
properties.

In this paper we are concerned with a subgroup H of the Riordan group with the
elements of H having the form (xf'(x)/f(x), f(x)). It is easy to verify that the Pascal
triangle (1/(1 — x),x/(1 — x)) belongs to the subgroup H. Like the Pascal matrix, the
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entries of each matrix in the subgroup H exhibit a divisibility property defined as
follows.

Definition. A subset of Riordan matrices is said to have the “divisibility property”
if each matrix (mu ). x>0 Of the subset satisfies the property that n divides k - m
whenever 0 < k < n.

Example 1.1. As an illustration of this divisibility property, consider the element of
the subgroup with g(x)=1/1/(1 —2x — 3x2), and f(x)=(1 —x — 1 — 2x — 3x2)/2x.

The entries in the first eight rows and first eight columns are given by

1

1 1

3 2 1

7 6 3 1

19 16 10 4 1

51 45 30 15 5 1

141 126 90 50 21 6 1
393 357 266 161 77 28 7 1

The rows and columns are numbered starting with 0, so that the first row is the zeroth
row, the second is row 1, and so on. Now, observe that the bold-faced entries in the
pth row are divisible by p, where p is a prime. In Section 2, we give more details
and prove the divisibility property of the subgroup H. In Section 3, we prove that H
is a subgroup of the Riordan group.

There is a very interesting connection between the elements of the subgroup H and
certain weighted lattice walks. In Section 4, we describe this connection.

2. Divisibility property of the subgroup H
The following theorem establishes the divisibility property of the subgroup H.

Theorem 2.1. Let M = (my)n k>0 = (cf ' (x)/f(x), f(x)). Then n divides k - m,; for
all 0 <k <n.

Proof. The generating function for the kth column of M is given by

k !/
ck(x) = Z mux" =xf'COLf )] =x (U(;)] ) _

n=0

Therefore, km, = coefficient of x" in x((f(x))*) =coefficient of x" in x(}, - o dux")’,
where d,; is the coefficient of x" in (f(x))*. Therefore, km,; = nd,;. [

Corollary 2.1. If p is a prime, then p divides m,; for 0 <k < p.
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There is an interesting generalization of Theorem 2.1. We can establish a divisibility
property for a larger subset of the Riordan group.

Theorem 2.2. Let M = (xh(f(x))f'(x)/f(x), f(x)) = (Mg ). k>0, Where h(x) is a
polynomial of degree | with integer coefficients and constant term 1. Then n divides
k(k+1)...(k+ 1) -my for 0 <k <n-—1

Proof. Let i(x) =1+ hyx + -+ hx'. Then

cr(x) = > mux" = xh(f () Lf @)

n=0

= x(S O+ b OF + -+ b f L @)
. ([ﬂxﬂ" RITC) M)

% /A N S

Therefore,

k(e + 1) (k4 1) myx" =x (Z bn(k,hl,...,h,)-x”> ,

n=0 n=0
where b,(k, hy,...,h;) is an integer depending on &, hy,...,h;. Equating coefficients, we

get

k(k+1)...(k+ 1) muy =n-bu(k hyy...,hy). [

Corollary 2.2. If p is a prime, then p divides m, for 0 <k < p— 1. Example 5.3 in
Section 5 is an illustration of Corollary 2.2.

3. Riordan group and subgroup properties

Here, we give a brief description of the Riordan group. A more detailed description
together with examples can be found in [3]. The set of all Riordan matrices defined in
Section 1 forms a group under ordinary matrix multiplication *. The product is given by

(g(x), f(x)) * (A(x), 1(x)) = (9IRS (x)), ([ (x))).

The identity is (1,x). The inverse of (g(x), f(x)) is (1/g(f), f), where f is the com-
positional inverse of f.

To see that the members of the group with the form (xf”(x)/f(x), f(x)) belong to
a subgroup denoted by H, note the following:

(i) The identity

(1,x) = (x(x)/,x> €H

X




258 P. Peart, W.-j. Woan | Discrete Applied Mathematics 98 (2000) 255-263

(ii) The product

/() ()
(/(m’f“4>*(hu»’mx0

<Xf’(X) SR (f(x))

h
70 Mﬂﬂ)’(ﬂﬂo

_ (x(h(f(x)))
= (MGt o) e
(iii) The inverse of (xf'(x)/f(x), f(x)) is
1 - () x) -
T—finM):G~ﬁ,ﬂ@eH
F&)- e /&)

4. Lattice walks and the divisibility property

In this section, we will show that certain weighted lattice walks lead to a Riordan
matrix in the subgroup H. Recall that the matrices in H have the divisibility property
defined in Section 1. Conversely, we show that a Riordan matrix in the subgroup H
corresponds to a given set of lattice walks.

In general, consider a lattice walk that starts at the origin (0,0) and ends at (n,k)
and has the form

0,0) = (Lk) = 2,k2) = - = (n = Lk1) — (n,k).

The step (i,k;) — (i + 1,k;+1) is assigned the weight wy,,, . The weight of a walk
is the product of the weights of its steps. For example, the walk (0,0) — (1,1) —
(2,1) — (3,2) has weight wywow;, while the walk (0,0) — (1,—1) — (2,—1) —
(3,—1) — (4,—5) has weight w_jwowow_4.

In this work, the step weights that we consider are integers and satisfy w; = 1,
and w_; =0 for i<2. Let a,; be the sum of the weights of all walks starting at
(0,0) and ending at (n,k). Also let b,; be the sum of the weights of all walks from
(0,0) to (n, k) with each lattice point having positive second coordinate except the
origin.

Example 4.1. Suppose wy =1 for all k<1 and w; =0 for £>2, then some values of
an; are given by

n\k -5 -4 -3 -2 -1 0 1 2 3 4 5
0 0 0 0 0 0 1 0 0 0 0 O
1 1 1 1 1 1 1 1 0 0 0 o.
2 8 7 6 5 4 3 2 1 0 0 O
3 45 36 28 21 15 10 6 31 0 0
4 220 165 120 84 56 3520 10 4 1 O

The right-half of this array (au).>r>0 1s the Riordan matrix with the divisibility
property which corresponds to the set of lattice walks. In the representation (g(x), f(x))
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of this Riordan matrix, we have from Theorem 4.1 that f(x) is given by f(x)=
xa(f(x)=x-3 s Wk (ST =x/(1 = f(x)). So, we get f(x)=(1—+/1—4x)/2
and g(x) =xf"(x)/f(x) =2x/(4x — 1 + /1 — 4x).

The matrix (b )y>k>0 comes out as

1 0 0 0 0 0 O
0 1 0 0 0 0 O
0 1 1 0 0 0 O
0 2 2 1 0 0 O
0 5 5 3 1 0 O
0 14 14 9 4 1 0
0 42 42 28 14 5 1

The entries of this matrix are the ballot numbers (see for example [6]), and f(x)=
> om0 bmx" =xC(x), where C(x) =1+x + 2x? 4 5x3 + - - is the generating function
for the Catalan numbers. Therefore, in the general case, f(x) can be regarded as
a generalized Catalan generating function and (b, ),>>0 contains generalized ballot
numbers.

We now proceed to examine the general case with step weights w_;, where w; =
L,w_; =0 for i< — 2. We will use the Lagrange inversion formula as stated in [7].

Theorem 4.1. Let a(x)=)_,. _, w_ix**1 be the generating function for the weights,
g(x) =>_,~0anx" the generating function for the zeroth column of (au)n>k>0, and
Sx)=23",50bmX" the generating function for column 1 of (bu)u=k>0. Then

() Sy oy am” ¥ = (a@))" for n>1,

(i) D2, 50 amx" = (anoan,k_lx”) f(x) for k=1,
(i) Xm0 bux” = (FG) for k=1,
(iv) f(x) =xa(f(x)),

V) by = %ank forn=k >0,
(vi) gx) = L&,
So, given the step weights, we obtain the Riordan matrix (g(x), f(x)) in the sub-
group H from f(x)=xa(f(x)) and g(x)=xf"(x)/f(x). Conversely, if we start with
the Riordan matrix (g(x), f(x)), where g(x) = xf’(x)/f(x), we produce the lattice
walk step weights w_; from w_; = [x*T']{a(x)} where a(x) is given by f(x) =

xa(f(x)).

Proof. (i): Note that
n—k—1

ajy =wy and  ay = g W—Ian—l,l+k:E WI—1Qn—1,]—1+k-
p— /

Therefore, by induction on n, we get A X" = (a(x))".
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So, Zk ankxn_k = (a(x))n_

(ii):

n
Ane = Z am, k—1 - [sum of weights of walks from (m,k — 1) to (n,k)
m=0
with each lattice point having second coordinate

greater than £ — 1 except (m,k — 1)]

=Y amk—1bp—my =[] { (Z al,klxl> (Z b11x1> } ,
m=0 10 10

(iii): For k=2, we have b, = an:o b, k—1bn—m,. Therefore, > bux" = f(x)-
anobn,k,lx". Induction on k then gives (iii).
(iv): For n>1, we have

" {a(f ()} =wolx"1{ £ ()} + woi X" H{(F )} + -+ -+ wisa X H{(f(x))"}
=Wobut +W_1bp + -+ - + Wiy = bpi11 = X))

(v): Applying the Lagrange inversion formula to (iv), and using (i) and (ii), we
obtain

1 k
{(f ()} = ;[x"—l]{icx"—1 (a())'} = ~au.

Therefore, b, = (k/n)ay.

(vi): From (v), nb,1 = a,. Then, using (i), we get Y -\ nbux" =3~ aux" =
S(x)- Zn>0 anox".

That is, xf'(x) = f(x)g(x). O

Example 4.2. As a second example in this section, consider the lattice walks with step
weights w_; =1, wo=1, wy =1, w_; =0 for all i<2.

We have f=x(1+ f+ f2)=(1 —x—+1 —2x —3x2)/2x, and g = x—;/ =x(In /) =
1/(v/1 —2x — 3x%). The entries in the first eight columns and the first eight rows of
the Riordan matrix are given in Example 1.1. Observe the divisibility property that
for 0 <k <n, n divides k - my. In the first column k& =0, and m,; represents the
sum of the weights of all walks from (0,0) to (n,0). The entry m7, = 266 is the
sum of the weights of all paths of length 7 from (0,0) to (7,2). The first column
contains the central trinomial coefficients. The weight of each walk is 1. Therefore,
the central trinomial coefficients count the number of walks of length n from (0,0) to
(n,0). The central trinomial coefficients also count the number of king walks down a
chess board.
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In each of the following examples, the bold-faced entries in the pth row of the
matrix are divisible by p.
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Consider the lattice walks with step weights w; =1, wo =a, w_; = b, w_; =0 for
all i>2, where a and b are positive integers. For the Riordan matrix
—ax — +/(a® — 4b)x? — 2ax + 1
Sx)=
2bx
and
xf'(x 1
g(x) = S'(x)

f&x) (@ —4by? —2ax + 1

Example 5.1. With @ =2, b = 1, we obtain (g(x), f(x)) = (1/(+/1 —4x),(1 — 2x
— /1 —4x)/2x). The first eight rows of this matrix are given by

! -
2 1
6 4 1
20 15 6
70 56 28 8 1
252 210 120 45 10 1
924 792 495 220 66 12 1
3432 3003 2002 1001 364 91 14 1 |

Here ¢g(x) is the generating function for the central binomial coefficients. Therefore
the total weight of all walks of length »n from (0,0) to (n,0) is (zn” ).

2, wo =3, w; =1, w; =0, otherwise. Then

(g(0), f(x)) = ( :

V2 —6x+1

Example 5.2. With a =3, b =2, we get the lattice walks with step weights w_; =

4x

1—3x—\/x2—6x+1>

The entries in the first eight rows and eight columns of this matrix are given by

3 1
13 6 1
63 33 9 1
321 180 62 12 1
1683 985 390 100 15 1
8989 5418 2355 720 147 18 1
| 48639 29953 13923 4809 1197 203 21 1 |
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The numbers in the first column give the number of walks from (0,0) to (n,7) using
steps {(0,1),(1,0),(1,1)}. Details can be found in [1, p. 81].

Example 5.3. This example is an illustration of Theorem 2.2 and Corollary 2.2. Let
h(x)=142x+x2. Take f(x)=(1—x—+/1 —2x — 3x2)/2x as in Example 1.1. Then the
entries in the first eight rows and first eight columns of M=(xa( /' (x)) f'(x)/f(x), f(x))
are given by

1
3 1

8 4

2 13 5 1

61 40 19 6 1

171 120 6 26 7 1

483 356 211 98 34 8 1
1373 1050 665 343 140 43 9 1|

The bold-faced entries in the pth row are divisible by p.

In the general case, we have an interpretation of M = (xh(f(x))f'(x)/f(x), f(x))
in terms of two-stage weighted lattice walks. For the first step of the walk, we use
the weights w_,, = b,y for m =—1,0,...,] — 1; w_,, = 0, otherwise, where A(x) =
1+ hix + - + hx'. For all other steps we use the weights w_; = [x**!]{a(x)}, for
k= —1, where a(x) is given by f(x)=xa(f(x)). Now if ;= sum of the weights of
all such two-stage lattice walks starting at (0,0) and ending at (n,k), n=k >0, then
()i, j>0 = (G(x), f(x)), where G(x)f(x)/x = xh(f(x))f"(x)/f(x). In other words,
the Riordan matrix (xa(f(x))f'(x)/f(x), f(x)) = (Mu)n k>0, can be obtained from
(Mg )n, k>0 by deleting the zeroth column. This means that m,; = ni,4144+1= sum of
the weights of the two stage lattice walks from (0,0) to (n+ 1,k + 1).

In the example, for the first step of the walks we use step weights w_; = 1,
wo=2, w; =1, w_; =0, otherwise. For all other steps w_; =1, wo=1, w; =1, w_;=
0, otherwise. The entry ms; = 26= sum of the weights of all walks from (0,0)
to (6,4).
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