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Abstract 

Oberle, M.K., S.L. Scott, G.T. Gilbert, R.L. Hatcher and D.F. Addis, Mellin transforms of a generalization of 
Legendre polynomials, Journal of Computational and Applied Mathematics 45 (1993) 367-369. 

We show that the zeros and poles of the Mellin transforms of polynomials on [ - 1, 11 orthogonal with respect 
to the weight ( x 1’: with r > - 4, are real and simple. 
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Several authors have considered Mellin transforms of orthogonal polynomials. The zeros of 
the Mellin transforms of the Laguerre polynomials Lf, have real part i [4]. In [l], it is shown 
that the zeros of Mellin transforms of the Hermite polynomials also have real part i. 
Essentially the same transforms arise in [5]. The generalization to Mellin transforms of the 
Laguerre polynomials LE is made in [3], where “exceptional” real zeros can occur in some 
cases. In a more general setting, [6] considers other unitary transforms, while [7] surveys some 
of the underlying group theory. 

In this paper, we consider polynomials which are orthogonal with respect to the inner 
product 

(f, g> = /Iif(x)s(x) Ix I 2r dx, r> -3. 
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Let {~,(dl,., be the set of such polynomials where p,(x) is manic of degree ~1. Each p,(x) is 
also dependent on the parameter Y found in the inner product. For the purposes of this paper, 
we take as our definition of the Mellin transform 

M,(s) = 2/ob.(X)X’+$) Re(r+s) >O. (1) 

Our main result is the following theorem. 

Theorem 1. The zeros and poles of M,(s) are real and simple. 

Proof. Any system of manic orthogonal polynomials {p,,) satisfies a recurrence relation of the 
form 

P,(X) = (x -Cn)Pn-1(X) - 4lPn-2(4, 

where c, E Iw and A, > 0 [2, p.81, [8, p.411. Since the weight function ( x 1 2r is symmetric, c, = 0 
for all n and each p,(x) is either odd or even. Therefore, the formula reduces to 

P,(X) =XPn-l(X) -41P,-,(x). (2) 

If we substitute (2) into (l), we find that 

=M,_,(s + 1) -A.M,_,(s). (3) 
We can now recursively generate the system of Mellin transforms, once we have the values 

{A,} from (2). Using orthogonal projection and the fact that p, is orthogonal to all polynomials 
of smaller degree, we arrive at [2, p.191 

A 
(P,(X), x”> M,(r + n + 1) 

n+l = <p,_,(x), x”-l) = Mn_l(r +n) ’ 

We are now ready to complete the proof of the theorem. We use the notation 

(a)j = a(a + 1) * . * (a + j - 1) = ‘F(l{) . 

We claim that 

(4) 

[in] ! (i(s - r - n + l&,2, 
Mn(s) = - (+( -2r - 2n + 1))Ln,21(i( -s - y - n))Ln,21+1 * (5) 

Note that this formula makes sense for all r except negative half-integers. 
The inductive proof begins by verifying (5) for y1 = 0 and n = 1. Now assume the claim for 

Mk, 0 < k < n. From (3) we have 

K+,(s) =Mz-l(s) M;‘s ;st’ - A,+1 
n-1 
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by (4). Grouping similar terms in the ratios, first for it even, we obtain 

i 

n(s - r) 2 

Mn+l(s)=Mnpl(s) (2r+2n-l)(s+r+n+l) - (2r+2n-1;(2r+2n+l) 
1 

i 

($).(+(s-r-n)) 

=Mnpl(s) (t(-2r-2n-l).5(-2r-2n+1)/(~(-2r-n-l))).(t(-s-r-n-l)) ’ 
1 

and (5) follows for n + 1. Similarly for II odd, we obtain 

ME+l(s)=M~pl(s) i 

(2r + n)(s + r) (2r + n)2 

(2r+2n-l)(s+r+n+l) -(2r+2n-1)(2r+2n+l) 1 

i 

($(rz+l)).(+(s-r-n)) 

=ME-l(s) (~(-2r-2n-1).~(-2r-2n+1)/(~(-2r-n-l))).(~(-s-r-n-l)) ’ i 

and (5) again follows. 
The induction is complete. We immediately conclude the zeros and poles of M,(s) are real 

and simple. q 

We remark that the zeros and poles of the Mellin transforms of several other families of 
orthogonal polynomials, such as Gegenbauer polynomials, do not have such properties. 
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