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1. Introduction, definitions and preliminaries

Throughout our paper, we use the following standard notation: N := {1,2,3,...} denotes the set of natural numbers,
No := N U {0}, Z denotes the set of integers, @ denotes the set of rational numbers, R denotes the set of real numbers, R*
denotes the set of positive real numbers and C denotes the set of complex numbers. We also assume that logz denotes
the principal branch of the multi-valued function logz with the imaginary part 3(logz) constrained by —n < J(logz) < .

For all 0 < k < n, let (n), = k!<;<l> (for example, see [31,32]).

Ozden [14] defined the following generating functions which are related to the unification of the Bernoulli, Euler and
Genocchi polynomials:
21K tke

b

n
pet —a

tx e t
b = ;yn,ﬁ(x; k7a>b)

gy(x,t;k,a,b) := o

(1)

Note that for x = 1, Eq. (1) reduces to the generating functions for the unification of the Bernoulli, Euler and Genocchi
numbers. In (1) we assume that if # = a, then | t |< 27 and if g # a,k € No,a,b € C\ {0}, then | t |< blog (£). Also, by using
the special values of a, b,k and § in (1), the polynomials Y, ;(x; k,a,b) provides us with a generalization and unification of
the Apostol-Bernoulli polynomials, Apostol-Euler polynomials and Apostol-Genocchi polynomials, respectively:

Bﬂ(xvﬂ) = yn.ﬁ(x;l, ],1),

En(X, ) = Vnp(x;0,-1,1)
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and
Gn(X, B) = Vnp(x;1,-1,1)

(cf. [2-34]. Furthermore, for the classical Bernoulli polynomials B, (x), the classical Euler polynomials E,(x) and the classical
Genocchi polynomials G,(x), we have

Bn(x) = By(x, 1),

En(X) = &n(x, 1)
and

Gn(x) = Gn(x,1)

(cf. [1-34] and the references cited in each of these earlier works). For x = 0, we have the classical Bernoulli numbers B,, the
classical Euler numbers E, and the classical Genocchi numbers G,, we have

B, = B,(0),

E, = E;(0)
and

Gn = Gy(0)

(cf. [1-36] and the references cited in each of these earlier works).

In analogy with the generating functions introduced by Ozden [14] and also [34] for the unification of the Apostol-type
numbers and polynomials, we define generating functions for these polynomials. Now, we modify and unify (1) as follows:
Let a,b € R (a # b). Then modification and unification of the Apostol-type polynomialef]_’,Z (x;k,a,b) of order v are defined by
means of the following generating function:

gkt .
M’(.V(taxvaﬂ b7 ﬂ) = <—ar> Zyn/} X k a, b) (2)

,Bbt n=0
b
‘tln <E) +Inp

andxeR.
We observe that

Y\%(0,k,a,b) = Y\ (k,a,b),

where

<271

which denotes modification and unification of the Apostol-type numbers of orderv. Therefore, the numbers Yi,f’,;(l<,a7b) are
defined by means of the following generating functions:

tkz‘lfk 0 )
(/sbf — ar> ZY (k,a, b 3)

n=|

Remark 1.1. By substituting k = 1 into (2), we have known results of [33]
BY(x; f; k.a,b) = V,}(x; 1,a,b)
(cf. see also [27,34]).
2. Some properties of the numbers Y ﬁ(lc a,b) and the polynomials Y{") s(%:I,a,b)
Here, by using generating functions, we give some properties of the numbers Yﬁ,’f}(k,a, b) and the polynomials

Y\ (x: k,a,b).
By using (1) and (2), we get

b\ * (xInb—Ina b
My (t,x,a,b; p) = (ln (a)) gﬂ<W,flﬂ <a>;k71,1>-
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Thus, we get

Ynp(x;k,a,b) = (ln <g>>n_kyn,,; (xlnlﬁ() ik, 1 1)

where Y, ;(x; k, a, b) denotes the Apostol-type polynomials (cf. [14,16,32]; see also the references cited in each of these earlier
works).

My, (t.x,1,61) => BY(x;
n=0

where
BO(x; ) = Yny(x;1,1,€)
denotes the Apostol-Bernoulli polynomials of order v (cf. [2-34]and the references cited in each of these earlier works).
Mo, (t,x,1,6;—1) i E¥) tn, (4)
n=0 n!
where
(-1)"EY (x) = Yn_1(x;k, 1,€)

denotes the Euler polynomials of order v (cf. [2-34]; see also the references cited in each of these earlier works).
Substituting x = 0 and v = 1 into (2) and using the Umbral Calculus convention, we derive a recurrence relation for the
modification and unification of the Apostol-type numbers, Y, ;(k, a, b). Therefore, we set

tkzl—k _ (Betlnb _ etlna)ev/,(k.a‘b)t.

From the above equation, we obtain

k = (tlnb)" & (tlna)"\& t"
tkol—k _ <ﬁz; . Z( g ) )Zynv/j(k,mb)n!.

Therefore

ot 2(;32( )b v, ka3 () anay ’m<kab>> .

n=0 j=0

By comparing the coefficients of t" on both sides of the above equation, we arrive at the following theorem:

Theorem 2.1. The following recurrence relation holds true:

n kg =
B(Yy(k,a,b) +Inb)" — (Y(k.a,b) + Ina) {2 K n=k

0 n#k.
where (Y;(k,a,b))™ is replaced conventionally by Yum(k,a,b).
By substituting n = 0 into Theorem 2.1, we find that
2
Yos(0,a,b) = -1
and
Yo_/;(l, a, b) =0
where f # 1. By substituting n = 1 into Theorem 2.1, we can easily calculate the numbers Y; 4(k, a, b) as follows:
If k=1, we have
1
Yis(1,a,b) = F-1
If k = 0, we have

2(—1)-2(BInb—1Ina)
(B-1) '

Consequently, applying Theorem 2.1, we can easily calculate all the numbers Y,(k, a,b).

Yl‘/f(ovaab) =
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By using (3), we get

ZYn”/jp (k,a, b ZYM (k,a,b) ZY“’ k,a, b

Therefore
SV ke Z(Z( ) )(k,a,b)Y? (kab))t
n=0 n

By comparing the coefficients of £ on both sides of the above equation, we arrive at the following theorem:

Theorem 2.2. The following recurrence relation holds true:

V- L n
Yy P (k. a,b) = Z(}) iy (k. a, b)Yn"m(k,a, b).

j=0
By applying Theorem 2.2, we can calculate all the numbers Yn”;” (k,a,b). For example, if we substitute n =1 and

v =p =1 into Theorem 2.2, we get
1

1
Y2k a,b) =" <J, ) Y s(k,a, b)Yy s(k,a,b).

=0
If k =1, we have
Y?(1,a,b) =
If k =0, we have
8(p—1)—-8(plnb—Ina)
(F-1)° '

Thus we are ready to generalize Theorem 2.2 as follows:

Y?)(0,a,b) =

Theorem 2.3. Let n,j;,j,,- - -,jr € No. Then we have

JiHa =N i | r
Yot kg by =y —(’1 tht [1Y\" (k.a,b).
[ v SR LY 1

Proof. By using (3), we get

gk o S (01409 +vr)
. Z 1 2 T k a, b)
—a

pb' 0

By using Theorem 2.2 and mathematical induction, we complete proof of theorem. O

By using (2) and (3), we easily arrive at the following theorem:

Theorem 2.4. Let n € Ng. The we have

Yy (x.k,a,b) = Z(’;) xI(xInb)" 7Y\ (k.ab).

Jj=0

3. PDEs for the generating functions

In this section, we give PDEs for the generating functions. By using these equations, we derive some derivative formulas
and recurrence relations of the modification and unification of the Apostol-type polynomials of order v. Taking derivative of (2),
with respect to x, we obtain the following PDE for the generating function:

T Mk,,(t x,k,a,b; B) = (tInb)"My,(t, x, k,a,b; p). (5)
Taking derivative of (2), with respect to 8, we obtain the following PDE for the generating function:

0 v
gﬁMk,ﬂ(L X, k> a, b7 /g) = - WMKH] (t,X + 17 k7 a, b ﬁ) (6)
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or
{%Mk,y(t,x, k,a,b; p) = B kMk,, 1(t,x+1,k,a,b; )My (t, k,a, b; B). (7)
Taking derivative of (2), with respect to t, we obtain the following PDE for the generating function:
%Mk,y(t,x,k,a,b; B) =@Mk‘,,(t,x, k,a,b;p) — zﬁ]h}ﬁ My o1 (t,x +1,k,a,b; B)
+211n,fltkaMky+1(txkabﬁ)+xlnkay(txkabﬁ) 8)

By using the above PDEs, we derive the following theorems.

Theorem 3.1. Let m and n be positive integers with n > m. Then we have

"
&—mY;,;(X,k,a, b) = m!<m>(lnb) s (%, k,a,b)

Proof. By using (5) with (2), we obtain

00 a tTl
Za— nﬁxkab ‘ Zm'( )lnb nmﬁ(x,k,a,b)m.

By comparing the coefficients of £ on both sides of the above equation, we obtain the result. O

Theorem 3.2. Let v and n be positive integers. Then we have

) 2%y
% Vi k @ b) = =S SV (1 k,a,b)
(")
or
3w 21ky mkngk
a—ﬁY;;(xkab) <n+k Z;( j >Ym '(x+1,k,a,b)Y), (k. a,b). ©)
p
k )

Proof. By using (6) with (2), we obtain

—k

NgE
%|®

=
Il
o

(xkab zlkZY”“ x+1kab)

Therefore

00 00 7]
Zag (x,k,a b) = —2”‘1/2(”—’:’() YV &+ 1k.a b)

n=0

By comparing the coefficients of £ on both sides of the above equation, we obtain the result. O
By using (7), we easily obtain the assertion (9) of Theorem 3.2.

Theorem 3.3 (Convolution recurrence relation). Let n € Ng. The following relationship hold true:

n+1- vk 2'gInb

T Yo (%, k. a,b) + YWD (x+ 1,k a,b)

T+ kN ks
(")

n+k
J

k-1 n+k .
=xIn bYEI'v’;(x7 k,a,b) + L)Z( > (In a)n+k+lijj(.'1//;+l)(x +1,k,a,b). (10)
]:

<n+k
k
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Proof. By using (8) with (2), after some elementary calculations, we obtain

tn—k

0 tn—l 1 1
;Y” xkabﬁ xlnbzynﬁxkab 7kaYnﬁxkab)——2 ﬁlnb;yw (kab)

- 2’( ok n+ k ] n+k+1 jY (v+1) 1 I b t"
+n2: " Z j (Ina) T (x+1,k,q, )—'
( k )

By comparing the coefficients of £ on both sides of the above equation, we obtain the result. O

Substituting a =k = v =1 and b = e into (10), we obtain the following corollary:

Corollary 3.1. Let n € Ng. The following relationship hold true:

BB (x+ 1, ) = (n+ 1)XBy(x, B) = 1B (X, B). (11)
Substituting g = 1 into (11) and using Theorem 2.2, we obtain the following corollary:

Corollary 3.2. Let n € Ng. The following relationship hold true:

n+1

Z(n ; 1>(JxJ + Bj(X))Bs1j = X(n+ 1)By(X) — By (). "

=0
Substituting x = 0 into (12), one can easily arrive at the following convolution recurrence relation for the Bernoulli
numbers:

Corollary 3.3. Let n € Ng. The following relationship hold true:

1 1 n+1 n+‘l
Bus + By +n+12( S BB =0, (13)

where By = 1.

Remark 3.1. A convolution recurrence relation in (13) give us modification of the Euler’s convolution recurrence relation for
the Bernoulli numbers:

1< /n
- ( . )BjBn—j = *Bn - Bn—ly
n = ]

where n > 1 (cf. [7,8,6,27,30]).
Substitutinga = v =1,k =0,8=—1 and b = e into (10), we obtain the following corollary:

Corollary 3.4.

EP (X + 1) = 2Eq.1(X) — 2XEq(x). (14)
By (14), we have

n

n

Z( ) >Ej(x + 1)En_j = 2Eq1(X) — 2XEn(X).

o \J

Substituting the following well-known identity
Ern(x+1) =2x" — Ep(x)

into the above equation, we easily obtain the following convolution recurrence relation for the Euler polynomials:
n

3 <;’ ) (2X" — En(X))En_j = 2En;1 (%) — 2XEp ().

j=0

Substituting x = 0 into the above equation, we arrive at the known result due to convolution recurrence relation for the Euler
numbers:
n

n
Z (] >EjEn—j = En - 2En+1

=

(cf. [7,8,6,27,30]).
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4. Identities related to the polynomials Y’ (x k,a,b) and p-Stirling type numbers

By using an approach similar to that of Srivastava [27] as well as some well-known properties of the Stirling numbers of
the second kind, we can derive some known and some new identities and formulas for the modification and unification of the
Apostol-type polynomials Yf.l”/z (x;k,a,b) of order v and the g-Stirling type numbers.

We need the following generating function for generalized -Stirling type numbers of the second kind, related to nonneg-
ative positive real parameters.

Definition 4.1 (cf. [25, p. 3, Definition 2.1]). Let a,b € R" (a # b), p € C and v € Ny. The generalized g-Stirling type numbers
of the second kind S(n, v;a, b; B) are defined by means of the following generating function:

Tl
n!

(ﬂb‘ @)’
fso(t;a,b; ) = ~——— ZS (n, va,b; )" (15)

By settinga=1and b =e in (15), we have the g-Stirling numbers of the second kind
S(n,v;1,e;4) =S(n, v; 1),
which are defined by means of the following generating function:

Uget*] iSn zx[)’

(cf. [9,27,30]). Substituting = 1 into above equation, we have the Stirling numbers of the second kind S(n, ;1) = S(n, v) (cf.
[7,9,19,27,29,30]).

In [25, p. 3, Theorem 2.2], Simsek gave the following formulas for the generalized g-Stirling type numbers of the second
kind S(n, v;a,b; B) :

Theorem 4.1. We have

1< (VN i . n
st a9 =53 1 )pgina s (v (16)
and
S(n, v;a,b; f) l'z (;)/}"(jlnb+(v—j)lna)". (17)
=0

Note that by setting a = 1 and b = e in the assertions (16) of Theorem 4.1, we have the following result:

Sn, v; ) = U,Z( ) Y(w-j.

The above relation has been studied by Srivastava [27] and Luo and Srivastava [9]. By setting f = 1 in the above equation, we
have the following well-known result for the classical Stirling numbers of the second kind:

v,Z( ) -

(cf. [1,6,5,7,9,19,22,25,27,30]).
In [25], Simsek constructed generating function of the generalized array type polynomials as follows: Let a,b € R, (a # b),
A€ Cand v € N.

) ) 1 t e\ Y pxt SN o, . t"
Bulx ti0,03) = 5 (b —a) B = 3 _syxiabif) (18)
The following definition provides a natural generalization and unification of the array polynomials:

Definition 4.2 [25]. Leta,b € R" (a # b), x € R, . € C and v € Ny. The generalized array type polynomials S}, (x; a, b; 1) can be
defined by

Sixabi ,Z ()2 (i (ar5) ) (19)
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Remark 4.1. The polynomials S’ (x;a,b; 2) may be also called generalized /-array type polynomials. By substituting x = 0
into (19), we arrive at (17):

85(0;a,b;2) = S(n, v;a,b; 4).
Settinga=A=1and b =e in (19), we have

Sy v,Z ( )H])

a result due to Chang and Ha [3, Eq-(3.1)], Simsek [22]. It is easy to see that
So(X) = Spx) =1,
So(x) ="

and for v > n,

Si(x) =0,
cf. [3, Eq-(3.1)].
By using (2) and (15), we derive the following functional equation:
2"Vl o
T Mkv(t x,a,b; B)fso(t;a,b; p) = b™. (20)

Theorem 4.2. Let n, k, v € N. Thus we have

If(“k”) (n+kv—1,v,a,b, )Y (x,k,a,b) = ("*’“’)M, (21)

k-1
=\ kv ) 2v& Ty,

Proof. By using (20), we get

Zu(l—k) 00 " ; e ”
i ;(xlnb) a=t ‘”ZSn v;a,b; ) 70Y xkab
Therefore
n+kv
2v(1—l<) 00 00 n+kv< ) t"
TZ(xlnb ZZ Sn+kv—1v,a,b )Y} (x, kab)

By comparing the coefficients of £ on both sides of the above equation, we obtain the result. O

Remark 4.2. Substituting k =a = 1,b = e into (21), we obtain known result due to [27, p. 420, Theorem 15] see also [9].
Substituting x = 0 into (21), we have the following results:

Corollary 4.1. If n = 0, then we have

kv
Z("l”>5(1w— Lv,a,b, gy (kab) =1

1=0

and if n # 0, then we obtain

n+kv
Z<n+l<y>s(n+kv—l, v,a,b, )Y} (k.a,b) = (22)

1=0 l

Remark 4.3. For k =a = 1,b = e, Eq. (22) reduces to the known result given recently by Srivastava [27, p. 417, Theorem 13].
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Corollary 4.2. We have

n -1
Yk, a,b) = ”‘)y ) ("*,"”)s<n+kv—z, v,a,b, p)Y{} (k.a,b).
1=0

(-1
Proof. By (21), we have

0= (k,a,b)S(0, v,a,b, p).

n+kv.p

ko1 <n + kv
l

>(+kv—lvab/3) Y (k,a,b) + Y
=0

By using the formula (16), we have

s©.v.abp L1

Substituting these numbers into the above equation, we obtain the desired result. O

Remark 4.4. By substituting v =a =k = = 1,b = e into Corollary 4.2, we obtain
_ 1 nxv-l n+uv
BY,(B) = —2p S S(n+v—1 v B
n+v(ﬁ) (ﬁ*l)v o l ( +v 7”7ﬁ) 1 (ﬁ)

(cf. (27, p. 418, Eq-(7.7)]). By same method of [27],for v =a=k = 8= 1,b=eand S(n, 1) = 1, Eq. (22) reduces to the follow-
ing well known results for the classical Bernoulli numbers: By = 1 and

n+1zl<n+l>

(cf. see for detail [27, p. 418, Eq-(7.8)]).
We now define modification and unification of the Apostol-type polynomials of order —v, Y! 5 )(x,k,a,b) by means of the
following generating function

ﬂbt - at ’ Xt
M _,(t,x,a,b; ) = b Zynﬁ (x,k,a, b)—A (23)

tkz‘l*k o

In work of Srivastava, we know that the Apostol-type polynomials of order —» are related to the Stirling-type numbers [27, p.
417).

Theorem 4.3. We have

01270 ko K gk ko
Y. (x.k,a,b) = ko) ( kv ) FZ()( j )sg v,a,b, p)x

First Proof of Theorem 4.3. By combing (23) with (15), we get

l‘l

00 n
ZOY;Tﬁ”(x,k,a,b)% = pr*D t*k”ZS (n,v,a,b, p) 'Z (xInb)" —'
=

Therefore

I & p12vkn kv 4k o £
D Vnkab)yy =3 | ——rp (2 St mab g,
n=0 n=0 (kﬂ)'( K ) j=0

v

Thus by comparing the coefficients of t" on both sides of the above equation, we arrive at the desired result. O

Theorem 4.4. We have

12D
— __8"M(x.q,b;)).
v , U, Uy 24
(kv)!<n+kv> (24)

kv

Ynﬁ (x,k,a,b) =
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Proof. By combining (23) with (18), we get

00 =) y'zﬂk 1) tn

ZY (x,k,a, b Z Sk (x;a,b; 1) .

—~ " (ko)! (n + kzz) n!
\ kv

Thus by comparing the coefficients of t" on the both sides of the above equation, we arrive at the desired result. O

First Proof of Theorem 4.3. By combing (23) with (15), we get

19 v(k=1) ntkv .
Vay'(xk.a.b) = —l%ﬁﬂrfjch>“WWﬁwwmmMH.
(kv)! ( ‘o > o\

Thus the proof is completed. O

Remark 4.5. If we substitute a = k = 1,b = e into Theorem 4.3, we have known result in [27, p. 419, Theorem 14].
By using (24) and (19), we can compute some values of the polynomials Yf[ﬂ”) (x,k,a,b) as follows (see [25]):

Y} (x,k,a,b) = Sh(x;a,b; B),

Yo, (x.k.a.b) = 2"V} (x: a.b: )

and
9k=1) k=1)

1y, L)
k'(l +k>31("’a’b’ﬂ) _k'<1 +k)
\ ok \ ok

If we substitute x = 0 into Theorem 4.3, we get the following result.

) (x.ka,b) = (~lna—xInb+ p(x+1)Inb).

Corollary 4.3. We have

prvk (n +kv

1
Skl \ ko ) Sn+kv,v,0,b, ) (25)

n,, (k a,b) =

Remark 4.6. By substituting v = k = n, into (25) we get

Yfiﬁ (n,a,b) =

(n2)! n?

By substituting v =n,a=k= =1 and b = e into (25), we have

-1
!zn(n—]) 2
L nen S(n+n*n,a,b,p).

B = <2n" ) Csonm, (26)

S(2n,n) denotes the Stirling numbers of the second kind [27, p. 419, Eq-(7.18)].

Remark 4.7. In (26), we easily see that
S(2n,n) = (n+ l)CnB,((")

where C, denotes the Catalan numbers (cf. [4]) which are defined by

1 2n
C”:n+1(n>'

In [34], Srivastava et al. defined the generalized Apostol-type Genocchi polynomials as follows:

2t v - 00 - tn
(ﬁbf+ar> c —;gn (X,ﬁ,a,b7c)m7
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(cf. see also [33], [30]). In the next theorem, we give relationship between the Stirling-type numbers and the generalized
Apostol-type Genocchi polynomials of order —u.

Theorem 4.5. We have

I RS ALY (A W v
S<n+v,kv;a2,b2;ﬁ2>:2 ( ’ )Z(},)S(JJrv,v;a,b;ﬁ)gi,,j)(ﬂ;a,b).

=0

Proof. By using (15), we get the following functional equation:

)Z,fg,,(Zt a®, b p?) = fso(t:a, b; B)fe_o(t;a, b; B), (27)
where
2t \7?
fotbabip) = (fg) =Yoo man)

~”)(B,a,b) denotes -Genocchi numbers of order —w, related to nonnegative real parameters.
By using (27), we obtain

‘l 00 tn 00 tn 00 —y tn
(Zt)ynz:;s(n,v;az,bz;ﬂ)m:E;S(n,v;a,b;ﬂ)m;gi, (B0 b) ;.
Therefore
n+ov\" 5 ¢
22 ( ) S(n+7/k7/a b*; ) ZZ( )S()+vvabﬂ) (ﬁab)—'
! n=0 j=0

Thus by comparing the coefficients of t" on both sides of the above equation, we arrive at the desired result. O

5. Identities related to the Eulerian type numbers and the Stirling type numbers

In this section, by using generating functions, we derive identities related to the Eulerian type numbers and the Stirling
type numbers.

In [25,24, p.10], Simsek constructed generating functions of the Eulerian type polynomials of higher order
H™ (x; u;a,b, c; 2) as follows:

n

ZH (x;u;a,b,c; B) % (28)

( f CX[

o

F™(t,x;u,a,b,c) =

where m € N and

m(0;u;a, b, ¢; B) = H™ (u; a,b; B),

denotes the Eulerian type numbers of higher order. By combining (15) with the above generating function, we derive the
following functional equation:

1 n
X t
G m) blme(t,l,b >§;H (e 1,b,bi )

By using this functional equation, we get

(xInb)" ZS(nm,l,b) ZH xu,l,bb)»)t—'.

By using Cauchy product in the above equation, we obtain

o0 o0 n n - tn
(xInb)" _ 2(2(1)S(Lm;Lb;ﬁ)Hé_i(x;u;1,b,b;ﬂ)>m

o0

n=0

n=0 =0

By comparing the coefficients of £ on both sides of the above equation, we arrive at the following theorem:
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Theorem 5.1.

G-1)" (xInb)" = Z "Vs(1,m;1,p,° H™ (x;u;1,b,b; B) (29)
m' o l kl PR} 7u n—[\"* ¥ L EH M
Substituting b = e, = 1 into (29), we have the following result:

Corollary 5.1.

G=1" o_ i(?)su, m)H"™ (x; u).

m! =
We now derive the following functional equations:

My (t,k,a,b; B) = (—1)"F\¥ (t XU, a,b )G;”(t,a,/s), (30)

where

’ 1T\ S gt
Gg’)(tvasﬁ): <ﬁaf—_‘l> :Zyg)(ﬁva)%

and a > 1 (cf. [25, p-21, Eq-(37)])

Mio(t,x = 0,0, b ) = 27 My, (26,5, Vab, b ) (31)
and
My, (t, v —x,a,b; ) = (=1)"" O p"a "My, (~t,x,a,b; ). (32)

Theorem 5.2. Let n — kv > 0. The following identity holds true:

1=0
kv

(_1)1/21/k 1 ) 7n—kv n—ky (o
WYW(X‘F v,kab)=Y" ;)M (Xvﬁvavgvb 1) Ynlko1(B: ). (33)

Proof. By combining (30) with (2) and (28), we get

n 00 a tn o0 tn
Zvnﬁ X k.a.b) = (1) 2700y (5 pra, g b 1) S V(B
o n! <~ n!
Therefore
v(k— = SR (v) a (v) tniky
)72M N Y (x k. a, b Z H, (x;ﬁ; a,E,b;l)ynf,(ﬂ,a) ;
n=0 n=0 |=

By comparing the coefficients of £ on both sides of the above equation, we arrive at the desired result. [

Remark 5.1. Substitutinga= v =k =1 and b = e into (33), we have

njrl]B(x+1 p) = 21:( )H,x/;)

By combining (31) w1th (2), after some elementary calculation, we arrive at the following theorem:

Theorem 5.3.

YO (x - v,k.a,b) = 2" ’”’Yn/g(j,k Vab, b)
By combining (32) with (2), after some elementary calculation, we arrive at the following theorem:
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Theorem 5.4. The following identity holds true:

v(1-k)y+n n

YV (v —x,k,a,b) = (=1) Z(;’)(vlna)""jY;’z,l (x,k,a,b). (34)

ﬂf/ j=0
Remark 5.2. Substitutinga= v =k =1 and b = e into (34), we have

Ba(1—x,8) = (=1)""Ba(x, )

(cf. [33,30,34]). If we set g =1 into the above equation, we have the following well-known result:
Ba(1 —X) = (~1)"Ba(x)

(cf. [7,30]).
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