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Abstract

We count the number of permutations with k occurrences of the pattern 2–13 in
permutations by lattice path enumeration. We give closed forms for k ≤ 8, extending
results of Claesson and Mansour.

1 Introduction

Let Sn denote the set of permutations of {1, 2, . . . , n}. A pattern in a permutation π ∈ Sn

is a permutation σ ∈ Sk and an occurrence of σ as a subword of π; there should exist
i1 < · · · < ik such that π(i1) · · · π(ik) is order equivalent to σ. (So π(i1) is the σ(1):th
smallest of the subword, and so on.)

For example, an occurrence of the pattern 3–2–1 in π ∈ Sn means that there exists
1 ≤ i < j < k ≤ n such that π(i) > π(j) > π(k).

We further consider restricted patterns, introduced by Babson and Steingŕımsson [1].
The restriction is that two specified adjacent elements in the pattern must be adjacent in
the permutation as well. The position of the restriction in the pattern is indicated by an
absence of a dash (–). Thus, an occurrence of the pattern 3–21 in π ∈ Sn means that there
exists 1 ≤ i < j < n such that π(i) > π(j) > π(j + 1).

Here we are interested in patterns of the type 2–13. We remark that it is shown by
Claesson [3] that the occurrences of 2–13 are equidistributed with the occurrences of the
pattern 2–31, as well as with 13–2 and with 31–2.
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Definition 1. Let φk(n) denote the number of permutations of length n with exactly k
occurrences of the pattern 2–13.

Claesson [3] showed that φ0(n) is given by the the (n + 1)th Catalan number, 1
n+1

(

2n

n

)

(A0001081). It was further shown that

φ1(n) =

(

2n

n− 3

)

(A002696), (1)

φ2(n) =
n

2

(

2n

n− 4

)

(A094218), (2)

φ3(n) =
(n+ 1)(n+ 2)

6

(

2n

n− 5

)

(A094219). (3)

The authors commented that “. . . [the above result] obviously is in need of a combinatorial
proof,” referring in particular to Equation 1.

In this paper we give such a combinatorial proof of all the above results, as well as
formulae for φ4(n), . . . , φ8(n). We show how to count occurrences of 2–13 in permutations
via lattice paths; bi-coloured Motzkin paths to be precise.

Definition 2. A Motzkin path of length n is a sequence of vertices p = (v0, v1, . . . , vn), with
vi ∈ N2 (where N = {0, 1, . . . }), with steps vi+1 − vi ∈ {(1, 1), (1,−1), (1, 0)} and v0 = (0, 0)
and vn = (n, 0).

A bicoloured Motzkin path is a Motzkin path in which each east, (1, 0), step is labelled
by one of two colours. We say that the path is q-weighted if the weight of steps ending at
height h is given by [h]q :=

∑h−1
k=0 q

k.

We will use N (S) to denote a north, (1, 1), step (resp., south, (1,−1), step), and E and
F to denote the two different coloured east steps.

1.1 Main Theorem

Theorem 3. The number of permutations of length m + 1 with exactly n occurrences of
the pattern 2–13 is given by the coefficient of qntm in the generating function for q-weighted
bi-coloured Motzkin paths.

Remark 4. It follows from a result of Brak, et al., [2], that the number of permutations
of length m + 1 with exactly n occurrences of the pattern 2–13 is given by the coefficient
of qn in the normalisation Zm for the stationary distribution of the α = β = η = 1, γ =
δ = 0 partially asymmetric exclusion process — a Markov process widely studied in both
mathematics and physics.

We first give an almost trivial proof, based on generating functions, which are known in
continued fraction form for both problems. In the next section we give a more interesting,
bijective proof.

1Six-digit numbers prefixed by ‘A’ indicate the corresponding entry in The On-Line Encyclopedia of
Integer Sequences [7].
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Proof. Claesson and Mansour [4] give the generating function P (q; t) for the distribution of
occurrences of the pattern 2–13 in permutations as a Stieltjes continued fraction:

P (q; t) =
1

1−
[1]qt

1−
[1]qt

1−
[2]qt

1−
[2]qt

. . .

.

The generating function M(q; t) for q-weighted bi-coloured Motzkin paths is well known ([5],
Theorem 1) to be given by the Jacobi continued fraction

M(q; t) =
1

1− 2[1]qt−
[1]q[2]qt

2

1− 2[2]qt−
[2]q[3]qt

2

1− 2[3]qt−
[3]q[4]qt

2

. . .

.

Applying the contraction formula from Stieltjes to Jacobi continued fractions, we find that
indeed P (q; t) = 1 + tM(q; t).

2 Bijective proof

We will define three mappings: two bijections B and T , and a projection P . They will have
the property that the composition T ◦ P ◦ B is a surjection from the set of permutations
weighted by occurrences of the pattern 2–13, to the set of q-weighted bi-coloured Motzkin
paths. Theorem 3 will follow.

Definition 5. A bi-coloured vertex-weighted Motzkin path is a bi-coloured Motzkin path
in which vertex k, at height h, is given a weight from the set {1, q, . . . , qh} if step k is E
or N , and from the set {1, q, . . . , qh−1} otherwise. Let M∗

n denote the set of bi-coloured
vertex-weighted Motzkin paths of length n.

We now define a bijection (of Foata and Zeilberger [6]) B from Sn to M∗
n. Let step i in

p = B(π) be

E if π(i) ≥ i ≥ π−1(i),

F if π(i) < i < π−1(i),

N if π(i) > i < π−1(i),

S if π(i) < i > π−1(i).

Let vertex n + 1 have weight 1, and vertex k, 1 ≤ k ≤ n, weight qm(k), where m(k) is the
number of occurrences of the pattern 2–13 in π in which k takes the role of 2.
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Theorem 6 ([6]). The mapping B is a weight preserving bijection between permutations
and bi-coloured vertex-weighted Motzkin paths, such that the weight of p = B(π) equals the
number of occurrences of 2–13 in π.

Next we define a projection P from bi-coloured vertex-weighted Motzkin paths to a
slightly different set of vertex-weighted Motzkin paths, M′.

Definition 7. For p ∈M, let p′ = P(p) have the same steps. If step k is E or N , let vertex
k, at height h, have weight 1 + · · ·+ qh, and weight 1 + · · ·+ qh−1 otherwise.

The final step is to define a bijection T from M′
n+1 to Mn.

Definition 8. For p in M′
n+1 and for k ∈ [n], if steps k and k + 1 is x and y, let step k in

T (p) be given by

x\y E F N S

E E S E S
F N F N F
N N F N F
S E S E S

and have the same weight as vertex k + 1 in p.

Theorem 9. The mapping T is a weight preserving bijection from M′
n+1 to Mn.

Proof. We will describe the inverse mapping.
Append an E step at both the start and the end of a walk r ∈ Mn to give a walk r′ of

length n+2. If steps k and k+1 in r′ are x and y, respectively, step k of T −1(r) is given by

x\y E F N S

E E N N E
F S F F S
N E N N E
S S F F S

Further, vertex k in s = T −1(r) has the same weight as step k in r′.
That T −1 indeed is the inverse of T follows easily from the definition of T .

3 Application

Let C(x) be the Catalan function, C(x) = 1−
√

1−4x
2x

. As is well known,

g1(x1; t) =
C(x1t)− 1

x1t
= C2(x1t)

is the generating function for bi-coloured Motzkin paths in which each step has weight x1.
More generally, let gk(t) = gk(x1, x2, . . . , xk; t) be the generating function for bi-coloured

weighted Motzkin walks in which steps ending at height h ≤ k have weight xk−h+1, and steps
ending at height h ≥ k have weight x1.
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Lemma 1.

gk(t) =
1

1− 2xkt− xk−1xkt2gk−1(t)
.

Proof. Considering the first return to height 0 (where a step E or F is considered a return),
we find gk(t) = 1 + (xkt+ xkt+ xk−1tgk−1(t)xkt)gk(t).

The function gk([q]k, [q]k−1, . . . , [q]0; t) obviously agrees with the full generating function
for q−coloured Motzkin paths for powers of q less than k, and consequently we get the
following proposition.

Proposition 10. For n < k the number of permutations of length m with exactly n occur-
rences of the pattern 2–13 is given by

[qntm]tgk([q]k, [q]k−1, . . . , [q]0; t).

The following lemma is useful for extracting coefficients from the generating functions.

Lemma 2. Let S(t) =
√
1− 4t. For l ≤ m we have

[tn]
Cm(t)

(2− C(t))l
= [tn]

Cm−l(t)

Sl(t)
=

1

2m−l

m−l
∑

k=0

(

m− l

k

)

(−1)k[tn+m−l]Sk−l.

Proof. The first equality holds since S(t)C(t) = 2 − C(t); the second since C(t) = (1 −
S(t))/2t.

Note that finding [tn]Sk is but an application of the binomial theorem.
Let Φk(t) be the generating function for the sequence φk(m). We have g1(1; t) = C2(t).

Thus, the number of permutations of length m with 0 occurrences of 2–13 is given by the
m:th Catalan number.

Next, we have

g2(1 + q, 1; t) =
1

1− t− tC((1 + q)t)
, and

∂

∂q
g2(1 + q, 1; t) =

t2C ′((1 + q)t)

(1− t− tC2((1 + q)t)
,

where C ′(x) = ∂
∂x
C(x). Setting q = 0, and applying the transformation rules tC2(t) =

C(t)− 1 and C ′(t) = C3(t)/(2− C(t)), we find that

Proposition 11 ([4]).

Φ1(t) = t3C7(t)
1

2− C(t)
.

Applying Lemma 2 we get

φ1(m) =

(

2m

m− 3

)

(A002696).
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Similarly we derive expressions for Φk and φk for k ≤ 8. The calculations can be sum-
marised as follows.

1. Find gk+1.

2. Differentiate to get ∂
∂qk gk+1|q=0.

3. Apply the transformation rules t = (C − 1)C−2, C ′ = C3(2 − C)−1, C ′′ = 2C5(3 −
C)(2 − C)−3, . . . , C(k) = · · · to get a an expression of the form taCbP (C)(2 − C)−c

where a, b and c are positive integers and P is a polynomial.

4. Apply Lemma 2 and the binomial theorem to extract coefficients.

5. Use standard binomial coefficient identities to simplify.

We note that all steps may, with some programming, be fully automated in a package such
as Mathematica (used here). The bottleneck in this procedure is the differentiation (step 2),
which in the straightforward implementation is quite memory consuming. This is also the
main reason for us to restrict to k ≤ 8 in this work — step 2 required almost 1GB of RAM.

Proposition 12 ([4]).

Φ2(t) =
∂2

∂2q
g3([q]3, [q]2, [q]1; t)|q=0 = t4C9(t)

−1 + 5C(t)− 2C2(t)

(2− C(t))3
,

φ2(m) =
m

2

(

2m

m− 4

)

(A094218).

Proposition 13 ([4]).

Φ3(t) =
∂3

∂3q
g4(t)|q=0 = t5C11(t)

2 + 6C(t) + 5C(t)2 − 8C(t)3 + 2C(t)4

(2− C(t))5

φ3(m) =
(m+ 1)(m+ 2)

6

(

2m

m− 5

)

(A094219).

Proposition 14.

Φ4(t) =
∂4

∂4q
g5(t)|q=0 = t5C115− 118C + 259C2 − 240C3 + 142C4 − 62C5 + 17C6 − 2C7

(2− C)7
,

φ4(m) =
−36− 100m− 13m2 + 4m3 +m4

24(m+ 6)

(

2m

m− 5

)

(A120812).

Proposition 15.

Φ5(t) =
∂5

∂5q
g6(t)|q=0

= t6C13−14− 540C + 1519C2 − 1517C3 + 616C4 + 70C5 − 199C6 + 97C7 − 22C8 + 2C9

(2− C)9
,

φ5(m) =
(m+ 4)(−108− 192m+ 3m2 + 8m3 +m4)

120(m+ 7)

(

2m

m− 6

)

(A120813).
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Proposition 16.

Φ6(t) =
∂6

∂6q
g7(t)|q=0

=
t6C13

(2− C)11
(

−42+4054C−18354C2+36038C3−40660C4+30080C5−16090C6+6914C7

− 2604C8 + 840C9 − 202C10 + 30C11 − 2C12
)

,

φ6(m) =

(

2m

m−6

)

720(m+ 7)(m+ 8)

(

20160+44448m+548m2−4196m3−565m4+67m5+17m6+m7
)

(A120814).

Proposition 17.

Φ7(t) =
∂7

∂7q
g8(t)|q=0

=
t7C15

(2− C)13
(

132+16516C−92666C2+215944C3−281094C4+225628C5−110922C6+25360C7

+ 7066C8 − 9364C9 + 4622C10 − 1440C11 + 294C12 − 36C13 + 2C14
)

,

φ7(m) =

(

2m

m−7

)

5040(m+ 8)(m+ 9)

(

(m+5)(40320+67824m−20180m2−7556m3−5m4+211m5

+ 25m6 +m7
)

(A120815).

Proposition 18.

Φ8(t) =
∂8

∂8q
g9(t)|q=0

=
t7C15

(2− C)15
(

429−65536C+499576C2−1679496C3+3298054C4−4270444C5+3911698C6

− 2671744C7 + 1439239C8 − 659504C9 + 279446C10 − 112922C11 + 41165C12

− 12362C13 + 2816C14 − 448C15 + 44C16 − 2C17
)

,

φ8(m) =

(

2m

m−7

)

40320(m+ 8)(m+ 9)(m+ 10)

(

−7983360−12956832m+10475400m2+3647724m3

− 416326m4 − 249417m5 − 19971m6 + 2646m7 + 576m8 + 39m9 +m10
)

(A120816)
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