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Abstract
Let {ai,j} be real numbers for 0 6 i 6 r � 1 and 1 6 j 6 2, and define a sequence
{vn} with initial conditions v0, v1 and conditional linear recurrence relation vn =
at,1vn�1 + at,2vn�2 where n ⌘ t (mod r) (n > 2). The sequence {vn} can be
viewed as a generalization of many well-known integer sequences, such as Fibonacci,
Lucas, Pell, Jacobsthal, etc. We find explicitly a linear recurrence equation which is
satisfied by {vn}, generating functions, matrix representations and extended Binet’s
formulas for {vn} in terms of a generalized continuant.

1. Introduction

The Fibonacci sequence is a sequence of integers in which each subsequent term
is the sum of the two preceding it starting with 0 and 1. The so-called Fibonacci
numbers appeared in the solution of a problem by Leonardo Pisano, in his book
Liber Abaci (1202), concerning reproduction patterns of rabbits. Now, this se-
quence appears in many areas of mathematics. The Fibonacci sequence has been
generalized in several directions, namely, by changing the initial values, by mixing
two sequences, by demanding that the numbers in the sequences not be integers,
and by having more than two parameters; see [6, 8, 10, 11, 12, 13, 14, 15, 16, 20, 21].

1The authors are partially supported by NSERC of Canada. Qiang Wang is also partially
supported by National Natural Science Foundation of China (Grant No. 61170289).
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Yet another extension of the Fibonacci sequence is given in [4] as follows. Let
a0, a1, . . . , ar�1 be real numbers; define a sequence {qn}, with initial values q0 = 0
and q1 = 1, and for n > 2,

qn =

8>>><
>>>:

a0qn�1 + qn�2, if n ⌘ 0 (mod r) ,
a1qn�1 + qn�2, if n ⌘ 1 (mod r) ,
...

...
ar�1qn�1 + qn�2, if n ⌘ r � 1 (mod r) .

It remained as an open problem in [4] to find a closed form for the generating func-
tion, and to obtain a Binet-like formula for {qn}. Later on, the sequence {qn} was
studied in [3], where it was called k-periodic Fibonacci sequences (here k corresponds
to our r), and the open problem was solved. Independently, in [17] and [19], one of
the authors of this paper solved this open problem by using continuants while also
introducing a matrix representation for the sequence {qn}.

We now introduce a new sequence {vn} that is a generalization of the sequence
{qn}. Let {ai,j} be real numbers for 0 6 i 6 r � 1 and 1 6 j 6 2, and define a
sequence {vn} with initial conditions v0, v1, and for n > 2,

vn =

8>>><
>>>:

a0,1vn�1 + a0,2vn�2, if n ⌘ 0 (mod r) ,
a1,1vn�1 + a1,2vn�2, if n ⌘ 1 (mod r) ,
...

...
ar�1,1vn�1 + ar�1,2vn�2, if n ⌘ r � 1 (mod r) .

(1)

We call {vn} a Fibonacci-like conditional sequence.
We can get a great number of di↵erent sequences by providing the values of

r, ai,j and the initial values in the sequence {vn}. The following are some examples
of sequences which are special cases of {vn}. We note that some of the following
examples are given with the a reference number to Sloane’s On-Line Encyclopedia
of Integer Sequences. Let us assume initial values v0 = 0 and v1 = 1.

1. If we take ai,j = 1 for 0 6 i 6 r � 1 and 1 6 j 6 2, we get the classical
Fibonacci numbers.

2. If we take ai,1 = 1 and ai,2 = 1 for 0 6 i 6 r � 1, we get Pell’s sequence.

3. If we take ai,1 = k and ai,2 = 1 for 0 6 i 6 r�1, we get k-Fibonacci numbers.

4. If we take r = 2, a0,1 = a1,2 = 1 and a1,1 = a0,2 = 2, we get [A005824]

5. If we take r = 2, a0,1 = 2 and a0,2 = a1,1 = a1,2 = 1, we get [A048788]. The
terms of the sequence are numerators of the continued fraction convergent top

3� 1.
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6. If we take r = 2, a0,1 = a0,2 = 1 and a1,1 = a1,2 = 2, we get [A001045]
(Jacobsthal sequence).

7. If we take r = 3 and (a0,1, a0,2, a1,1, a1,2, a2,1, a2,2) = (1, 1, 0, 1, 1, 1), we get
[A097564].

8. If we take r = 3 and (a0,1, a0,2, a1,1, a1,2, a2,1, a2,2) = (1, 1, 1, 0, 0, 0), we get
[A117567] which gives Riordan arrays.

9. If we take r = 3 and (a0,1, a0,2, a1,1, a1,2, a2,1, a2,2) = (0, 1, 1, 1, 1, 1), we get
[A092550] which is the two-steps-forward and one-step backwards Fibonacci-
based switched sequence inspired by Per Bak’s sand piles.

10. If we take r = 3 and (a0,1, a0,2, a1,1, a1,2, a2,1, a2,2) = (2, 0, 2, 1, 2, 0), we get
[A004647].

11. If we take r = 3 and (a0,1, a0,2, a1,1, a1,2, a2,1, a2,2) = (2, 0, 1, 1, 1, 1), we get
[A133335].

12. If we take r = 2 with a0,2 = a1,2 = 1 and any nonzero real numbers a0,1 and
a1,1 we get generalized Fibonacci sequences [4].

13. If we take ai,2 = 1 for 0 6 i 6 r � 1 with any nonzero real numbers ai,1, we
get the sequences studied in [3, 17, 19].

14. If we take r = 2 and real numbers ai,j , not all zeros, we get the sequences
defined in [18].

Next we give the structure of the paper. In Section 2, we introduce the concept
of the generalized continuant and the generalized continued fraction, we make a
connection between them and we find explicitly a linear recurrence relation which is
satisfied by {vn} for any given integer r � 2. In Sections 3 and 4, we find generating
functions, matrix representations and extended Binet’s formulas for {vn} in terms
of a generalized continuant. Conclusions and further work are given in Section 5.

2. Linear Recurrence of {vn}

Continuants are a sequence of polynomials extensively studied by Euler. They are
defined by the following recurrence

K0() = 1;
K1(x1) = x1;

Kn(x1, . . . , xn) = Kn�1(x1, . . . , xn�1)xn + Kn�2(x1, . . . , xn�2).
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It is well known that continuants are the key to the study of continued fractions
like

an +
1

an�1 +
1

an�2 +
1

.. . +
...
1
a0

.

Indeed, the above continued fraction is equal to

K (an, an�1, . . . , a0)
K (an�1, an�2, . . . , a0)

.

We refer to pages 301-309 in [5] for detailed information about the continuant.
Let us consider a generalization of continued fractions of the form

an,1 +
an,2

an�1,1 +
an�1,2

an�2,1 +
an�2,2

. . . +
...
a1,2

a0,1

and denote it by [an,1, an�1,1, . . . , a0,1]�!b where
�!
b = [an,2, an�1,2, . . . , a1,2] for any

positive integer n. If we take
�!
b = [1, 1, . . . , 1] then we get the classical continued

fraction. For example, let us take [1, 2, 1, 1, 2, 1]�!
b

where
�!
b = [1, 1, 2, 1, 1]; then

[1, 2, 1, 1, 2, 1]�!
b

= 1 +
1

2 +
1

1 +
2

1 +
1

2 +
1
1

=
17
12

.

We associate this generalized continued fraction with the following Fibonacci-like
sequences

An =

8<
:

An�1 + 2An�2, if n ⌘ 0 (mod 3) ,
2An�1 + An�2, if n ⌘ 1 (mod 3) , A0 = 1 and A1 = 3,
An�1 + An�2, if n ⌘ 2 (mod 3) ,

and

Bn =

8<
:

Bn�1 + Bn�2, if n ⌘ 0 (mod 3) ,
Bn�1 + 2Bn�2, if n ⌘ 1 (mod 3) , B0 = 1 and B1 = 1.
2Bn�1 + Bn�2, if n ⌘ 2 (mod 3) ,
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Here, [1, 2, 1, 1, 2, 1]�!
b

=
17
12

=
A5

B5
where

�!
b = [1, 1, 2, 1, 1]. The sequences {An}

and {Bn} correspond to a generalized continuant; explanation of the mathematical
background of this example is forthcoming.

In order to study the general conditional sequences introduced in Section 1, we
now introduce a generalized continuant with an input of two-dimensional arrays
{ai,j | i, j � 0}.

Definition 1 (Generalized Continuant). Let K () = 1,K (ai,j) = ai,j , where
i, j are nonnegative integers, and for n > 2,

K (an,j , an�1,j , . . . , ai+1,j , ai,j)
= ai,jK (an,j , an�1,j , . . . , ai+1,j) + ai+1,j+1K (an,j , an�1,j , . . . , ai+2,j) .

For example, let us suppose that

[a0,1, . . . , a5,1] = [1, 2, 1, 1, 2, 1] and [a0,2, . . . , a5,2] = [2, 1, 1, 2, 1, 1],

then we can obtain K(a5,1, . . . , a0,1) = 34 and K(a4,1, . . . , a0,1) = 24. We em-
phasize that the definition of K depends on both input sequences. For example,
let [b0,1, . . . , b5,1] = [1, 2, 1, 1, 2, 1] and [b0,2, . . . , b5,2] = [2, 1, 1, 1, 2, 2]. Although
[b5,1, b4,1, b3,1] = [b2,1, b1,1, b0,1] = [1, 2, 1], we still have K(b5,1, b4,1, b3,1) = 6 6=
K(b2,1, b1,1, b0,1) = 4 because [b5,2, b4,2, b3,2] 6= [b2,2, b1,2, b0,2].

We note that this generalized continuant satisfies the following identity which
can serve as an alternative definition.

Theorem 2. For a positive integer n > 1, and 0  k  n � 1, the generalized
continuant satisfies

K (an,1, an�1,1, . . . , ak,1) = an,1K (an�1,1, . . . , ak,1) + an,2K (an�2,1, . . . , ak,1) .

Proof. We shall prove the formula by induction on the length of the generalized
continuant. By the definition of the continuant (Definition 1), we can write

K (ak+1,1, ak,1) = ak,1K (ak+1,1) + ak+1,2

= ak,1ak+1,1 + ak+1,2 = ak+1,1K (ak,1) + ak+1,2.

Hence it is true for the base case (length 2), that is simply the case n = k + 1. Let
us assume now that the formula holds for the generalized continuant of the above
form of length less than or equal to m (that is, n = m + k � 1). If we use the
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definition of continuant and the hypothesis of induction, we get

K (am+k,1, am+k�1,1, . . . , ak,1)
= ak,1K (am+k,1, am+k�1,1, . . . , ak+1,1)

+ak+1,2K (am+k,1, am+k�1,1, . . . , ak+2,1)
= ak,1 (am+k,1K (am+k�1,1, . . . , ak+1,1) +am+k,2K (am+k�2,1, . . . , ak+1,1))

+ak+1,2 (am+k,1K (am+k�1,1, . . . , ak+2,1) +am+k,2K (am+k�2,1, . . . , ak+2,1))
= am+k,1 (ak,1K (am+k�1,1, . . . , ak+1,1) +ak+1,2K (am+k�1,1, . . . , ak+2,1))

+am+k,2 (ak,1K (am+k�2,1, . . . , ak+1,1) +ak+1,2K (am+k�2,1, . . . , ak+2,1))
= am+k,1K (am+k�1,1, . . . , ak,1) + am+k,2K (am+k�2,1, . . . , ak,1) .

2

Similar to the classical continuant, by mathematical induction we can easily
establish the following connection between the generalized continuant and the gen-
eralized continued fraction.

Theorem 3. For any positive integer n,

[an,1, an�1,1, . . . , a0,1]�!b =
K (an,1, an�1,1, . . . , a0,1)

K (an�1,1, an�2,1, . . . , a0,1)
,

where
�!
b = [an,2, an�1,2, . . . , a1,2].

Proof. First we observe that the result is true for n = 0 and n = 1,

a0,1 =
K (a0,1)

K ()
and a1,1 +

a1,2

a0,1
=

K (a1,1, a0,1)
K (a0,1)

by the definition of the generalized continuant. Assume that the statement of the
theorem holds for n. By using hypothesis of the induction and Theorem 2 (taking
k = 0), we get

[an+1,1, an,1, . . . , a0,1]�!b1
= an+1,1 +

an+1,2

[an,1, an�1,1, . . . , a0,1]�!b2
= an+1,1 +

an+1,2

K (an,1, an�1,1, . . . , a0,1)
K (an�1,1, an�2,1, . . . , a0,1)

=
an+1,1K (an,1, an�1,1, . . . , a0,1) + an+1,2K (an�1,1, an�2,1, . . . , a0,1)

K (an,1, an�1,1, . . . , a0,1)

=
K (an+1,1, an,1, . . . , a0,1)
K (an,1, an�1,1, . . . , a0,1)
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where
�!
b1 = [an+1,2, an,2, . . . , a1,2] and

�!
b2 = [an,2, an�1,2, . . . , a1,2]. 2

For a continued fraction [an,1, an�1,1, . . . , a0,1]�!b with
�!
b = [an,2, an�1,2, . . . , a1,2],

the convergents
K (an,1, an�1,1, . . . , a0,1)

K (an�1,1, an�2,1, . . . , a0,1)
are

a0,1

1
,
a0,1a1,1 + a1,2

a0,1
,
a2,1 (a0,1a1,1 + a1,2) + a2,2 (a0,1)

a1,1 (a0,1) + a1,2
, . . . .

If successive convergents are found, with numerators A0, A1, A2, . . . and denomina-
tors B0, B1, B2, . . ., then the relevant recursive relations are

A0 = a0,1, A1 = a1,1a0,1 + a1,2 and An = an,1An�1 + an,2An�2 for n � 2,

and

B0 = 1, B1 = a0,1 and Bn = an�1,1Bn�1 + an�1,2Bn�2 for n � 2.

Let us define, for given positive integer r,

K(i)
1 = K (ai,1, ai�1,1, ai�2,1 . . . , a1,1, a0,1, ar�1,1, ..., ai+2,1, ai+1,1) , and

K(i)
2 = K (ai�1,1, ai�2,1, ai�3,1, . . . , a1,1, a0,1, ar�1,1, . . . , ai+2,1) ,

where as usual i is taken modulo r.

Theorem 4. We have, for i = 0, . . . , r � 1,

K(i)
1 + ai+1,2K

(i)
2 = K(i+1)

1 + ai+2,2K
(i+1)
2 .

Proof. By Theorem 2,

K(i+1)
1 = K (ai+1,1, ai,1, . . . , ai+3,1, ai+2,1)

= ai+1,1K (ai,1, . . . , ai+3,1, ai+2,1) + ai+1,2K (ai�1,1, ai�2,1, . . . , ai+2,1) .

Since K(i+1)
2 = K (ai,1, ai�1,1, . . . , ai+4,1, ai+3,1), we get

K(i+1)
1 + ai+2,2K

(i+1)
2

= ai+1,1K (ai,1, . . . , ai+3,1, ai+2,1) + ai+1,2K (ai�1,1, ai�2,1, . . . , ai+2,1)
+ai+2,2K (ai,1, ai�1,1, . . . , ai+4,1, ai+3,1) . (2)

By the definition of the continuant,

K(i)
1 = K (ai,1, ai�1,1, . . . , ai+2,1, ai+1,1)

= ai+1,1K (ai,1, ai�1,1, . . . , a0,1, ar�1,1, . . . , ai+2,1)
+ai+2,2K (ai,1, ai�1,1, . . . , a0,1, ar�1,1, . . . , ai+3,1) ,
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and since K(i)
2 = K (ai�1,1, ai�2,1, . . . , ai+3,1, ai+2,1), we get

K(i)
1 + ai+1,2K

(i)
2

= ai+1,1K (ai,1, ai�1,1, . . . , ai+2,1) + ai+2,2K (ai,1, ai�1,1, . . . , ai+3,1)
+ai+1,2K (ai�1,1, ai�2,1, . . . , ai+3,1, ai+2,1) . (3)

Thus, using (2) and (3), we get K(i)
1 + ai+1,2K

(i)
2 = K(i+1)

1 + ai+2,2K
(i+1)
2 , for

i = 0, . . . , r � 1. 2

Let us define K1 = K(0)
1 and K2 = K(0)

2 . By Theorem 4, we can write

K(i)
1 + ai+1,2K

(i)
2 = K1 + a1,2K2, for i = 0, . . . , r � 1.

The following theorem extends results in [2]. The author of [2] provides a combi-
natorial description; here, we give our results in terms of the generalized continuant.

Theorem 5. For any n � 2r, the sequence {vn} satisfies the following 2r-order
linear recurrence

vn = (K1 + a1,2K2) vn�r + (�1)r+1 (a0,2a1,2a2,2...ar�1,2) vn�2r.

Proof. By the definition of the sequence {vn}, we have

vmr+i = ai,1vmr+i�1 + ai,2vmr+i�2 = K (ai,1) vmr+i�1 + ai,2K () vmr+i�2.

If we substitute vmr+i�1 = ai�1,1vmr+i�2+ai�1,2vmr+i�3 in the above equality and
rearrange it, we get

vmr+i = (ai,1ai�1,1 + ai,2)vmr+i�2 + ai�1,2ai,1vmr+i�3

= K (ai,1, ai�1,1) vmr+i�2 + ai�1,2K (ai,1) vmr+i�3.

If we proceed in this way, we obtain

vmr+i = K (ai,1) vmr+i�1 + ai,2K () vmr+i�2

= K (ai,1, ai�1,1) vmr+i�2 + ai�1,2K (ai,1) vmr+i�3

= K (ai,1, ai�1,1, ai�2,1) vmr+i�3 + ai�2,2K (ai,1, ai�1,1) vmr�4

...
...

= K (ai,1, ai�1,1, . . . , ai+2,1, ai+1,1) vmr+i�r

+ai+1,2K (ai,1, ai�1,1, . . . , ai+2,1) vmr+i�r�1

= K(i)
1 vmr+i�r + ai+1,2K (ai,1, ai�1,1, . . . , ai+2,1) vmr+i�r�1. (4)

Now by the definition of the sequence, since mr + i � 2r + 2 ⌘ i + 2 (mod r), we
have

ai+2,2vmr+i�2r = vmr+i�2r+2 � ai+2,1vmr+i�2r+1

= K () vmr+i�2r+2 �K (ai+2,1) vmr+i�2r+1.
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Multiplying the above equation by ai+3,2, substituting

ai+3,2vmr+i�2r+1 = vmr+i�2r+3 � ai+3,1vmr+i�2r+2

in the above equality and arranging it, we obtain

ai+2,2ai+3,2vmr+i�2r

= ai+3,2vmr+i�2r+2 � ai+2,1ai+3,2vmr+i�2r+1

= �K (ai+2,1) vmr+i�2r+3 + (ai+2,1ai+3,1 + ai+3,2) vmr+i�2r+2

= �K (ai+2,1) vmr+i�2r+3 + K (ai+3,1, ai+2,1) vmr+i�2r+2.

If we proceed in this way, we get

ai+2,2vmr+i�2r = K () vmr+i�2r+2 �K (ai+2,1) vmr+i�2r+1

ai+2,2ai+3,2vmr+i�2r = �K (ai+2,1) vmr+i�2r+3

+K (ai+3,1, ai+2,1) vmr+i�2r+2

ai+2,2ai+3,2ai+4,2vmr+i�2r = K (ai+3,1, ai+2,1) vmr+i�2r+4

�K (ai+4,1, ai+3,1, ai+2,1) vmr+i�2r+3

and so on up to

ai+2,2ai+3,2 . . . ai+r,2vmr+i�2r

= (�1)rK (ai�1,1, ai�2,1, . . . , ai+3,1, ai+2,1) vmr+i�r

+(�1)r+1 K (ai,1, ai�1,1, . . . , ai+3,1, ai+2,1) vmr+i�r�1.

Multiplying the last equation by (�1)r ai+1,2, reducing the first subscript of the
coe�cients ai,j modulo r and rearranging the expression, we get

(�1)r a0,2a1,2a2,2 . . . ar�1,2vmr+i�2r (5)
= ai+1,2K (ai�1,1, ai�2,1, . . . , ai+3,1, ai+2,1) vmr+i�r

�ai+1,2K (ai,1, ai�1,1, . . . , ai+3,1, ai+2,1) vmr+i�r�1

= ai+1,2K
(i)
2 vmr+i�r

�ai+1,2K (ai,1, ai�1,1, . . . , ai+3,1, ai+2,1) vmr+i�r�1. (6)

Let n = mr + i; summing (4) and (6), we get

vn =
⇣
K(i)

1 + a1,2K
(i)
2

⌘
vn�r + (�1)r+1 (a0,2a1,2a2,2 . . . ar�1,2) vn�2r.

By Theorem 4, we get the result. 2

3. The Generating Function of the Sequence {vn}

The generating function for {vn} is

G (x) =
1X

m=0

vmxm.
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If we define

Gi (x) =
1X

m=0

vmr+ix
mr+i, i = 0, 1, . . . , r � 1,

then we can write

G (x) =
r�1X
i=0

Gi (x) . (7)

Theorem 6. The generating function of the sequence {vn} is

G (x) =
Pr�1

i=0

�
vixi + (vr+i �Avi)xr+i

�
1�Axr + (�1)r Bx2r

,

where

A = K1 + a1,2K2 and B =
r�1Y
i=0

ai,2.

Proof. Multiplying Gi (x) by 1 � Axr + (�1)r Bx2r for i = 0, . . . , r � 1 and using
Theorem 5 and Theorem 25.5.1 in [1], we get for i = 0, 1, . . . , r � 1,

Gi (x) =
vixi + (vr+i �Avi)xr+i

1�Axr + (�1)r Bx2r
. (8)

Hence, using (7) we get the desired result. 2

Example 7. For r = 3, the sequence {vn} satisfies v0 = 0, v1 = 1 and for n � 2

vn =

8<
:

a0,1vn�1 + a0,2vn�2, if n ⌘ 0 (mod 3) ,
a1,1vn�1 + a1,2vn�2, if n ⌘ 1 (mod 3) ,
a2,1vn�1 + a2,2vn�2, if n ⌘ 2 (mod 3) .

Let us find the generating function of the sequence {vn} for the given integer r = 3.
Since r = 3, using Definition 1 we have

K1 = K (a0,1, a2,1, a1,1) = a1,1K (a0,1, a2,1) + a2,2K (a0,1)
= a1,1 (a2,1K (a0,1) + a0,2K ()) + a2,2K (a0,1)
= a0,1a1,1a2,1 + a0,2a1,1 + a0,1a2,2,

and
K2 = K (a2,1) = a2,1.

Thus, we have

A = K1 + a1,2K2 = a0,1a1,1a2,1 + a0,2a1,1 + a0,1a2,2 + a1,2a2,1.

By Theorem 6, we get

G (x) =
P2

i=0

�
vixi + (v3+i �Avi)x3+i

�
1�Ax3 + (�1)3 Bx6

.
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Since v0 = 0, v1 = 1, v2 = a2,1, v3 = a0,1a2,1 + a0,2, v4 = a0,1a1,1a2,1 + a0,2a1,1 +
a1,2a2,1 and v5 = a0,1a1,1a2

2,1 + a0,2a1,1a2,1 + a1,2a2
2,1 + a0,1a2,1a2,2 + a0,2a2,2, we

finally obtain

G (x) =
x + a2,1x2 + (a0,1a2,1 + a0,2)x3 � a0,1a2,2x4 + a0,2a2,2x5

1� (a0,1a1,1a2,1 + a0,2a1,1 + a0,1a2,2 + a1,2a2,1)x3 � a0,2a1,2a2,2x6
.

4. The Extended Binet’s Formula of the Sequence {vn}

By Theorem 5, we can consider the conditional sequence {vn} as a constant coe�-
cient 2r-order linear recurrence for any positive integer s. So, we can find the matrix
representation of the sequence {vn} and we can use methods for linear recurrences
to obtain the extended Binet’s formula for the conditional sequence {vn}.

Let us define the 2r ⇥ 2r matrix

N =

2
66666664

0 1 0 . . . 0 . . . 0 0
0 0 1 . . . 0 . . . 0 0
0 0 0 . . . 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 . . . 0 . . . 0 1

(�1)r Qr�1
i=0 ai,2 0 0 . . . (K1 + a1,2K2) . . . 0 0

3
77777775

,

where K1 + a1,2K2 is the entry in the (2r)-th row and (r + 1)-th column. In fact,
N is the companion matrix for the polynomial

q (x) = x2r � (K1 + a1,2K2)xr � (�1)r
r�1Y
i=0

ai,2.

The polynomial q (x) is the characteristic polynomial of N . By using an inductive
argument, we can give the matrix representation of the conditional sequence {vn}:

Nn

2
6664

v0

v1
...

v2r�1

3
7775 =

2
6664

vn

vn+1
...

vn+2r�1

3
7775 . (9)

This matrix representation is important since it may be used to derive many inter-
esting properties of the conditional sequence {vn}.

Let µ1, µ2, . . . , µ2r be the eigenvalues of the matrix N . Let us assume that the
polynomial q (x) has no multiple roots, so these eigenvalues are all distinct. In this
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case, N can be diagonalized using the Vandermonde matrix

V (µ1, µ2 . . . , µ2r) =

2
666664

1 1 . . . 1 1
µ1 µ2 . . . µ2r�1 µ2r

µ2
1 µ2

2 . . . µ2
2r�1 µ2

2r
...

...
...

...
...

µ2r�1
1 µ2r�1

2 . . . µ2r�1
2r�1 µ2r�1

2r

3
777775

.

We can give the following theorem using the matrix methods in [9].

Theorem 8. Assume q (x) has roots µ1, µ2, . . . , µ2r and also assume the polynomial
q (x) has no multiple roots. Then, the Binet-like formula for the conditional sequence
{un} is vn =

P2r
i=1

µn
i

q0(µi)
, where q0is the derivative of q.

We can also give the following general extended Binet’s formula for the sequence
{vn} independent of whether q (x) has multiple roots or not.

Theorem 9. The terms of the sequence {vn} satisfy

vmr+i = (�1)r(m+1)

↵m � �m

↵� �
vr+i �B

↵m�1 � �m�1

↵� �
vi

�
,

where

↵ =
(�1)r A +

p
A2 � 4 (�1)r B

2
and � =

(�1)r A�
p

A2 � 4 (�1)r B

2
,

that is, ↵ and � are the roots of the polynomial p (z) = z2 � (�1)r Az + (�1)r B,
where A = K1 + a1,2K2 and B =

Qr�1
i=0 ai,2.

Proof. By (8), the generating function for the subsequence {vmr+i} is given by

Gi (x) =
vixi + (vr+i �Avi)xr+i

1�Axr + (�1)r Bx2r
.

Using the identities ↵ + � = (�1)r A, ↵ � � =
p

A2 � 4 (�1)r B, ↵� = (�1)r B,
(�1)r A↵m � ↵m+1 = �↵m and (�1)r A�m � �m+1 = ↵�m, we get

Gi (x) =
vixi + (vr+i �Avi)xr+i

1�Axr + (�1)r Bx2r

=
xi [vi + (vr+i �Avi)xr]

↵� �


↵

1� (�1)r ↵xr
� �

1� (�1)r �xr

�



INTEGERS: 13 (2013) 13

= xi [vi + (vr+i �Avi)xr]
1X

m=0

(�1)mr �
↵m+1 � �m+1

�
xmr

↵� �

= xi

" 1X
m=0

(�1)mr �
↵m+1 � �m+1

�
vi

↵� �
xmr

+
1X

m=0

(�1)mr �
↵m+1 � �m+1

�
(vr+i �Avi)

↵� �
xmr+r

#

= xi

"
vi +

1X
m=1

(�1)mr �
↵m+1 � �m+1

�
vi

↵� �
xmr

+(�1)r
1X

m=1

(�1)mr (↵m � �m) (vr+i �Avi)
↵� �

xmr

#

= xivi +
1X

m=1

(�1)mr

(�1)r (↵m � �m)

↵� �
vr+i

�
�
(�1)r A↵m � ↵m+1

�
�

�
(�1)r A�m � �m+1

�
↵� �

vi

#
xmr+i

=
1X

m=0

(�1)mr

(�1)r (↵m � �m)

↵� �
vr+i �

�↵m � ↵�m

↵� �
vi

�
xmr+i

=
1X

m=0

(�1)mr+r

(↵m � �m)

↵� �
vr+i �B

↵m�1 � �m�1

↵� �
vi

�
xmr+i.

Thus, we obtain

vmr+i = (�1)r(m+1)

↵m � �m

↵� �
vr+i �B

↵m�1 � �m�1

↵� �
vi

�
.

2

Corollary 10. If we take the values a0,2 = a1,2 = · · · = ar�1,2 = 1 in the se-
quence {vn} we get a special case the k-periodic Fibonacci sequence in [3]. Also,
substituting B = 1 in Theorem 6 and 9, we get Theorem 13 and Theorem 16 in [3],
respectively.

5. Conclusion

In this paper we consider the Fibonacci-like conditional sequences {vn} as given
in Equation (1). We define the concept of generalized continuant and use it to
show that {vn} satisfies a linear recurrence relation. We also derive generating
functions, matrix representations and extended Binet’s formulas for {vn} in terms of
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the generalized continuant. It would be interesting to find more useful applications
of the generalized continuant and generalized fractions.

Acknowledgement We thank the referee for helpful suggestions to improve the
presentation of this paper.
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