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Abstract
The aim of this paper is to unify the family of L-functions. By using the generating
functions of the Bernoulli, Euler and Genocchi polynomials, we construct unification
of the L-functions. We also derive new identities related to these functions. We also
investigate fundamental properties of these functions.
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1 Introduction
The theory of the family of L-functions has become a very important part in the analytic
number theory. In this paper, using a new type generating function of the family of special
numbers and polynomials, we construct unification of the L-functions.

Throughout this presentation, we use the following standard notions N = {, , . . .}, N =
{, , , . . .} = N∪ {}, Z+ = {, , , . . .}, Z– = {–, –, . . .}. Also, as usual Z denotes the set of
integers, R denotes the set of real number and C denotes the set of complex numbers. We
assume that ln(z) denotes the principal branch of the multi-valued function ln(z) with the
imaginary part �(ln(z)) constrained by –π < �(ln(z)) ≤ π .

Recently, the first author [] introduced and investigated the following generating func-
tions which give a unification of the Bernoulli polynomials, Euler polynomials and Genoc-
chi polynomials:

ga,b(x; t, k,β) :=
–ktketx

βbet – ab =
∞∑

n=

Yn,β (x; k, a, b)
tn

n!
, ()

where (|t| < π when β = a; |t| < |b log( β

a )| when β �= a; k ∈ N; β ∈ C (|β| < ); a, b ∈
C\{}).

For the special values of a, b, k, b and β , the polynomials Yn,β (x; k, a, b) provide us with
a generalization and unification of the classical Bernoulli polynomials, Euler polynomi-
als and Genocchi polynomials and also of the Apostol-type (Apostol-Bernoulli, Apostol-
Euler, Apostol-Genocchi) polynomials.

Remark . If we set k = a = b =  in (), we get a special case of the generalized Bernoulli
polynomials Yn,β (x, k, , ), that is, the so-called Apostol-Bernoulli polynomials Bn(x,β)
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generated by

t
βet – 

ext =
∞∑

n=

Bn(x,β)
tn

n!

(cf. [–]).

Remark . By substituting k +  = –a = b =  in (), we are led to Apostol-Euler polyno-
mials En(x,β) which are defined by means of the following generating function:


βet + 

ext =
∞∑

n=

En(x,β)

(cf. [–]).

Remark . Setting k = –a = b =  into (), we get the Apostol-Genocchi polynomials
Gn(x,β) which are defined by means of the following generating function:

t
βet + 

ext =
∞∑

n=

Gn(x,β)
tn

n!

(cf. [–]).

In terms of a Dirichlet character χ of conductor f ∈ N, Ozden et al. [] extended and
investigated the generating functions of the generalized Bernoulli, Euler and Genocchi
numbers and the generalized Bernoulli, Euler and Genocchi polynomials with parameters
a, b, β and k. Such χ -extended polynomials and χ -extended numbers are useful in many
areas of mathematics and mathematical physics.

Definition . (Ozden et al. [, p.]) Let χ be a Dirichlet character of conduc-
tor f ∈N. Then the aforementioned χ -extended generalized Bernoulli-Euler-Genocchi
numbers Yn,χ ,β (k, a, b) and the aforementioned χ -extended generalized Bernoulli-Euler-
Genocchi polynomials Yn,χ ,β (x; k, a, b) are given by the following generating functions:

Fχ ,β (t; k, a, b) = –ktk
f∑

j=

χ (j)( β

a )bjejt

βbf eft – abf =
∞∑

n=

Yn,χ ,β (k, a, b)
tn

n!
, ()

where (|t| < π when β = a; |t| < |b log( β

a )| when β �= a; k ∈ N; β ∈ C (|β| < ); a, b ∈
C\{}) and

Hχ ,β (x, t; k, a, b) = Fχ ,β (t, k; a, b)etx =
∞∑

n=

Yn,χ ,β (x; k, a, b)
tn

n!
()

(|t| < π when β = a; |t| < |b log( β

a )| when β �= a; k ∈N; β ∈C (|β| < ); a, b ∈C\{}).

Remark . Substituting k = a = b = β =  into (), we are led immediately to the gener-
ating function of the generalized Bernoulli numbers which are defined by means of the
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following generating function:

f∑
j=

χ (j)tejt

eft – 
=

∞∑
n=

Bn,χ
tn

n!
()

(cf. [–]).

2 Unification of the L-functions
Our aim in this section is to apply the Mellin transformation to the generating function
() of the polynomials Yn,χ ,β (x; k, a, b) in order to construct a unification of the various
members of the family of the L-functions and to thereby interpolate Yn,χ ,β (x; k, a, b) for
negative integer values of n.

Throughout this section, we assume that β ∈C with |β| <  and s ∈ C.
By substituting () into (), we obtain the following functional equation:

Fχ ,β (t; k, a, b) =

f k

f∑
j=

χ (j)
(

β

a

)bj

gaf ,b

(
j
f

, tf ; k,β f
)

. ()

By using this functional equation, we arrive at the following theorem.

Theorem . Let χ be a Dirichlet character of conductor f . Then we have

Yn,χ ,β (k, a, b) = f n–k
f∑

j=

χ (j)
(

β

a

)bj

Yn,β f

(
j
f

; k, af , b
)

. ()

By using (), we modify () as follows:

Hχ ,β (x, t; k, a, b) =

f k

f∑
j=

χ (j)
(

β

a

)bj

gaf ,b

(
j + x

f
, tf ; k,β f

)
. ()

By using (), we derive the following result.

Corollary . Let χ be a Dirichlet character of conductor f ∈N. Then we have

Yn,χ ,β (x; k, a, b) = f n–k
f∑

j=

χ (j)
(

β

a

)bj

Yn,β f

(
j + x

f
; k, af , b

)
. ()

By applying the Mellin transformation to the generating function (), Ozden et al.
[, p. Equation (.)] gave an integral representation of the unified zeta function
ζβ (s, x; k, a, b):

ζβ (s, x; k, a, b) =


�(s)

∫ ∞


ts–k–ga,b(x; –t; k,β) dt

(
min

{�(s),�(x)
}

> 
)
, ()

where the additional constraint �(x) >  is required for the convergence of the infinite
integral, which is given in (), at its upper terminal. By making use of the above integral
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representation, Ozden et al. [, p. Equation (.)] defined the unified zeta function
ζβ (s, x; k, a, b) as follows:

ζβ (s, x; k, a, b) =
(

–



)k– ∞∑
m=

βbm

ab(m+)(m + x)s

(
β ∈C

(|β| < 
)
; s ∈C

(�(s) > 
))

. ()

By applying the Mellin transformation to the generating function (), we have the fol-
lowing integral representation of the unified two-variable L-functions Lχ ,β (s, x; k, a, b):

Lχ ,β (s, x; k, a, b) =
f∑

j=

χ (j)( β

a )bj

f k�(s)

∫ ∞


ts–k–gaf ,b

(
j + x

f
, –tf ; k,β f

)
dt

(
min

{�(s),�(x)
}

> 
)

()

in terms of the generating function Hχ ,β (x, t; k; a, b) defined in (). By substituting () into
( ), we obtain

Lχ ,β (s, x; k, a, b) =


f k+s

f∑
j=

χ (j)
(

β

a

)bj

ζβ f

(
s,

j + x
f

; k, af , b
)

()

where (β ∈C (|β| < ); s ∈C (�(s) > )).
Consequently, by making use of () and (), we are ready to define a two-variable uni-

fication of the Dirichlet-type L-functions Lχ ,β (s, x; k, a, b) as follows.

Definition . Let χ be a Dirichlet character of conductor f ∈ N. For s,β ∈ C (|β| < ),
we define a two-variable unified L-function Lχ ,β (s, x; k, a, b) by

Lχ ,β (s, x; k, a, b) = f –k
(

–



)k– ∞∑
m=

βbmχ (m)
ab(m+f )(m + x)s

(
β ∈C

(|β| < 
)
;�(s) > 

)
. ()

Remark . If we substitute x =  into (), we get the unified L-function

Lχ ,β (s; k, a, b) := Lχ ,β (s, ; k, a, b)

by

Lχ ,β (s; k, a, b) = f –k
(

–



)k– ∞∑
m=

βbmχ (m)
ab(m+f )ms ,

where (�(s) > , β ∈ C (|β| < )).

Remark . Upon substituting k = a = b =  and β = ξ

u into (), we arrive at the interpo-
lation function for twisted generalized Eulerian numbers and polynomials, which is given
as follows:

l

(
u
ξ

, s,χ
)

= L
χ , ξ

u
(s, x; , , ),
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where, for a positive integer r, ξ is the rth root of .

l

(
u
ξ

, s;χ
)

=
∞∑

m=

(
ξ

u

)m
χ (m)

(m + x)s

(cf. []).

Remark . Substituting x =  into (), we get a unification of the L-functions

Lχ ,β (s, ; k, a, b) = Lχ ,β (s; k, a, b).

Substituting χ ≡  into (), we get a unification ζβ (s, x; k, a, b) of the Hurwitz-type zeta
function which is given in (). We also note that both the Hurwitz (or generalized) zeta
function

ζ (s, x) = ζ(s, x; , , ) =
∞∑

n=


(n + x)s

(cf. [, ]) and the Riemann zeta function

ζ (s) = ζ(s, ; , , ) =
∞∑

n=


ns

are obvious special cases of the unified zeta function ζβ (s, x; k, a, b) (cf. [, , ]). The re-
lationship between the unified zeta function and the Hurwitz-Lerch zeta function �(z, s, a)
was given by Ozden et al. []:

ζβ (s, x; k, a, b) :=
(

–



)k–

a–b�

(
βb

ab , s, x
)

, ()

where the Hurwitz-Lerch zeta function is defined by

�(z, s, x) =
∞∑

n=

zn

(n + x)s ,

which converges for (x ∈C�Z
–
 , s ∈C when |z| < ; �(s) >  when |z| = ), where as usual

Z–
 = Z– ∪ {}

(cf. [, ]).

A relationship between the functions Lχ ,β (s, x; k, a, b) and ζβ (s, x; k, a, b) is provided by
the next theorem.

Theorem . Let s ∈ C. Let χ be a Dirichlet character of conductor f ∈N. Then we have

Lχ ,β (s, x; k, a, b) = f –s–k
f∑

j=

(
β

a

)jb

χ (j)ζβ f

(
s,

j + x
f

; k, af , b
)

. ()
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Proof Substituting m = nf + j, j = , , . . . , f , n = , . . . ,∞ into (), we obtain

Lχ ,β (s, x; k, a, b) =
(

–



)k–

f –s–k
f∑

j=

(
β

a

)jb

χ (j)
∞∑

n=

βbnf

abnf (n + j+x
f )s

.

After some algebraic manipulations, we arrive at the desired result. �

Remark . Substituting a = b = k =  into (), we have

Lχ ,β (s, x; , , ) =
∞∑

m=

βmχ (m)
(m + x)s

(�(s) > ,β ∈C
(|β| < 

))

which interpolates the Apostol-Bernoulli polynomials attached to the Dirichlet character,
which are given by means of the following generating functions:

f∑
j=

χ (j)tβ jet(j+x)

β f etf – 
=

∞∑
n=

Bn,χ (x,β)
tn

n!
.

Let f be an odd integer. If we set a = – and k =  into (), then we have

Lχ ,β (s, x; , –, ) = 
∞∑

m=

(–)m χ (m)βm

(m + x)s

(�(s) > ,β ∈C
(|β| < 

))
,

which interpolate the Apostol-Euler polynomials attached to the Dirichlet character,
which are defined by the following generating functions:

f∑
j=

χ (j)β jet(j+x)

β f etf + 
=

∞∑
n=

En,χ (x,β)
tn

n!

(cf. [–]).

By using () and (), we arrive at the following result.

Corollary . Let s ∈C. Let χ be a Dirichlet character of conductor f ∈N. Then we have

Lχ ,β (s, x; k, a, b) =
(

–



)k–

a–fbf –s–k
f∑

j=

(
β

a

)jb

χ (j)�
(

β fb

afb , s,
j + x

f

)
.

Theorem . Let χ be a Dirichlet character of conductor f . Let n be a positive integer.
Then we have

Lχ ,β ( – n, x; k, a, b) =
(–)k

f
(n – )!

(n + k – )!
Yn+k–,χ ,β(x; k, a, b). ()

Proof By substituting s =  – n into (), we get

Lχ ,β ( – n, x; k, a, b) = f n––k
f∑

j=

(
β

a

)jb

χ (j)ζβ f

(
 – n,

j + x
f

; k, af , b
)

.
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By using Theorem  in [], we get

Lχ ,β ( – n, x; k, a, b)

= (–)k (n – )!
(n + k – )!

f n––k
f∑

j=

(
β

a

)jb

χ (j)Yn+k–,β

(
j + x

f
; k, a, b

)
.

By substituting () into the above, we arrive at the desired result. �

Remark . The two-variable Dirichlet L-function and the Dirichlet L-function are
obvious special cases of the unified Dirichlet-type L-functions Lχ ,β (s, x; k, a, b) defined
by (). We thus have (cf. [])

L(s, x;χ ) =
∞∑

m=

χ (m)
(m + x)s

and

L(s;χ ) =
∞∑

m=

χ (m)
ms ,

where �(s) > . By analytic continuation, this function can be extended to a meromorphic
function on the whole complex plane. We have

L( – n;χ ) = –
Bn,χ

n
,

where n ∈ Z+ and Bn,χ , the usual generalized Bernoulli number, is defined by (). The
Dirichlet L-function is used to prove the theorem on primes in arithmetic progressions.
Dirichlet shows that L(s;χ ) is non-zero at s = . Furthermore, if χ is a principal character,
then the corresponding Dirichlet L-function has a simple pole at s =  (cf. [, , , , ,
, , , ]).

3 Applications
In this section, by using () and the following formula, which was proved by Ozden et al.
[, Theorem , Equation (.)]

Yn,χ ,β (x; k, a, b) =
n∑

j=

(
n
j

)
xn–jYj,χ ,β (k, a, b), ()

we construct a meromorphic function involving a unified family of L-functions. Therefore,
using () and (),

Lχ ,β ( – n, x; k, a, b) =
xn+k–

f
∏k–

l= (n + l)

n+k–∑
j=

(
n + k – 

j

)

xj Yj+k–,χ ,β(k, a, b).

From the above equation, we arrive at the following theorem.
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Theorem . Let x �= . Let χ be a Dirichlet character of conductor f . Then we have

Lχ ,β (s, x; k, a, b) =
xk–s

f
∏k–

l= (s –  – l)

∞∑
j=

(
k – s

j

)

xj Yj+k–,χ ,β (k, a, b).

The function Lχ ,β (s, x; k, a, b) is an analytic function at s = . We now compute the value
of this function at this point as follows:

Lχ ,β (, x; k, a, b) =
xk

(–)kf
∏k–

l= ( + l)

k∑
j=

(
k
j

)

xj Yj+k–,χ ,β(k, a, b).

The function Lχ ,β (s, x; k, a, b) is a meromorphic function. This function has simple poles
which are

s = , , , . . . , k.

The residues of this function at the simple poles at s =  and s = k are given, respectively,
as follows:

Ress=
{

Lχ ,β (s, x; k, a, b)
}

=
xk–

f (–)k ∏k–
l= ( + l)

k–∑
j=

(
k – 

j

)

xj Yj+k–,χ ,β (k, a, b)

and

Ress=k
{

Lχ ,β (s, x; k, a, b)
}

=
Yk–,χ ,β(k, a, b)

f
∏k–

l= (k –  – l)
.

Remark . Simsek (cf. [, ]) defined a twisted two-variable L-function L(h)
ξ ,q(s, x;χ ) as

follows:

L(h)
ξ ,q(s, x;χ ) =

∞∑
m=

χ (m)φξ (m)qhm

(x + m)s –
log qh

s – 

∞∑
m=

χ (m)φξ (m)qhm

(x + m)s– ,

where q ∈C (|q| < ); ξ r =  (r ∈ Z); ξ �= . Observe that if ξ = , then L(h)
ξ ,q(s, x;χ ) is reduced

to the work of Kim [].

Relationship between the function Lχ ,β (s, x; k, a, b) and L(h)
ξ ,q(s, x;χ ) is given as the follow-

ing result.

Corollary . Let χ be a Dirichlet character of conductor f . Then we have

L(b)

, β
b

ab

(s, x;χ ) = (–)kabf f k
(

Lχ ,β (s, x; k, a, b) –
log qh

s – 
Lχ ,β (s – , x; k, a, b)

)
.

We conclude our present investigation by remarking that the existing literature con-
tains several interesting generalizations and extensions of the Hurwitz-Lerch zeta function
�(z, s, a), Hurwitz zeta function ζ (s, x) and L-function (cf. [–]); see also the references
cited in each of these earlier works.
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