## RESEARCH

## **Open Access**

# Unified representation of the family of *L*-functions

Hacer Ozden<sup>1\*</sup> and Yilmaz Simsek<sup>2</sup>

\*Correspondence: hozden@uludag.edu.tr 1 Department of Mathematics, Faculty of Art and Science, University of Uludag, Bursa, Turkey Full list of author information is available at the end of the article

### Abstract

The aim of this paper is to unify the family of *L*-functions. By using the generating functions of the Bernoulli, Euler and Genocchi polynomials, we construct unification of the *L*-functions. We also derive new identities related to these functions. We also investigate fundamental properties of these functions.

AMS Subject Classification: 11B68; 11S40; 11S80; 26C05; 30B40

**Keywords:** Bernoulli numbers; Bernoulli polynomials; Euler numbers; Euler polynomials; Genocchi numbers; Genocchi polynomials; Dirichlet *L*-functions; Hurwitz zeta function; Riemann zeta function

## 1 Introduction

The theory of the family of *L*-functions has become a very important part in the analytic number theory. In this paper, using a new type generating function of the family of special numbers and polynomials, we construct unification of the *L*-functions.

Throughout this presentation, we use the following standard notions  $\mathbb{N} = \{1, 2, ...\}$ ,  $\mathbb{N}_0 = \{0, 1, 2, ...\} = \mathbb{N} \cup \{0\}$ ,  $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ ,  $\mathbb{Z}^- = \{-1, -2, ...\}$ . Also, as usual  $\mathbb{Z}$  denotes the set of integers,  $\mathbb{R}$  denotes the set of real number and  $\mathbb{C}$  denotes the set of complex numbers. We assume that  $\ln(z)$  denotes the principal branch of the multi-valued function  $\ln(z)$  with the imaginary part  $\Im(\ln(z))$  constrained by  $-\pi < \Im(\ln(z)) \le \pi$ .

Recently, the first author [1] introduced and investigated the following generating functions which give a unification of the Bernoulli polynomials, Euler polynomials and Genocchi polynomials:

$$g_{a,b}(x;t,k,\beta) := \frac{2^{1-k}t^k e^{tx}}{\beta^b e^t - a^b} = \sum_{n=0}^{\infty} \mathcal{Y}_{n,\beta}(x;k,a,b) \frac{t^n}{n!},\tag{1}$$

where  $(|t| < 2\pi \text{ when } \beta = a; |t| < |b \log(\frac{\beta}{a})|$  when  $\beta \neq a; k \in \mathbb{N}_0; \beta \in \mathbb{C} (|\beta| < 1); a, b \in \mathbb{C} \setminus \{0\}$ .

For the special values of *a*, *b*, *k*, *b* and  $\beta$ , the polynomials  $\mathcal{Y}_{n,\beta}(x;k,a,b)$  provide us with a generalization and unification of the classical Bernoulli polynomials, Euler polynomials and Genocchi polynomials and also of the Apostol-type (Apostol-Bernoulli, Apostol-Euler, Apostol-Genocchi) polynomials.

**Remark 1.1** If we set k = a = b = 1 in (1), we get a special case of the generalized Bernoulli polynomials  $\mathcal{Y}_{n,\beta}(x, k, 1, 1)$ , that is, the so-called Apostol-Bernoulli polynomials  $\mathcal{B}_n(x, \beta)$ 

© 2013 Ozden and Simsek; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



generated by

$$\frac{t}{\beta e^t - 1} e^{xt} = \sum_{n=0}^{\infty} \mathcal{B}_n(x, \beta) \frac{t^n}{n!}$$

(*cf.* [1–28]).

**Remark 1.2** By substituting k + 1 = -a = b = 1 in (1), we are led to Apostol-Euler polynomials  $\mathcal{E}_n(x, \beta)$  which are defined by means of the following generating function:

$$\frac{2}{\beta e^t + 1} e^{xt} = \sum_{n=0}^{\infty} \mathcal{E}_n(x, \beta)$$

(*cf.* [1–28]).

**Remark 1.3** Setting k = -a = b = 1 into (1), we get the Apostol-Genocchi polynomials  $G_n(x, \beta)$  which are defined by means of the following generating function:

$$\frac{2t}{\beta e^t + 1} e^{xt} = \sum_{n=0}^{\infty} \mathcal{G}_n(x,\beta) \frac{t^n}{n!}$$

(cf. [1-28]).

In terms of a Dirichlet character  $\chi$  of conductor  $f \in \mathbb{N}$ , Ozden *et al.* [16] extended and investigated the generating functions of the generalized Bernoulli, Euler and Genocchi numbers and the generalized Bernoulli, Euler and Genocchi polynomials with parameters *a*, *b*,  $\beta$  and *k*. Such  $\chi$ -extended polynomials and  $\chi$ -extended numbers are useful in many areas of mathematics and mathematical physics.

**Definition 1.4** (Ozden *et al.* [16, p.2783]) Let  $\chi$  be a Dirichlet character of conductor  $f \in \mathbb{N}$ . Then the aforementioned  $\chi$ -extended generalized Bernoulli-Euler-Genocchi numbers  $\mathcal{Y}_{n,\chi,\beta}(k,a,b)$  and the aforementioned  $\chi$ -extended generalized Bernoulli-Euler-Genocchi polynomials  $\mathcal{Y}_{n,\chi,\beta}(x;k,a,b)$  are given by the following generating functions:

$$F_{\chi,\beta}(t;k,a,b) = 2^{1-k} t^k \sum_{j=1}^f \frac{\chi(j)(\frac{\beta}{a})^{bj} e^{jt}}{\beta^{bf} e^{ft} - a^{bf}} = \sum_{n=0}^\infty \mathcal{Y}_{n,\chi,\beta}(k,a,b) \frac{t^n}{n!},$$
(2)

where  $(|t| < 2\pi \text{ when } \beta = a; |t| < |b \log(\frac{\beta}{a})|$  when  $\beta \neq a; k \in \mathbb{N}_0; \beta \in \mathbb{C} (|\beta| < 1); a, b \in \mathbb{C} \setminus \{0\}$  and

$$\mathfrak{H}_{\chi,\beta}(x,t;k,a,b) = F_{\chi,\beta}(t,k;a,b)e^{tx} = \sum_{n=0}^{\infty} \mathcal{Y}_{n,\chi,\beta}(x;k,a,b)\frac{t^n}{n!}$$
(3)

 $(|t| < 2\pi \text{ when } \beta = a; |t| < |b \log(\frac{\beta}{a})| \text{ when } \beta \neq a; k \in \mathbb{N}_0; \beta \in \mathbb{C} (|\beta| < 1); a, b \in \mathbb{C} \setminus \{0\}).$ 

**Remark 1.5** Substituting  $k = a = b = \beta = 1$  into (2), we are led immediately to the generating function of the generalized Bernoulli numbers which are defined by means of the

following generating function:

$$\sum_{j=1}^{f} \frac{\chi(j)te^{jt}}{e^{ft}-1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n!}$$
(4)

(cf. [1–26]).

#### 2 Unification of the *L*-functions

Our aim in this section is to apply the Mellin transformation to the generating function (3) of the polynomials  $\mathcal{Y}_{n,\chi,\beta}(x;k,a,b)$  in order to construct a unification of the various members of the family of the *L*-functions and to thereby interpolate  $\mathcal{Y}_{n,\chi,\beta}(x;k,a,b)$  for negative integer values of *n*.

Throughout this section, we assume that  $\beta \in \mathbb{C}$  with  $|\beta| < 1$  and  $s \in \mathbb{C}$ .

By substituting (1) into (2), we obtain the following functional equation:

$$F_{\chi,\beta}(t;k,a,b) = \frac{1}{f^k} \sum_{j=1}^f \chi(j) \left(\frac{\beta}{a}\right)^{bj} g_{a^f,b}\left(\frac{j}{f},tf;k,\beta^f\right).$$
(5)

By using this functional equation, we arrive at the following theorem.

**Theorem 2.1** Let  $\chi$  be a Dirichlet character of conductor f. Then we have

$$\mathcal{Y}_{n,\chi,\beta}(k,a,b) = f^{n-k} \sum_{j=1}^{f} \chi(j) \left(\frac{\beta}{a}\right)^{bj} \mathcal{Y}_{n,\beta}\left(\frac{j}{f};k,a^{f},b\right).$$
(6)

By using (5), we modify (3) as follows:

$$\mathfrak{H}_{\chi,\beta}(x,t;k,a,b) = \frac{1}{f^k} \sum_{j=1}^f \chi(j) \left(\frac{\beta}{a}\right)^{bj} g_{a^f,b}\left(\frac{j+x}{f},tf;k,\beta^f\right).$$
(7)

By using (7), we derive the following result.

**Corollary 2.2** Let  $\chi$  be a Dirichlet character of conductor  $f \in \mathbb{N}$ . Then we have

$$\mathcal{Y}_{n,\chi,\beta}(x;k,a,b) = f^{n-k} \sum_{j=1}^{f} \chi(j) \left(\frac{\beta}{a}\right)^{bj} \mathcal{Y}_{n,\beta^{f}}\left(\frac{j+x}{f};k,a^{f},b\right).$$
(8)

By applying the Mellin transformation to the generating function (1), Ozden *et al.* [16, p.2784 Equation (4.1)] gave an integral representation of the unified zeta function  $\zeta_{\beta}(s, x; k, a, b)$ :

$$\zeta_{\beta}(s,x;k,a,b) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-k-1} g_{a,b}(x;-t;k,\beta) dt \quad \left(\min\{\mathfrak{N}(s),\mathfrak{N}(x)\}>0\right),\tag{9}$$

where the additional constraint  $\Re(x) > 0$  is required for the convergence of the infinite integral, which is given in (9), at its upper terminal. By making use of the above integral

representation, Ozden *et al.* [16, p.2784 Equation (4.1)] defined the unified zeta function  $\zeta_{\beta}(s, x; k, a, b)$  as follows:

$$\zeta_{\beta}(s,x;k,a,b) = \left(-\frac{1}{2}\right)^{k-1} \sum_{m=0}^{\infty} \frac{\beta^{bm}}{a^{b(m+1)}(m+x)^s} \quad \left(\beta \in \mathbb{C}(|\beta| < 1); s \in \mathbb{C}(\Re(s) > 1)\right).$$
(10)

By applying the Mellin transformation to the generating function (7), we have the following integral representation of the unified two-variable *L*-functions  $L_{\chi,\beta}(s,x;k,a,b)$ :

$$L_{\chi,\beta}(s,x;k,a,b) = \sum_{j=1}^{f} \frac{\chi(j)(\frac{\beta}{a})^{bj}}{f^k \Gamma(s)} \int_0^\infty t^{s-k-1} g_{a^f,b}\left(\frac{j+x}{f}, -tf;k,\beta^f\right) dt$$

$$\left(\min\{\Re(s),\Re(x)\} > 0\right) \tag{11}$$

in terms of the generating function  $\mathfrak{H}_{\chi,\beta}(x,t;k;a,b)$  defined in (7). By substituting (9) into (11), we obtain

$$L_{\chi,\beta}(s,x;k,a,b) = \frac{1}{f^{k+s}} \sum_{j=1}^{f} \chi(j) \left(\frac{\beta}{a}\right)^{bj} \zeta_{\beta^f}\left(s,\frac{j+x}{f};k,a^f,b\right)$$
(12)

where  $(\beta \in \mathbb{C} (|\beta| < 1); s \in \mathbb{C} (\Re(s) > 1))$ .

Consequently, by making use of (10) and (12), we are ready to define a two-variable unification of the Dirichlet-type *L*-functions  $L_{\chi,\beta}(s,x;k,a,b)$  as follows.

**Definition 2.3** Let  $\chi$  be a Dirichlet character of conductor  $f \in \mathbb{N}$ . For  $s, \beta \in \mathbb{C}$  ( $|\beta| < 1$ ), we define a two-variable unified *L*-function  $L_{\chi,\beta}(s, x; k, a, b)$  by

$$L_{\chi,\beta}(s,x;k,a,b) = f^{-k} \left(-\frac{1}{2}\right)^{k-1} \sum_{m=0}^{\infty} \frac{\beta^{bm} \chi(m)}{a^{b(m+f)} (m+x)^s} \quad \left(\beta \in \mathbb{C} \left(|\beta| < 1\right); \Re(s) > 1\right).$$
(13)

**Remark 2.4** If we substitute x = 1 into (13), we get the unified *L*-function

$$L_{\chi,\beta}(s;k,a,b) := L_{\chi,\beta}(s,1;k,a,b)$$

by

$$L_{\chi,\beta}(s;k,a,b) = f^{-k} \left(-\frac{1}{2}\right)^{k-1} \sum_{m=1}^{\infty} \frac{\beta^{bm} \chi(m)}{a^{b(m+f)} m^s},$$

where  $(\Re(s) > 1, \beta \in \mathbb{C} (|\beta| < 1))$ .

**Remark 2.5** Upon substituting k = a = b = 1 and  $\beta = \frac{\xi}{u}$  into (13), we arrive at the interpolation function for twisted generalized Eulerian numbers and polynomials, which is given as follows:

$$l_1\left(\frac{u}{\xi},s,\chi\right) = L_{\chi,\frac{\xi}{u}}(s,x;1,1,1),$$

where, for a positive integer  $r, \xi$  is the *r*th root of 1.

$$l_1\left(\frac{u}{\xi},s;\chi\right) = \sum_{m=0}^{\infty} \left(\frac{\xi}{u}\right)^m \frac{\chi(m)}{(m+x)^s}$$

(cf. [18]).

**Remark 2.6** Substituting x = 1 into (13), we get a unification of the *L*-functions

$$L_{\chi,\beta}(s,1;k,a,b)=L_{\chi,\beta}(s;k,a,b).$$

Substituting  $\chi \equiv 1$  into (13), we get a unification  $\zeta_{\beta}(s, x; k, a, b)$  of the Hurwitz-type zeta function which is given in (10). We also note that both the Hurwitz (or generalized) zeta function

$$\zeta(s,x) = \zeta_1(s,x;1,1,1) = \sum_{n=0}^{\infty} \frac{1}{(n+x)^s}$$

(cf. [27, 28]) and the Riemann zeta function

$$\zeta(s) = \zeta_1(s,1;1,1,1) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

are obvious special cases of the unified zeta function  $\zeta_{\beta}(s, x; k, a, b)$  (cf. [16, 27, 28]). The relationship between the unified zeta function and the Hurwitz-Lerch zeta function  $\Phi(z, s, a)$ was given by Ozden et al. [16]:

$$\zeta_{\beta}(s,x;k,a,b) \coloneqq \left(-\frac{1}{2}\right)^{k-1} a^{-b} \Phi\left(\frac{\beta^{b}}{a^{b}},s,x\right),\tag{14}$$

where the Hurwitz-Lerch zeta function is defined by

$$\Phi(z,s,x)=\sum_{n=0}^{\infty}\frac{z^n}{(n+x)^s},$$

which converges for  $(x \in \mathbb{C} \setminus \mathbb{Z}_0^-, s \in \mathbb{C}$  when |z| < 1;  $\Re(s) > 1$  when |z| = 1), where as usual

$$\mathbb{Z}_0^- = \mathbb{Z}^- \cup \{0\}$$

(cf. [27, 28]).

A relationship between the functions  $L_{\chi,\beta}(s,x;k,a,b)$  and  $\zeta_{\beta}(s,x;k,a,b)$  is provided by the next theorem.

**Theorem 2.7** Let  $s \in \mathbb{C}$ . Let  $\chi$  be a Dirichlet character of conductor  $f \in \mathbb{N}$ . Then we have

$$L_{\chi,\beta}(s,x;k,a,b) = f^{-s-k} \sum_{j=1}^{f} \left(\frac{\beta}{a}\right)^{jb} \chi(j) \zeta_{\beta f}\left(s,\frac{j+x}{f};k,a^{f},b\right).$$
(15)

*Proof* Substituting m = nf + j, j = 1, 2, ..., f,  $n = 0, ..., \infty$  into (13), we obtain

$$L_{\chi,\beta}(s,x;k,a,b) = \left(-\frac{1}{2}\right)^{k-1} f^{-s-k} \sum_{j=1}^{f} \left(\frac{\beta}{a}\right)^{jb} \chi(j) \sum_{n=0}^{\infty} \frac{\beta^{bnf}}{a^{bnf}(n+\frac{j+x}{f})^s}.$$

After some algebraic manipulations, we arrive at the desired result.

**Remark 2.8** Substituting a = b = k = 1 into (13), we have

$$L_{\chi,\beta}(s,x;1,1,1) = \sum_{m=0}^{\infty} \frac{\beta^m \chi(m)}{(m+x)^s} \quad \left(\Re(s) > 1, \beta \in \mathbb{C}(|\beta| < 1)\right)$$

which interpolates the Apostol-Bernoulli polynomials attached to the Dirichlet character, which are given by means of the following generating functions:

$$\sum_{j=1}^f \frac{\chi(j)t\beta^j e^{t(j+x)}}{\beta^f e^{tf} - 1} = \sum_{n=0}^\infty \mathcal{B}_{n,\chi}(x,\beta) \frac{t^n}{n!}$$

Let *f* be an odd integer. If we set a = -1 and k = 0 into (13), then we have

$$L_{\chi,\beta}(s,x;1,-1,1)=2\sum_{m=1}^{\infty}(-1)^m\frac{\chi(m)\beta^m}{(m+x)^s}\quad \big(\Re(s)>1,\beta\in\mathbb{C}\big(|\beta|<1\big)\big),$$

which interpolate the Apostol-Euler polynomials attached to the Dirichlet character, which are defined by the following generating functions:

$$\sum_{j=1}^f \frac{2\chi(j)\beta^j e^{t(j+x)}}{\beta^f e^{tf} + 1} = \sum_{n=0}^\infty \mathcal{E}_{n,\chi}(x,\beta) \frac{t^n}{n!}$$

(cf. [1–29]).

By using (15) and (14), we arrive at the following result.

**Corollary 2.9** Let  $s \in \mathbb{C}$ . Let  $\chi$  be a Dirichlet character of conductor  $f \in \mathbb{N}$ . Then we have

$$L_{\chi,\beta}(s,x;k,a,b) = \left(-\frac{1}{2}\right)^{k-1} a^{-fb} f^{-s-k} \sum_{j=1}^{f} \left(\frac{\beta}{a}\right)^{jb} \chi(j) \Phi\left(\frac{\beta^{fb}}{a^{fb}},s,\frac{j+x}{f}\right).$$

**Theorem 2.10** Let  $\chi$  be a Dirichlet character of conductor f. Let n be a positive integer. Then we have

$$L_{\chi,\beta}(1-n,x;k,a,b) = \frac{(-1)^k}{f} \frac{(n-1)!}{(n+k-1)!} \mathcal{Y}_{n+k-1,\chi,\beta}(x;k,a,b).$$
(16)

*Proof* By substituting s = 1 - n into (15), we get

$$L_{\chi,\beta}(1-n,x;k,a,b) = f^{n-1-k} \sum_{j=1}^{f} \left(\frac{\beta}{a}\right)^{jb} \chi(j) \zeta_{\beta^{f}}\left(1-n,\frac{j+x}{f};k,a^{f},b\right).$$

$$L_{\chi,\beta}(1-n,x;k,a,b) = (-1)^k \frac{(n-1)!}{(n+k-1)!} f^{n-1-k} \sum_{j=1}^f \left(\frac{\beta}{a}\right)^{jb} \chi(j) \mathcal{Y}_{n+k-1,\beta}\left(\frac{j+x}{f};k,a,b\right).$$

By substituting (8) into the above, we arrive at the desired result.

**Remark 2.11** The two-variable Dirichlet *L*-function and the Dirichlet *L*-function are obvious special cases of the unified Dirichlet-type *L*-functions  $L_{\chi,\beta}(s,x;k,a,b)$  defined by (13). We thus have (*cf.* [13])

$$L(s,x;\chi) = \sum_{m=0}^{\infty} \frac{\chi(m)}{(m+x)^s}$$

and

$$L(s;\chi)=\sum_{m=1}^{\infty}\frac{\chi(m)}{m^{s}},$$

where  $\Re(s) > 1$ . By analytic continuation, this function can be extended to a meromorphic function on the whole complex plane. We have

$$L(1-n;\chi)=-\frac{B_{n,\chi}}{n},$$

where  $n \in \mathbb{Z}^+$  and  $B_{n,\chi}$ , the usual generalized Bernoulli number, is defined by (4). The Dirichlet *L*-function is used to prove the theorem on primes in arithmetic progressions. Dirichlet shows that  $L(s; \chi)$  is non-zero at s = 1. Furthermore, if  $\chi$  is a principal character, then the corresponding Dirichlet *L*-function has a simple pole at s = 1 (*cf.* [6, 7, 9, 18, 24, 27, 28, 30, 31]).

#### **3** Applications

In this section, by using (16) and the following formula, which was proved by Ozden *et al.* [16, Theorem 5, Equation (3.10)]

$$\mathcal{Y}_{n,\chi,\beta}(x;k,a,b) = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} \mathcal{Y}_{j,\chi,\beta}(k,a,b),$$
(17)

we construct a meromorphic function involving a unified family of *L*-functions. Therefore, using (16) and (17),

$$L_{\chi,\beta}(1-n,x;k,a,b) = \frac{x^{n+k-1}}{f \prod_{l=0}^{k-1} (n+l)} \sum_{j=0}^{n+k-1} \binom{n+k-1}{j} \frac{1}{x^j} \mathcal{Y}_{j+k-1,\chi,\beta}(k,a,b).$$

From the above equation, we arrive at the following theorem.

**Theorem 3.1** Let  $x \neq 0$ . Let  $\chi$  be a Dirichlet character of conductor f. Then we have

$$L_{\chi,\beta}(s,x;k,a,b)=\frac{x^{k-s}}{f\prod_{l=0}^{k-1}(s-1-l)}\sum_{j=0}^{\infty}\binom{k-s}{j}\frac{1}{x^j}\mathcal{Y}_{j+k-1,\chi,\beta}(k,a,b).$$

The function  $L_{\chi,\beta}(s,x;k,a,b)$  is an analytic function at s = 0. We now compute the value of this function at this point as follows:

$$L_{\chi,\beta}(0,x;k,a,b) = \frac{x^k}{(-1)^k f \prod_{l=0}^{k-1} (1+l)} \sum_{j=0}^k \binom{k}{j} \frac{1}{x^j} \mathcal{Y}_{j+k-1,\chi,\beta}(k,a,b).$$

The function  $L_{\chi,\beta}(s,x;k,a,b)$  is a meromorphic function. This function has simple poles which are

$$s = 1, 2, 3, \ldots, k.$$

The residues of this function at the simple poles at s = 1 and s = k are given, respectively, as follows:

$$\operatorname{Res}_{s=1}\left\{L_{\chi,\beta}(s,x;k,a,b)\right\} = \frac{x^{k-1}}{f(-1)^k \prod_{l=0}^{k-1}(2+l)} \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{1}{x^j} \mathcal{Y}_{j+k-1,\chi,\beta}(k,a,b)$$

and

$$\operatorname{Res}_{s=k}\left\{L_{\chi,\beta}(s,x;k,a,b)\right\} = \frac{\mathcal{Y}_{k-1,\chi,\beta}(k,a,b)}{\int \prod_{l=0}^{k-2} (k-1-l)}$$

**Remark 3.2** Simsek (*cf.* [20, 21]) defined a twisted two-variable *L*-function  $L_{\xi,q}^{(h)}(s, x; \chi)$  as follows:

$$L_{\xi,q}^{(h)}(s,x;\chi) = \sum_{m=0}^{\infty} \frac{\chi(m)\phi_{\xi}(m)q^{hm}}{(x+m)^s} - \frac{\log q^h}{s-1} \sum_{m=0}^{\infty} \frac{\chi(m)\phi_{\xi}(m)q^{hm}}{(x+m)^{s-1}}$$

where  $q \in \mathbb{C}$  (|q| < 1);  $\xi^r = 1$  ( $r \in \mathbb{Z}$ );  $\xi \neq 1$ . Observe that if  $\xi = 1$ , then  $L_{\xi,q}^{(h)}(s, x; \chi)$  is reduced to the work of Kim [9].

Relationship between the function  $L_{\chi,\beta}(s,x;k,a,b)$  and  $L_{\xi,q}^{(h)}(s,x;\chi)$  is given as the following result.

**Corollary 3.3** Let  $\chi$  be a Dirichlet character of conductor f. Then we have

$$L^{(b)}_{1,\frac{\beta b}{a^b}}(s,x;\chi) = (-2)^k a^{bf} f^k \left( L_{\chi,\beta}(s,x;k,a,b) - \frac{\log q^h}{s-1} L_{\chi,\beta}(s-1,x;k,a,b) \right).$$

We conclude our present investigation by remarking that the existing literature contains several interesting generalizations and extensions of the Hurwitz-Lerch zeta function  $\Phi(z, s, a)$ , Hurwitz zeta function  $\zeta(s, x)$  and *L*-function (*cf.* [1–30]); see also the references cited in each of these earlier works.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

Both authors completed the paper together. Both authors read and approved the final manuscript.

#### Author details

<sup>1</sup>Department of Mathematics, Faculty of Art and Science, University of Uludag, Bursa, Turkey. <sup>2</sup>Department of Mathematics, Faculty of Science, Akdeniz University, Campus, Antalya, 07058, Turkey.

#### Acknowledgements

Dedicated to Professor Hari M Srivastava.

Both authors are partially supported by Research Project Offices Akdeniz Universities and the Commission of Scientific Research Projects of Uludag University Project number UAP(F) 2011/38 and 2012/16. We would like to thank referees for their valuable comments.

#### Received: 5 December 2012 Accepted: 4 February 2013 Published: 21 February 2013

#### References

- 1. Ozden, H: Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials. AIP Conf. Proc. **1281**, 1125-1128 (2010)
- 2. Choi, J, Srivastava, HM: Some applications of the gamma and polygamma functions involving convolutions of the Rayleigh functions, multiple Euler sums and log-sine integrals. Math. Nachr. 282, 1709-1723 (2009)
- Choi, J, Jang, DS, Srivastava, HM: A generalization of the Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. 19, 65-79 (2008)
- 4. Garg, M, Jain, K, Srivastava, HM: Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch zeta functions. Integral Transforms Spec. Funct. **17**, 803-815 (2006)
- Karande, BK, Thakare, NK: On the unification of Bernoulli and Bernoulli polynomials. Indian J. Pure Appl. Math. 6, 98-107 (1975)
- Kim, YH, Kim, W, Jang, LC: On the q-extension of Apostol-Euler numbers and polynomials. Abstr. Appl. Anal. 2008, Article ID 296159 (2008)
- 7. Kim, T, Rim, SH, Simsek, Y, Kim, D: On the analogs of Bernoulli and Euler numbers, related identities and zeta and L-functions. J. Korean Math. Soc. **45**, 435-453 (2008)
- 8. Kim, T: A new approach to q-zeta function. Adv. Stud. Contemp. Math. 11, 157-162 (2005)
- 9. Kim, T: A new approach to p-adic q-L-function. Adv. Stud. Contemp. Math. 12, 61-72 (2006)
- 10. Kim, T: On *p*-adic *q*-*L*-functions and sums of powers. Discrete Math. 252, 179-187 (2002)
- 11. Kim, T: On p-adic q-L-functions and sums of powers. Discrete Math. 252, 179-187 (2002)
- 12. Kim, T: Multiple p-adic L-function. Russ. J. Math. Phys. 13, 151-157 (2006)
- 13. Kim, T, Rim, SH: A note on two variable Dirichlet L-function. Adv. Stud. Contemp. Math. 10, 1-7 (2005)
- 14. Luo, QM, Srivastava, HM: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials. J. Math. Anal. Appl. 308, 290-302 (2005)
- Ozden, H, Simsek, Y: A new extension of *q*-Euler numbers and polynomials related to their interpolation functions. Appl. Math. Lett. 21, 934-939 (2008)
- Ozden, H, Simsek, Y, Srivastava, HM: A unified presentation of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials. Comput. Math. Appl. 60, 2779-2787 (2010)
- 17. Ráducanu, D, Srivastava, HM: A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function. Integral Transforms Spec. Funct. **18**, 933-943 (2007)
- 18. Simsek, Y: q-analogue of the twisted I-series and q-twisted Euler numbers. J. Number Theory 110, 267-278 (2005)
- Simsek, Y: Theorems on twisted *L*-functions and twisted Bernoulli numbers. Adv. Stud. Contemp. Math. 11, 205-218 (2005)
- 20. Simsek, Y: Twisted (*h*, *q*)-Bernoulli numbers and polynomials related to twisted (*h*, *q*)-zeta function and *L*-function. J. Math. Anal. Appl. **324**, 790-804 (2006)
- 21. Simsek, Y: Twisted *p*-adic (*h*, *q*)-*L*-functions. Comput. Math. Appl. 59, 2097-2110 (2010)
- 22. Simsek, Y, Srivastava, HM: A family of *p*-adic twisted interpolation functions associated with the modified Bernoulli numbers. Appl. Math. Comput. **216**, 2976-2987 (2010)
- 23. Srivastava, HM, Ozden, H, Cangul, IN, Simsek, Y: A unified presentation of certain meromorphic functions related to the families of the partial zeta type functions and the *L*-functions. Appl. Math. Comput. **219**, 3903-3913 (2012)
- 24. Srivastava, HM, Kim, T, Simsek, Y: *q*-Bernoulli numbers and polynomials associated with multiple *q*-zeta functions and basic *L*-series. Russ. J. Math. Phys. **12**, 241-268 (2005)
- Srivastava, HM, Garg, M, Choudhary, S: A new generalization of the Bernoulli and related polynomials. Russ. J. Math. Phys. 17, 251-261 (2010)
- 26. Srivastava, HM, Garg, M, Choudhary, S: Some new families of generalized Euler and Genocchi polynomials. Taiwan. J. Math. **15**, 283-305 (2011)
- 27. Srivastava, HM, Choi, J: Series Associated with the Zeta and Related Functions. Kluwer Academic, Dordrecht (2001)
- 28. Srivastava, HM, Choi, J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
- 29. Apostol, TM: On the Lerch zeta function. Pac. J. Math. 1, 161-167 (1951)
- 30. Whittaker, ET, Watson, GN: A Course of Modern Analysis. An Introduction to the General Theory Infinite Processes and of Analytic Functions: With an Account of the Principal Transcendental Functions, 4th edn. Cambridge University Press, Cambridge (1962)
- 31. Yildirim, CY: Zeros of derivatives of Dirichlet L-function. Turk. J. Math. 20, 521-534 (1996)

doi:10.1186/1029-242X-2013-64 Cite this article as: Ozden and Simsek: Unified representation of the family of *L*-functions. *Journal of Inequalities and Applications* 2013 2013:64.

## Submit your manuscript to a SpringerOpen<sup></sup><sup>●</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com