ON THE APPROXIMATION OF ANALYTIC FUNCTIONS BY THE q-BERNSTEIN POLYNOMIALS IN THE CASE $q>1^{*}$

SOFIYA OSTROVSKA ${ }^{\dagger}$

Abstract

Since for $q>1$, the q-Bernstein polynomials $B_{n, q}$ are not positive linear operators on $C[0,1]$, the investigation of their convergence properties turns out to be much more difficult than that in the case $0<q<1$. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case $q>1$ are presented. It is shown that if $f \in C[0,1]$ and admits an analytic continuation $f(z)$ into $\{z:|z|<a\}$, then $B_{n, q}(f ; z) \rightarrow f(z)$ as $n \rightarrow \infty$, uniformly on any compact set in $\{z:|z|<a\}$.

Key words. q-integers, q-binomial coefficients, q-Bernstein polynomials, uniform convergence
AMS subject classifications. $41 \mathrm{~A} 10,30 \mathrm{E} 10$

1. Introduction. Let $q>0$. For any $n \in \mathbb{Z}_{+}$, the q-integer $[n]_{q}$ is defined by

$$
[n]_{q}:=1+q+\cdots+q^{n-1}(n \in \mathbb{N}),[0]_{q}:=0
$$

and the q-factorial $[n]_{q}$! by

$$
[n]_{q}!:=[1]_{q}[2]_{q} \ldots[n]_{q}(n=1,2, \ldots),[0]_{q}!:=1
$$

For integers $0 \leq k \leq n$, the q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}:=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} .
$$

Clearly, for $q=1$,

$$
[n]_{1}=n, \quad[n]_{1}!=n!, \quad\left[\begin{array}{l}
n \\
k
\end{array}\right]_{1}=\binom{n}{k}
$$

Definition 1.1. Let $f:[0,1] \rightarrow \mathbb{C}$. The q-Bernstein polynomials of f are defined by

$$
B_{n, q}(f ; z)=\sum_{k=0}^{n} f\left(\frac{[k]_{q}}{[n]_{q}}\right) p_{n k}(q ; z), \quad n \in \mathbb{N}
$$

where

$$
p_{n k}(q ; z):=\left[\begin{array}{l}
n \tag{1.1}\\
k
\end{array}\right]_{q} z^{k} \prod_{j=0}^{n-k-1}\left(1-q^{j} z\right), \quad k=0,1, \ldots n .
$$

Note that for $q=1$, we recover the classical Bernstein polynomials.
During the last ten years, the q-Bernstein polynomials have attracted a lot of interest and have been studied from different angles along with some generalizations and modifications by a number of researchers. A comprehensive review of results on q-Bernstein polynomials together with some open problems and an extensive bibliography on the subject is given

[^0]in [11]. A two-parametric generalization of q-Bernstein polynomials, called ω, q-Bernstein polynomials, was studied in [8, 21], while an analogue of the Bernstein-Durrmeyer operator with respect to q-Bernstein polynomials was investigated in [3]. The probabilistic aspects of the theory of q-Bernstein polynomials were studied in $[1,5]$.

It is known (cf. [11] and references therein) that some properties of the classical Bernstein polynomials remain valid for the q-Bernstein polynomials. Among those are the endpoint interpolation property, the shape-preserving properties in the case $0<q<1$, and the representation via divided differences. Just as the classical Bernstein polynomials, the q-Bernstein polynomials reproduce linear functions, and they are degree-reducing on the set of polynomials. In contrast, the convergence properties of the q-Bernstein polynomials basically vary from those of the classical ones. Moreover, the cases $0<q<1$ and $q>1$ in terms of convergence are not similar to each other. This lack of similarity is attributed to the fact that for $0<q<1$, the q-Bernstein polynomials are positive linear operators, whereas for $q>1$, the positivity does not hold. Consequently, the convergence of q-Bernstein polynomials in the case $0<q<1$ has been studied in detail, including the rate of convergence, Korovkin-type theorem, saturation results, and the properties of the limit q-Bernstein operator (see $[6,12,16,17,18,19]$), while there are still many open problems related to the case $q>1$. Currently, there are only two papers, namely [10, 20], dealing with the case $q>1$ in a systematic way. In addition, some results on the behavior of iterates (cf. [22]) and specific results on the exemplary classes of functions (cf. [13, 14]) are available. It should be emphasized that the investigation of the convergence in the case $q>1$ has revealed some astonishing phenomena not observed previously for $0<q \leq 1$. For instance (see [14]), while the q-Bernstein polynomials of the Cauchy kernel $f_{a}(z):=1 /(z-a), a \in \mathbb{C} \backslash[0,1]$, uniformly approximate f_{a} on any compact set in $\{z:|z|<|a|\}$, the sequence $\left\{B_{n, q}\left(f_{a} ; z\right)\right\}$ is not even uniformly bounded on any set J having an accumulation point in $\{z:|z|>|a|\}$. The available results show that, even though for $q>1$ in some cases the approximation with the q-Bernstein polynomials in $C[0,1]$ may be faster than with the classical ones (see [10, Theorem 6]), there exist analytic functions on [0,1] whose sequences of q-Bernstein polynomials are divergent. This situation is in no way possible for $0<q \leq 1$. The problem to describe the class of functions in $C[0,1]$ which are uniformly approximated by their q Bernstein polynomials in the case $q>1$ is yet to be solved. It is exactly the unexpected behavior of the q-Bernstein polynomials with respect to convergence that makes the study of their convergence an interesting and challenging one.

In this paper, we present new results on the approximation by q-Bernstein polynomials in the case $q>1$, which are concerned with the approximation of functions which are analytic at 0 .
2. Statement of results. The results of the present paper are related to the approximation of functions which are continuous on $[0,1]$ and possess an analytic continuation into a disk $\{z:|z|<a\}, a>0$, by their q-Bernstein polynomials in the case $q>1$. From here on we assume that $q>1$ is fixed.

The key role in our considerations is played by the following estimate.
THEOREM 2.1. Let $f(x)$ be bounded on $[0,1]$ and admit an analytic continuation $f(z)$ into a closed disk $\{z:|z| \leq \rho\}, \rho>0$. If

$$
B_{n, q}(f ; z)=\sum_{k=0}^{n} c_{k n} z^{k}
$$

then the following estimate holds,

$$
\begin{equation*}
\left|c_{k n}\right| \leq \frac{C}{\rho^{k}} \tag{2.1}
\end{equation*}
$$

where $C=C_{f, q, \rho}$ is independent of both k and n.
REMARK 2.2. In [13] and [14] the estimate (2.1) was proven for $f(x)=\ln (x+a)$ and $f_{a}(x)=1 /(x+a)$ with the help of explicit formulae for the coefficients $c_{k n}$. Here, we prove the estimate regardless of a specific function.

The next assertion constitutes the main result of the paper.
THEOREM 2.3. If $f(x)$ is bounded on $[0,1]$ and admits an analytic continuation $f(z)$ into a disk $\{z:|z|<a\}, a>0$, then

$$
B_{n, q}(f ; z) \rightarrow f(z) \text { as } n \rightarrow \infty
$$

uniformly on any compact set $K \subset\{z:|z|<a\}$.
COROLLARY 2.4. [10] If f admits an analytic continuation as an entire function $f(z)$, then

$$
B_{n, q}(f ; z) \rightarrow f(z) \text { as } n \rightarrow \infty
$$

uniformly on any compact set in \mathbb{C}.
REMARK 2.5. It is worth pointing out that for $0<a<1$, the statement of Theorem 2.3 does not depend on the values of f outside of $[0, a]$ as long as f is bounded on $[0,1]$, while the polynomials $B_{n, q}(f ; z)$ certainly do.

Example 2.6. In general, a function satisfying the conditions of Theorem 2.3 may not be uniformly approximated by its q-Bernstein polynomials on any interval within $[a, 1]$ as the following simple example reveals. Let

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \in[0,1 / q] \\
x-1 / q & \text { for } & x \in(1 / q, 1]
\end{array}\right.
$$

Obviously, $B_{n, q}(f ; z)=z^{n}$ and it is clear that $B_{n, q}(f ; x)$ does not approximate f on any interval outside $[0,1 / q]$.

Theorem 2.3 generalizes some previously known results on the approximation of analytic functions by their q-Bernstein polynomials. It has to be mentioned that, while the case $a>1$ can be treated by the methods used in [10], the case $0<a \leq 1$ requires a different approach similar to the one given in Theorem 2.1.
3. Proofs of the theorems. We use the representation of the q-Bernstein polynomials given in [10, formulae (6) and (7)],

$$
B_{n, q}(f ; z)=\sum_{k=0}^{n} \lambda_{k n} f\left[0 ; \frac{1}{[n]_{q}} ; \ldots ; \frac{[k]_{q}}{[n]_{q}}\right] z^{k}
$$

where $f\left[x_{0} ; x_{1} ; \ldots ; x_{k}\right]$ denotes the divided difference of f,

$$
\begin{gathered}
f\left[x_{0}\right]=f\left(x_{0}\right), \quad f\left[x_{0} ; x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}, \ldots, \\
f\left[x_{0} ; x_{1} ; \ldots ; x_{k}\right]=\frac{f\left[x_{1} ; \ldots ; x_{k}\right]-f\left[x_{0} ; \ldots ; x_{k-1}\right]}{x_{k}-x_{0}},
\end{gathered}
$$

and $\lambda_{k n}$ are given by

$$
\lambda_{0 n}=\lambda_{1 n}=1, \quad \lambda_{k n}=\prod_{j=1}^{k-1}\left(1-\frac{[j]_{q}}{[n]_{q}}\right), \quad k=2, \ldots, n
$$

REMARK 3.1. It was shown in [10] that $\lambda_{k n}, k=0,1, \ldots, n$, are eigenvalues of the q-Bernstein operator $B_{n, q}$. For $q=1$, we obtain the eigenvalues of the Bernstein operator, whose eigenstructure together with applications was studied in [2] and [7]. Some results of [2] were extended to the q-Bernstein polynomials in [10].

If f is an analytic function, then (cf., e.g., $[9, \S 2.7$, p. 44]) the divided differences of f can be expressed as

$$
\begin{equation*}
f\left[x_{0} ; x_{1} ; \ldots ; x_{k}\right]=\frac{1}{2 \pi i} \oint_{\mathcal{L}} \frac{f(\zeta) d \zeta}{\left(\zeta-x_{0}\right) \ldots\left(\zeta-x_{k}\right)} \tag{3.1}
\end{equation*}
$$

where \mathcal{L} is a contour encircling x_{0}, \ldots, x_{k} and f is assumed to be analytic on and within \mathcal{L}.
For a function $f(z)$ analytic in $\{z:|z| \leq r\}$, we use the standard notation,

$$
M(r ; f):=\max _{|z| \leq r}|f(z)|
$$

In the sequel, we need the following lemma proven in [14].
Lemma 3.2. Let $q>1,0 \neq \rho \notin\left\{q^{-m}\right\}_{m=0}^{\infty}$. Then

$$
\lim _{n \rightarrow \infty} \prod_{j=1}^{n-k}\left(1-\frac{[j]_{q}}{\rho[n]_{q}}\right)=\prod_{j=k}^{\infty}\left(1-\frac{1}{\rho q^{j}}\right)
$$

Proof of Theorem 2.1. Without loss of generality, we assume that $\rho \notin\left\{q^{-k}\right\}_{k=0}^{\infty}$ (we may increase ρ slightly if necessary).
(i) First, let $0<\rho<1$. We set $j:=\min \left\{k: q^{-k}<\rho\right\}$. Clearly, for $k \leq n-j$, we have

$$
\frac{[k]_{q}}{[n]_{q}} \leq \frac{[n-j]_{q}}{[n]_{q}}<q^{-j}<\rho
$$

whence by virtue of (3.1), we obtain

$$
\begin{equation*}
f\left[0 ; \frac{1}{[n]_{q}} ; \ldots ; \frac{[k]_{q}}{[n]_{q}}\right]=\frac{1}{2 \pi i} \oint_{|\zeta|=\rho} \frac{f(\zeta) d \zeta}{\zeta^{k+1}\left(1-\frac{1}{\zeta[n]_{q}}\right) \ldots\left(1-\frac{\left[k_{q}\right]}{\zeta[n]_{q}}\right)} . \tag{3.2}
\end{equation*}
$$

Notice that for $|\zeta|=\rho$ and $l=0,1, \ldots, n-j$, we have

$$
\left|1-\frac{[l]_{q}}{\zeta[n]_{q}}\right| \geq\left|1-\frac{[l]_{q}}{\rho[n]_{q}}\right|=1-\frac{[l]_{q}}{\rho[n]_{q}}
$$

since $\frac{[l]_{q}}{[n]_{q}}<\rho=|\zeta|$. Therefore, for $k \leq n-j$, we obtain

$$
\begin{aligned}
\left|\left(1-\frac{1}{\zeta[n]_{q}}\right) \ldots\left(1-\frac{[k]_{q}}{\zeta[n]_{q}}\right)\right| & \geq\left(1-\frac{1}{\rho[n]_{q}}\right) \ldots\left(1-\frac{[k]_{q}}{\rho[n]_{q}}\right) \\
& \geq\left(1-\frac{1}{\rho[n]_{q}}\right) \ldots\left(1-\frac{[n-j]_{q}}{\rho[n]_{q}}\right) .
\end{aligned}
$$

By Lemma 3.2, as $n \rightarrow \infty$, we have

$$
\left(1-\frac{1}{\rho[n]_{q}}\right) \ldots\left(1-\frac{[n-j]_{q}}{\rho[n]_{q}}\right) \longrightarrow \prod_{s=j}^{\infty}\left(1-\frac{1}{\rho q^{s}}\right) \neq 0
$$

whence for $|\zeta|=\rho$,

$$
\left|\left(1-\frac{1}{\zeta[n]_{q}}\right) \ldots\left(1-\frac{[k]_{q}}{\zeta[n]_{q}}\right)\right| \geq C_{1}=C_{\rho, q}>0
$$

for all n. Applying (3.2), we obtain

$$
\left|c_{k n}\right| \leq\left|f\left[0 ; \frac{1}{[n]_{q}} ; \ldots ; \frac{[k]_{q}}{[n]_{q}}\right]\right| \leq \frac{1}{2 \pi} \cdot \frac{2 \pi \rho M(\rho ; f)}{C_{1} \cdot \rho^{k+1}}=: \frac{C_{2}}{\rho^{k}}
$$

with $C_{2}=C_{\rho, f, q}$.
Now we have to estimate the coefficients $c_{k n}$ for $k>n-j$, that is, to consider the case $\frac{[k]_{q}}{[n]_{q}}>\rho$. We use the following formula (see [4, Chap. 4, § 7, p. 121)]),

$$
f\left[x_{0} ; x_{1} ; \ldots ; x_{k}\right]=\sum_{s=0}^{k} \frac{f\left(x_{k}\right)}{\left(x_{s}-x_{0}\right) \ldots\left(x_{s}-x_{s-1}\right)\left(x_{s}-x_{s+1}\right) \ldots\left(x_{s}-x_{k}\right)}
$$

Therefore,

$$
\begin{aligned}
f\left[0 ; \frac{1}{[n]_{q}} ; \ldots ; \frac{[k]_{q}}{[n]_{q}}\right] & =\sum_{s=0}^{k} \frac{f\left(\frac{[s]_{q}}{[n]_{q}}\right)}{\frac{[s]_{q}}{[n]_{q}}\left(\frac{[s]_{q}}{[n]_{q}}-\frac{1}{[n]_{q}}\right) \ldots\left(\frac{[s]_{q}}{[n]_{q}}-\frac{[s-1]_{q}}{[n]_{q}}\right)\left(\frac{[s]_{q}}{[n]_{q}}-\frac{[s+1]_{q}}{[n]_{q}}\right)\left(\frac{[s]_{q}}{[n]_{q}}-\frac{[k]_{q}}{[n]_{q}}\right)} \\
& =\sum_{s=0}^{n-j}+\sum_{s=n-j+1}^{k} .
\end{aligned}
$$

By the Residue Theorem,

$$
\sum_{s=0}^{n-j}=\frac{1}{2 \pi i} \oint_{|\zeta|=\rho} \frac{f(\zeta) d \zeta}{\zeta\left(\zeta-\frac{1}{[n]_{q}}\right) \ldots\left(\zeta-\frac{[k]_{q}}{[n]_{q}}\right)}=\frac{1}{2 \pi i} \oint_{|\zeta|=\rho} \frac{f(\zeta) d \zeta}{\zeta^{k+1}\left(1-\frac{1}{\zeta[n]_{q}}\right) \ldots\left(1-\frac{[k]_{q}}{\zeta[n]_{q}}\right)} .
$$

To estimate the last integral, we set $k:=n-t, 0 \leq t \leq j-1$, and consider (with $|\zeta|=\rho$)

$$
\left|\left(1-\frac{1}{\zeta[n]_{q}}\right) \ldots\left(1-\frac{[n-t]_{q}}{\zeta[n]_{q}}\right)\right| \geq\left|\left(1-\frac{1}{\rho[n]_{q}}\right) \ldots\left(1-\frac{[n-t]_{q}}{\rho[n]_{q}}\right)\right| \geq C_{t}>0
$$

by virtue of Lemma 3.2.
Let

$$
\min _{0 \leq t \leq j-1} C_{t}=: C_{3}>0 .
$$

Clearly, $C_{3}=C_{q, \rho}$. We derive

$$
\begin{equation*}
\left|\sum_{s=0}^{n-j}\right| \leq \frac{1}{2 \pi}\left|\oint_{|\zeta|=\rho} \frac{f(\zeta) d \zeta}{\zeta\left(\zeta-\frac{1}{[n]_{q}}\right) \ldots\left(\zeta-\frac{[k]_{q}}{[n]_{q}}\right)}\right| \leq \frac{1}{2 \pi} \cdot \frac{M(\rho ; f)}{\rho^{k} C_{3}}=: \frac{C_{4}}{\rho^{k}} \tag{3.3}
\end{equation*}
$$

To estimate $\sum_{s=n-j+1}^{k}=\sum_{n-j+1}^{n-t}$, we first consider

$$
\begin{aligned}
\left\lvert\, \frac{[s]_{q}}{[n]_{q}}\right. & \left.\cdot \frac{[s]_{q}-1}{[n]_{q}} \ldots \frac{[s]_{q}-[s-1]_{q}}{[n]_{q}} \frac{[s]_{q}-[s+1]_{q}}{[n]_{q}} \ldots \frac{[s]_{q}-[n-t]_{q}}{[n]_{q}}\right|^{-1} \\
& =\frac{[n]_{q}^{n-t} \cdot(q-1)^{n-t}}{\left(q^{s}-1\right)\left(q^{s}-q\right) \ldots\left(q^{s}-q^{s-1}\right)\left(q^{s+1}-q^{s}\right) \ldots\left(q^{n-t}-q^{s}\right)} \\
& =\frac{\left(q^{n}-1\right)^{n-t}}{q^{s^{2}}\left(1-\frac{1}{q}\right) \ldots\left(1-\frac{1}{q^{s}}\right) q^{(s+1)+\cdots+(n-t)}\left(1-\frac{1}{q}\right) \ldots\left(1-\frac{1}{q^{n-t-s}}\right)} \\
& \leq \prod_{j=1}^{\infty}\left(1-\frac{1}{q^{j}}\right)^{-2} \frac{q^{n(n-t)}}{q^{s^{2}} \cdot q^{(s+1) \cdots+(n-t)}} \\
& =\prod_{j=1}^{\infty}\left(1-\frac{1}{q^{j}}\right)^{-2} \cdot q^{-\left(t^{2}-t\right) / 2} \cdot q^{\left(n^{2}-s^{2}\right) / 2-(n-s) / 2} \leq C_{5} q^{n(n-s)}
\end{aligned}
$$

where $C_{5}=C_{\rho, q}$. Since $s \geq n-j+1$, it follows that

$$
q^{n(n-s)} \leq q^{n(j-1)} \leq \frac{1}{\rho^{n}}
$$

Setting

$$
M:=\max _{x \in[0,1]}|f(x)|
$$

we obtain

$$
\begin{equation*}
\left|\sum_{s=n-j+1}^{k}\right| \leq M \sum_{s=n-j+1}^{n-t} \frac{C_{5}}{\rho^{n}} \leq C_{6} \frac{j-t}{\rho^{n}} \leq \frac{C_{6} j \rho^{-t}}{\rho^{n-t}} \leq \frac{C_{6} j \rho^{-j}}{\rho^{n-t}}=: \frac{C_{7}}{\rho^{k}} \tag{3.4}
\end{equation*}
$$

with $C_{7}=C_{q, f}$.
Finally, juxtaposing (3.3) and (3.4), we obtain the required estimate.
(ii) The case $\rho>1$ is much easier. Indeed, using (3.1) and Lemma 3.2, we write

$$
\begin{aligned}
c_{k n} & \leq\left|f\left[0 ; \frac{1}{[n]_{q}} ; \ldots ; \frac{[k]_{q}}{[n]_{q}}\right]\right| \leq \frac{1}{2 \pi}\left|\oint_{|\zeta|=\rho} \frac{f(\zeta) d \zeta}{\zeta^{k+1}\left(1-\frac{1}{\zeta[n]}\right) \ldots\left(1-\frac{[k]}{\zeta[n]}\right)}\right| \\
& \leq \frac{1}{2 \pi} \cdot \frac{2 \pi \rho M(\rho ; f)}{C_{8} \rho^{k+1}}=: \frac{C_{9}}{\rho^{k}}
\end{aligned}
$$

and the proof is complete.
Proof of Theorem 2.3. To prove the theorem, we need the following modification of [10, Lemma 1].

Let $q>1$ and $f:[0,1] \rightarrow \mathbb{C}$ be a bounded function, such that $f \in C[0, a], 0<a \leq 1$. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{n, q}\left(f ; q^{-m}\right)=f\left(q^{-m}\right) \text { for all } q^{-m} \in[0, a] . \tag{3.5}
\end{equation*}
$$

Indeed, we write

$$
B_{n, q}(f ; z)=\sum_{k=0}^{n} f\left(\frac{[n-k]_{q}}{[n]_{q}}\right) p_{n, n-k}(q ; z)
$$

and observe that

$$
p_{n, n-k}\left(q ; q^{-m}\right)=0 \text { for } m<k
$$

and

$$
\lim _{n \rightarrow \infty} p_{n, n-k}\left(q ; q^{-m}\right)=0 \text { for } m>k
$$

while

$$
\lim _{n \rightarrow \infty} p_{n, n-m}\left(q ; q^{-m}\right)=1
$$

Since f is continuous at q^{-m}, the statement follows.
Let $K \subset\{z:|z|<a\}$ be a compact set. Choose $0<\eta<\rho<a$ in such a way that $K \subset\{z:|z|<\eta\}$. Theorem 2.1 implies that for $|z| \leq \eta$, we have

$$
\left|B_{n, q}(f ; z)\right| \leq \sum_{k=0}^{n} \frac{C}{\rho^{k}} \eta^{k} \leq \frac{C}{1-\eta / \rho}
$$

That is, the sequence $\left\{B_{n, q}(f ; z)\right\}$ is uniformly bounded in $\{z:|z|<\eta\}$. In addition, by (3.5) the sequence converges to the function f, analytic in $\{z:|z|<\eta\}$ on the set $\left\{q^{-m}\right\}$ having an accumulation point in $\{z:|z|<\eta\}$. By the Vitali Theorem (see, e.g., [15, Chap. V, Sec. 5.2]), the sequence converges to f on any compact set in $\{z:|z|<\eta\}$, and in particular on K.

Acknowledgments. I would like to express my sincere gratitude to P. Danesh from the Atilim University Academic Writing and Advisory Centre for his assistance in the preparation of the manuscript.

REFERENCES

[1] Ch. A. Charalambides, The q-Bernstein basis as a q-binomial distribution, J. Statist. Plann. Inference, to appear, 2010.
[2] S. Cooper and S. Waldron, The eigenstructure of the Bernstein operator, J. Approx. Theory, 105 (2000), pp. 133-165.
[3] M.-M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Mat. Palermo (2) Suppl., 76 (2005), pp. 269-290.
[4] R. DeVore and G. G. Lorentz, Constructive Approximation, Springer, Berlin, 1993.
[5] A. IL'InSKiI, A probabilistic approach to q-polynomial coefficients, Euler and Stirling numbers I, Mat. Fiz. Anal. Geom., 11 (2004), pp. 434-448.
[6] A. IL'INSKII AND S. Ostrovska,Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116 (2002), pp. 100-112.
[7] U. ItaI, On the eigenstructure of the Bernstein kernel, Electron. Trans. Numer. Anal., 25 (2006), pp. 431438. http://etna.math.kent.edu/vol.25.2006/pp431-438.dir.
[8] S. Lewanowicz and P. Woźny, Generalized Bernstein polynomials, BIT, 44 (2004), pp. 63-78.
[9] G. G. Lorentz, Bernstein Polynomials, Chelsea, New York, 1986.
[10] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 (2003), pp. 232-255.
[11] -, The first decade of the q-Bernstein polynomials: results and perspectives, J. Math. Anal. Approx. Theory, 2 (2007), pp. 35-51.
[12] -, On the improvement of analytic properties under the limit q-Bernstein operator, J. Approx. Theory, 138 (2006), pp. 37-53.
[13] ——, The approximation of logarithmic function by q-Bernstein polynomials in the case $q>1$, Numer. Algorithms, 44 (2007), pp. 69-82.
[14] - , q-Bernstein polynomials of the Cauchy kernel, Appl. Math. Comput., 198 (2008), pp. 261-270.
[15] E. C. Titchmarsh, Theory of Functions, Oxford University Press, Oxford, UK, 1986.

ETNA
Kent State University http://etna.math.kent.edu

112 S. OSTROVSKA
[16] V. S. Videnskir, On some classes of q-parametric positive operators, Oper. Theory Adv. Appl., 158 (2005), pp. 213-222.
[17] - On the polynomials with respect to the generalized Bernstein basis, in Problems of Modern Mathematics and Mathematical Education, Hertzen readings, St.-Petersburg, 2005, pp. 130-134. (In Russian).
[18] H. WANG, Korovkin-type theorem and application, J. Approx. Theory, 132 (2005), pp. 258-264.
[19] -, Voronovskaya type formulas and saturation of convergence for q-Bernstein polynomials for $0<q<1$, J. Approx. Theory, 145 (2007), pp. 182-195.
[20] H. WANG AND X. Z. Wu, Saturation of convergence for q-Bernstein polynomials in the case $q \geq 1$, J. Math. Anal. Appl., 337 (2008), pp. 744-750.
[21] H. Wang, Properties of convergence for ω, q-Bernstein polynomials, J. Math. Anal. Appl., 340 (2008), pp. 1096-1108.
[22] Xueyan Xiang, Qian He, and Wenshan Yang, Convergence rate for iterates of q-Bernstein polynomials, Anal. Theory Appl., 23 (2007), pp. 243-254.

[^0]: *Received February 22, 2008. Accepted for publication November 30, 2009. Published online April 7, 2010. Recommended by V. Andriyevskyy.
 ${ }^{\dagger}$ Department of Mathematics, Atilim University, Incek 06836 Ankara, Turkey (ostrovsk@atilim.edu.tr).

