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1. Introduction

It is well known that the Euler–Maclaurin Summation (EMS) formula given by

n∑
k=0

f(k) =
n∫

0

f(x) dx + 1
2
[
f(n) + f(0)

]
+

∞∑
k=2

Bk

k!
[
f (k−1)(n) − f (k−1)(0)

]
(1)
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is extremely useful for approximating sums and integrals and for deriving special formu-
las. Here, Bn are the Bernoulli numbers defined by the exponential generating function

t

et − 1 =
∞∑

n=0
Bn

tn

n!

For example, if we set f(x) = xp in (1) and use the fact that B0 = 1 and B1 = −1/2,
then we obtain the classical sums of powers formula first discovered by Jacob Bernoulli:

n∑
k=1

kp = np +
p∑

k=0

p!
k!(p− k + 1)!Bkn

p+1−k

Consider next the special case of the EMS formula where n = 1, which we shall write in
the form

1∫
0

f(x) dx = 1
2
[
f(1) + f(0)

]
−

∞∑
k=2

Bk

k!
[
f (k−1)(1) − f (k−1)(0)

]
(2)

If we again set f(x) = xn in (2), then we obtain the classic Bernoulli number identity
first discovered by Euler:

n∑
k=0

(
n + 1
k

)
Bk = 0

It is natural to ask if other Bernoulli number identities can be obtained by substitution.
For example, is there a function f(x) which when substituted into (2) will yield the
following quadratic identity?

n+1∑
k=0

(
n + 1
k

)
BkBn−k+1 = −(n + 1)Bn − nBn+1 (3)

The answer, not surprisingly, is yes. The surprise however is the choice for f(x). It is clear
that f(x) should involve the Bernoulli numbers since (3) contains products of Bernoulli
numbers. Therefore, a natural choice for f(x) would be to set it equal to a Bernoulli
polynomial, say Bn(x). However, the reader will discover that substituting f(x) = Bn(x)
into (2) yields the trivial identity. The correct answer is f(x) = (1 − x)Bn(x).

The Bernoulli polynomials Bn(x) give an example of an Appell sequence. As such,
there are two equivalent definitions for Bn(x): one via the exponential generating function

text

et − 1 =
∞∑

n=0
Bn(x) t

n

n! (4)

and the other as a polynomial sequence with the following properties:
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B0(x) = 1,

B′
n(x) = nBn−1(x),

1∫
0

Bn(x) dx = δn ≡
{

1 if n = 0
0 if n �= 0 (5)

where δn is the Kronecker delta function. In either approach the Bernoulli numbers can be
computed as the evaluation Bn = Bn(0). Beginning with the second approach, we shall
demonstrate that this technique of substitution to obtain Bernoulli number identities can
be extended to Appell sequences by generalizing the EMS formula. This was achieved
by recognizing that (2) can be derived from the following repeated integration by parts
formula
∫

f(x)g(x) dx =
p∑

k=0

(−1)kf (k)(x)g−(k+1)(x) + (−1)−(p+1)
∫

f (p+1)(x)g−(p+1)(x) dx

(6)

where f (k)(x) denotes the k-th derivative of f(x) and g−(k)(x) denotes the k-th integral
(or anti-derivative) of g(x). In particular, if we set g(x) = B0(x) in (6), then g−(k)(x) =
Bk(x)/k! because of the derivative property in (5). Then integrating over the interval
[0, 1] and using the fact that B1 = −1/2, B2k+1 = 0 and Bk(1) = (−1)kBk(0) for k � 1,
we find that (6) reduces to (2) in the limit where p → ∞.

Let qn(x) be an Appell sequence, i.e. q0(x) = 1 and q′n(x) = nqn−1(x). Then setting
g(x) = q0(x) in (6) yields the following generalized EMS formula:

∫
f(x) dx =

p∑
k=0

(−1)k

(k + 1)!f
(k)(x)gk+1(x) + (−1)−(p+1)

(p + 1)!

∫
f (p+1)(x)gp+1(x) dx (7)

More interestingly, if we also set f(x) = pn(x) to be another Appell sequence in (7),
then we obtain the following convolution identity (Theorem 1) for any pair of Appell
sequences pn(x) and qn(x):

n∑
k=0

(−1)k
(
n

k

)
pn−k(x)qk(x) = cn (8)

where {cn} are constants independent of x.
Eq. (8) is our starting point for deriving new identities. We shall prove (8) in the next

section and apply it to a class of generalized Bernoulli polynomials known as hypergeo-
metric Bernoulli polynomials, defined by Eq. (12) (see also [2]), in order to obtain new
convolution identities. For example, the following sums of products formula holds for any
two hypergeometric Bernoulli numbers BM,n and BN,n of order M and N , respectively,
which we prove in Theorem 5:
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∑
0�i�M−1
0�j�N−1
(i,j) �=(0,0)

[
n∑

k=0

(−1)k
(

n

j; i; k − i

)
BN,n−k−jBM,k−i

]

= (−1)M−1

[(
M + N

M

)
δn−M−N +

N−1∑
j=0

(
n

M ; j

)
BN,n−M−j

+ (−1)n−M−N
M−1∑
i=0

(
n

N ; i

)
BM,n−N−i

]
(9)

where
(

a
b;c
)

denotes the multinomial coefficient defined by

(
a

b; c

)
= a!

b!c!(a− b− c)!

In the special case where M = N = 2, we obtain the identities

n∑
k=0

(−1)k
(
n

k

)
B2,n−k(x)B2,k(x) = 1

2δn−2 + nB2,n−1 + B2,n

and

n∑
k=0

(
2n
2k

)
B2,2n−2kB2,2k = 1

4
[
δ2n−2 + 2nB2,2n−1 − (2n− 4)B2,2n

]

which we prove in Corollaries 9 and 11, respectively. The latter formula generalizes
Euler’s quadratic formula for the classical Bernoulli numbers:

n∑
k=0

(
2n
2k

)
B2kB2n−2k = −(2n− 1)B2n

Lastly, in Section 3 we demonstrate that these same identities can be derived by taking
the other approach to hypergeometric Bernoulli polynomials, namely by considering
their exponential generating functions, and employing special partial fraction expansion
formulas given in Lemma 13. As a result, we obtain the following identities (Theorem 15):

M+N−2∑
m=1

m!am
n−m∑
k=0

(−1)k
(

n

m; k

)
BN,n−m−k(x)BM,k(x)

= (−1)M
(
M + N

M

)
δn−M−N + (−1)M

N−1∑
m=0

(
n

m;M

)
BN,n−m−M

+ (−1)n−N
M−1∑ (

n

m;N

)
BM,n−m−N (10)
m=0
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and if N � M ,

N−1∑
m=M

n−m∑
k=0

(
n

m; k

)
BN,n−m−k(x1)BM,k(x2) =

(
n

M

)
BN,n−M (z) −

(
n

N

)
BM,n−N (z)

(11)

where z = x1 + x2. Observe that (10) is equivalent to (9). Moreover, (11) is trivial
when M = N . To remedy this, we employ a derivative expansion formula to establish
a recurrence formula for sums of products of hypergeometric Bernoulli polynomials. We
then use this recurrence to obtain a general formula for these sums of products, thereby
generalizing Kamano’s formula for hypergeometric Bernoulli numbers given in [4] and
Dilcher’s formula for Bernoulli polynomials given in [1]. An example is the identity

n∑
k=0

(
n

k

)
BN,n−k(x1)BN,k(x2) = 1

N

[
(N − n)BN,n(z) + n(z − 1)BN,n−1(z)

]

2. Hypergeometric Bernoulli polynomials

Let N be a positive integer. Following the work of A. Hassen and the first author in [2]
we define hypergeometric Bernoulli polynomials BN,n(x) of order N by the exponential
generating function

FN (x, t) ≡ (tN/N !)ext

et − TN−1(t)
=

∞∑
n=0

BN,n(x) t
n

n! (12)

Here, TN (t) =
∑N

n=0
tn

n! is the N -th Taylor polynomial of et. In particular, when N = 1,
we recover the classical Bernoulli polynomials, i.e. B1,n(x) = Bn(x). Hypergeometric
Bernoulli polynomials play an important role in the study of hypergeometric zeta func-
tions (see [3]).

It is known that hypergeometric Bernoulli polynomials can also be defined by the
following properties:

(i) BN,0(x) = 1 (13)

(ii) B′
N,n(x) = nBN,n−1(x) (14)

(iii)
1∫

0

(1 − x)N−1
BN,n(x) dx = 1

N
δn (15)

These properties were shown to be equivalent to definition (12) in [2]. In either defini-
tion, hypergeometric Bernoulli numbers are defined analogously by BN,m = BN,m(0).
Moreover, we define BN,n(x) = 0 for n < 0.
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We begin with an alternating convolution formula valid for Appell sequences, i.e.
polynomial sequences that satisfy conditions (13) and (14).

Theorem 1. Let pn(x) and qn(x) be two Appell sequences. Then

n∑
k=0

(−1)k
(
n

k

)
pn−k(x)qk(x) = cn (16)

where {cn} are constants independent of x. Moreover, if pn(x) = qn(x), then cn = 0 for
every odd positive integer n.

Proof. Set f(x) = pn−1(x), g(x) = q0(x), and p = n−1 in (6). Then using property (14)
for Appell sequences and the fact that f (p+1) = 0 (since f is a polynomial of degree p),
we obtain

∫
pn−1(x) =

n−1∑
k=0

(−1)k
(n− 1)(k)

(k + 1)! pn−1−k(x)qk+1(x)

where n(k) = n(n − 1)(n − 2) · · · (n − k + 1) is the falling factorial. On the other hand,
since pn is an Appell sequence we have

∫
pn−1(x) = pn(x) − cn

n

where cn is the constant of integration. It follows from the substitution � = k + 1 that

pn(x) − cn = −
n∑

�=1

(−1)�
(
n

�

)
pn−�(x)q�(x)

Rearranging terms, we get

pn(x) +
n∑

�=1

(−1)�
(
n

�

)
pn−�(x)q�(x) = cn

or equivalently,

n∑
�=0

(−1)�
(
n

�

)
pn−�(x)q�(x) = cn

If we now assume pn(x) = qn(x) and n is odd, then all the terms in the convolution
sum cancel. Thus, cn = 0, which completes the proof. �

We note that Theorem 1 can also be proven by differentiating the left-hand side of
(16) or by using exponential generating functions. More precisely, define
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Cn(x) =
n∑

k=0

(−1)k
(
n

k

)
pn−k(x)qk(x) (17)

Then using the fact that p′n−k(x) = (n− k)pn−k−1(x) and q′k(x) = kqk−1(x), we have

C ′
n(x) =

n∑
k=0

(−1)k
(
n

k

)[
(n− k)pn−k−1(x)qk(x) + kpn−k(x)qk−1(x)

]

= n
n∑

k=0

(−1)k
(
n− 1
k

)
pn−k−1(x)qk(x) + n

n∑
k=0

(−1)k
(
n− 1
k − 1

)
pn−k(x)qk−1(x)

= n
n−1∑
k=0

(−1)k
(
n− 1
k

)
pn−k−1(x)qk(x) − n

n−1∑
k=0

(−1)k
(
n− 1
k

)
pn−k−1(x)qk(x)

= 0

Thus, C(x) is constant, which proves Theorem 1. Alternatively, pn(x) and qn(x) have
exponential generating functions of the form

F (x, t) = f(t)ext =
∞∑

n=0
pn(x) t

n

n!

G(x, t) = g(t)ext =
∞∑

n=0
qn(x) t

n

n!

It follows that

F (x, t)G(x,−t) =
∞∑

n=0

(
n∑

k=0

(−1)k
(
n

k

)
pn−k(x)qk(x)

)
tn

n! =
∞∑

n=0
Cn(x) t

n

n!

But we also have F (x, t) = G(x,−t) = f(t)g(t), which is independent of x. Thus, Cn(x) =
cn is constant and Theorem 1 follows.

Let us now set pn(x) = BN,n(x) and qn(x) = BM,n in Theorem 1. This yields the
following theorem.

Theorem 2. Let BM (x) and BN (x) be two hypergeometric Bernoulli polynomials of orders
M and N , respectively. Then

n∑
k=0

(−1)k
(
n

k

)
BN,n−k(x)BM,k(x) = cn (18)

where {cn} are constants independent of x. Moreover, if M = N , then cn = 0 for every
odd positive integer n.
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Since the left hand side of (2) is independent of x, we obtain the following corollary
as a result.

Corollary 3. For any two real values a and b, we have

cn =
n∑

k=0

(−1)k
(
n

k

)
BN,n−k(b)BM,k(b) =

n∑
k=0

(−1)k
(
n

k

)
BN,n−k(a)BM,k(a) (19)

Surprisingly, in the case of classical Bernoulli numbers, (19) becomes trivial when
M = N = 1 and a = 0, b = 1 since it is known that Bn(1) = (−1)nBn(0). If we denote
Bn = Bn(0), then (19) becomes

(−1)n
n∑

k=0

(−1)k
(
n

k

)
Bn−kBk =

n∑
k=0

(−1)k
(
n

k

)
Bn−kBk (20)

When n is odd, the left and right hand sums in (20) are negatives of each other, which
implies

n∑
k=0

(−1)k
(
n

k

)
Bn−kBk = 0 (21)

However, we had already deduced this earlier since (21) is just a restatement of (18) with
cn = 0 for n odd. On the other hand, when n is even, then the left and right hand sides
of (20) are identical and we are left with a trivial identity.

Fortunately, (19) can be used to obtain new non-trivial identities for hypergeometric
Bernoulli numbers BN,n with N > 1. We demonstrate this next with the use of the fol-
lowing lemma which helps us to evaluate hypergeometric Bernoulli polynomials BN,n(x)
at x = 1.

Lemma 4.

BN,n+N (1) = (n + 1)(N)

N ! δn +
N∑
j=1

(
n + N

n + j

)
BN,n+j (22)

or equivalently,

BN,k(1) = (k −N + 1)(N)

N ! δk−N +
N−1∑
j=0

(
k

k − j

)
BN,k−j (23)

where we define BN,k = 0 for k < 0.
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Proof. Set f(x) = (1 − x)N−1, g(x) = BN,n(x), and p = N − 1. As f and g are Appell
sequences, it follows from (6) and the fact f (p+1) = 0 (since f is a polynomial of degree p)
that

∫
(1 − x)N−1BN,n(x) dx =

N−1∑
k=0

(N − 1)(k)

(n + 1)(k+1) (1 − x)N−1−kBN,n+k+1(x)

where (N − 1)(k) and (n+ 1)(k+1) denote falling and rising factorials, respectively. Inte-
grating this equation over the interval [0, 1] yields

1∫
0

(1 − x)N−1BN,n(x) dx = (N − 1)!
(n + 1)N BN,n+N (1) −

N−1∑
k=0

(N − 1)(k)

(n + 1)(k+1)BN,n+k+1(0)

Equating this answer with (14) in the definition of hypergeometric Bernoulli polynomials
and solving for BN,n+N gives (22) as desired. Formula (23) now follows easily from (22)
by making a change of variable and re-indexing. �

We now make use of Lemma 4 to prove identities involving sums of products of
hypergeometric Bernoulli numbers.

Theorem 5. For positive integers N and M , we have

∑
0�i�M−1
0�j�N−1
(i,j) �=(0,0)

[
n∑

k=0

(−1)k
(

n

j; i; k − i

)
BN,n−k−jBM,k−i

]

= (−1)M−1

[(
M + N

M

)
δn−M−N

+
N−1∑
j=0

(
n

M ; j

)
BN,n−M−j + (−1)n−M−N

M−1∑
i=0

(
n

N ; i

)
BM,n−N−i

]
(24)

where

(
n

n1;n2; . . . ;nk

)
= n!

n1!n2! · · ·nk!(n− n1 − n2 − · · · − nk)!

denotes a multinomial coefficient.
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Proof. We set a = 0 and b = 1 in (19) and use (23) to obtain

n∑
k=0

(−1)k
(
n

k

)[
(n− k −N + 1)(N)

N ! δn−k−N +
N−1∑
j=0

(
n− k

n− k − j

)
BN,n−k−j(0)

]

×
[

(k −M + 1)(M)

M ! δk−M +
M−1∑
i=0

(
k

k − i

)
BM,k−i(0)

]

=
n∑

k=0

(−1)k
(
n

k

)
BN,n−k(0)BM,k(0) (25)

Then expanding the product inside the left-most summation above yields four separate
summations that can be rearranged and simplified as follows:

(−1)M
[(

M + N

M

)
δn−M−N +

N−1∑
j=0

(
n

M ; j

)
BN,n−M−j

+ (−1)n−M−N
M−1∑
i=0

(
n

N ; i

)
BM,n−N−i

]

+
N−1∑
j=0

M−1∑
i=0

n∑
k=0

(−1)k
(

n

j; i; k − i

)
BN,n−k−jBM,k−i

=
n∑

k=0

(−1)k
(
n

k

)
BN,n−kBM,k (26)

Next, observe that the terms in the triple summation above for i = j = 0 yield the
same sum as that on the right hand side, thus canceling each other. Then solving for the
remaining terms in the triple summation yields (24) as desired. �

We now consider special cases of Theorem 5. For example, the following corollary
holds if M = 1.

Corollary 6. For any positive integer N we have

N−1∑
j=1

n∑
k=0

(−1)k
(

n

j, k

)
BkBN,n−k−j

= (N + 1)δn−N−1 + (−1)n−N−1
(
n

N

)
Bn−N +

N−1∑
j=0

(
n

1, j

)
BN,n−1−j (27)
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In addition, if we set N = 2 in Corollary 6, then we obtain

Corollary 7. For n � 1 we have

n∑
k=0

(−1)k
(
n

k

)
BkB2,n−k = B2,n + nB2,n−1 −

n

2Bn−1 (28)

or equivalently,

n∑
k=0

(
n

k

)
BkB2,n−k = B2,n − n

2Bn−1 (29)

Proof. Observe that if N = 2 in (27), then j only takes on the value 1 for the left-hand
side, in which case

(
n

1,k
)

= n
(
n−1
k

)
. Moreover, on the right-hand side we have

(
n
1,j

)
=

n
(
n−1
j

)
. This simplifies (28) as follows:

n∑
k=0

(−1)kn
(
n− 1
k

)
BkB2,n−k−1 = 3δn−3 + (−1)n−3

(
n

2

)
Bn−2 +

1∑
j=0

n

(
n− 1
j

)
B2,n−1−j

Next, we replace n by n + 1 and simplify to obtain

(n + 1)
n+1∑
k=0

(−1)k
(
n

k

)
BkB2,n−k

= 3δn−2 + (−1)n−2 (n + 1)n
2 Bn−1 + (n + 1)B2,n + (n + 1)nB2,n−1

We then divide both sides by n + 1 and use the fact that 3δn−2/(n + 1) = δn−2 on the
right-hand side and Bn+1 = 0 on the left-hand side for every even integer n > 1 to obtain

n∑
k=0

(−1)k
(
n

k

)
BkB2,n−k = δn−2 + (−1)n−2n

2Bn−1 + B2,n + nB2,n−1

Eq. (28) now follows from the fact that δn−2 + (−1)n−2 n
2Bn−1 = −n

2Bn−1. To obtain
(29), we use the identity

n∑
k=0

(−1)k
(
n

k

)
BkB2,n−k = nB2,n−1 +

n∑
k=0

(
n

k

)
BkB2,n−k

which holds since B1 = −1/2 and B2k+1 = 0 for k � 0. �
Observe that formula (29) generalizes (3) and allows us to calculate the hypergeo-

metric Bernoulli numbers B2,n in terms of the classical Bernoulli numbers Bn. This is



212 H.D. Nguyen, L.G. Cheong / Journal of Number Theory 137 (2014) 201–221
useful since the odd B2n−1 are known to vanish except for B1 and thus (29) allows us
to calculate B2,n more efficiently.

Next, we discuss another interesting case of Theorem 5, namely when M = N . This
is the content of the following corollary.

Corollary 8. For any positive integer N we have

∑
0�i�N−1
0�j�N−1
(i,j) �=(0,0)

[
n∑

k=0

(−1)k
(

n

j; i; k − i

)
BN,n−k−jBN,k−i

]

= (−1)N−1

[(
2N
N

)
δn−2N +

(
1 + (−1)n

)N−1∑
j=0

(
n

N ; j

)
BN,n−N−j

]
(30)

Observe that if n is odd, then both sides of (30) vanish. This is clear for the right-hand
side because of the delta term and the sign alternation. As for the left-hand side, this
follows from the fact that the k-th term of the inner summation corresponding to (i, j)
cancels with the (n− k)-th term corresponding to (j, i).

In particular, setting N = 2 in Corollary 8 yields

Corollary 9. For any even integer n � 0, we have

n∑
k=0

(−1)k
(
n

k

)
B2,n−k(x)B2,k(x) = 1

2δn−2 + nB2,n−1 + B2,n (31)

Proof. Assume n is even. Then substituting N = 2 into (30) yields

n∑
k=0

(−1)k
(

n

1; 0; k

)
B2,n−k−1B2,k +

n∑
k=0

(−1)k
(

n

0; 1; k − 1

)
B2,n−kB2,k−1

+
n∑

k=0

(−1)k
(

n

1; 1; k − 1

)
B2,n−k−1B2,k−1 = −

(
4
2

)
δn−4 − 2

1∑
j=0

(
n

2; j

)
B2,n−2−j

which simplifies to

2n
n−1∑
k=0

(−1)k
(
n− 1
k

)
B2,n−k−1B2,k + n(n− 1)

n−1∑
k=1

(−1)k
(
n− 2
k − 1

)
B2,n−k−1B2,k−1

= −6δn−4 − 2
1∑

j=0

(
n

2; j

)
B2,n−2−j (32)

where we have used the fact that B2,k = 0 for k < 0. Next, observe that the first
summation in (32) is an alternating convolution, which vanishes since n− 1 is odd. The
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second summation can also be rewritten as an alternating convolution after re-indexing k.
This leads to

n(n− 1)
n−2∑
k=0

(−1)k
(
n− 2
k

)
B2,n−k−2B2,k = 6δn−4 + n(n− 1)

1∑
j=0

(
n− 2
j

)
B2,n−2−j

and gives a formula for cn if we re-index n:

cn =
n∑

k=0

(−1)k
(
n

k

)
B2,n−kB2,k = 6

(n + 1)(n + 2)δn−2 +
1∑

j=0

(
n

j

)
B2,n−j

This completes the proof since 6δn−2/[(n + 1)(n + 2)] = δn−2/2. �
As a corollary, we now derive identities for sums of products involving only the even

B2,2n and separately for the odd B2,2n−1. Recall the following convolution formula due
to Kamano [4]:

Theorem 10. (See [4].) Let N be a positive integer. Then
n∑

k=0

(
n

k

)
BN,n−kBN,k = − 1

N

[
nBN,n−1 + (n−N)BN,n

]
(33)

It follows from averaging Eqs. (31) and (33) above with N = 2 that
n∑

k=0 mod 2

(
n

k

)
B2,n−kB2,k = 1

4
[
δn−2 + nB2,n−1 − (n− 4)B2,n

]

or equivalently,

Corollary 11.

n∑
k=0

(
2n
2k

)
B2,2n−2kB2,2k = 1

4
[
δ2n−2 + 2nB2,2n−1 − (2n− 4)B2,2n

]
(34)

Observe that (34) generalizes Euler’s quadratic formula for the classical Bernoulli
numbers:

n∑
k=0

(
2n
2k

)
B2n−2kB2k = −(2n− 1)B2n

On the other hand, subtracting the same two equations above yields
n∑

k=1 mod 2

(
n

k

)
B2,n−kB2,k = −1

4 [δn−2 + 3nB2,n−1 + nB2,n]

or equivalently,
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Corollary 12.

n∑
k=1

(
2n

2k − 1

)
B2,2n−2k+1B2,2k−1 = −1

4 [δ2n−2 + 6nB2,2n−1 + 2nB2,2n] (35)

3. Exponential partial fraction expansion

In this section we demonstrate that some of the identities obtained in the previous
section can also be obtained from exponential generating functions defined for hyperge-
ometric Bernoulli polynomials, which we recall from (12):

FN (x, t) ≡ (tN/N !)ext

et − TN−1(t)
=

∞∑
n=0

BN,n(x) t
n

n!

This was achieved by taking advantage of elementary expansion formulas that hold
for special partial fractions, in particular those that we refer to as exponential partials
fractions. We write out these formulas in the following lemma without proof.

Lemma 13. Let A and B be two quantities. Then

(1) 1 −AB

(et −A)(e−t −B) = 1 + A

et −A
+ B

e−t −B
(36)

(2) A−B

(et −A)(et −B) = 1
et −A

− 1
et −B

(37)

Next, we express Lemma 13 in terms of the exponential generating function FN (x, t).

Theorem 14. Let M and N be positive integers. Then

(1)
[
1 − TN−1(t)TM−1(−t)

]
FN (x, t)FM (x,−t)

= (−1)M tM+N

M !N ! + (−1)M tM

M !TN−1(t)FN (0, t) + tN

N !TM−1(−t)FM (0,−t)

(38)

(2)
[
TN−1(t) − TM−1(t)

]
FN (x1, t)FM (x2, t) = tM

M !FN (x, t) − tN

N !FM (x, t) (39)

where x = x1 + x2.

Proof. For (1), set A = TN−1(t) and B = TM−1(−t). Then

[
1 − TN−1(t)TM−1(−t)

]
FN (x, t)FM (x,−t)

= (−1)M
(
tN/N !

)(
tM/M !

) 1 −AB
t −t
(e −A)(e −B)
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= (−1)M tM+N

M !N !

(
1 + A

et −A
+ B

e−t −B

)
(40)

= (−1)M tM+N

M !N ! + (−1)M tM

M !TN−1(t)FN (0, t) + tN

N !TM−1(−t)FM (0,−t) (41)

For (2), set A = TN−1(t) and B = TM−1(t). Then

[
TN−1(t) − TM−1(t)

]
FN (x1, t)FM (x2, t) =

(
tN/N !

)(
tM/M !

)
e(x1+x2)t A−B

(et −A)(et −B)

= tM+N

M !N !e
(x1+x2)t

(
1

et −A
− 1

et −B

)
(42)

= tM

M !FN (x, t) − tN

N !FM (x, t) � (43)

Define am to be coefficients of the polynomial

1 − TN−1(t)TM−1(−t) =
M+N−2∑

m=1
amtm

We are ready to prove our first main result in this section.

Theorem 15. For positive integers M and N , we have

(1)
M+N−2∑

m=1
m!am

n−m∑
k=0

(−1)k
(

n

m; k

)
BN,n−m−k(x)BM,k(x)

= (−1)M
(
M + N

M

)
δn−M−N + (−1)M

N−1∑
m=0

(
n

m;M

)
BN,n−m−M

+ (−1)n−N
M−1∑
m=0

(
n

m;N

)
BM,n−m−N (44)

and if N � M ,

(2)
N−1∑
m=M

n−m∑
k=0

(
n

m; k

)
BN,n−m−k(x1)BM,k(x2)

=
(
n

M

)
BN,n−M (x) −

(
n

N

)
BM,n−N (x) (45)



216 H.D. Nguyen, L.G. Cheong / Journal of Number Theory 137 (2014) 201–221
Proof. To prove (44), we begin with the left-hand side of (38) which simplifies to

[
1 − TN−1(t)TM−1(−t)

]
FN (x, t)FM (x,−t) (46)

=
(

M+N−2∑
m=1

amtm

) ∞∑
n=0

(
n∑

k=0

(−1)k
(
n

k

)
BN,n−k(x)BM,k(x)

)
tn

n!

=
M+N−2∑

m=1
am

∞∑
n=0

n∑
k=0

(−1)k
(
n

k

)
BN,n−k(x)BM,k(x) t

n+m

n!

=
∞∑

n=0

(
M+N−2∑

m=1
m!am

n−m∑
k=0

(−1)k
(

n

m; k

)
BN,n−m−k(x)BM,k(x)

)
tn

n! (47)

On the other, the right-hand side of (38) simplifies to

(−1)M tM+N

M !N ! + (−1)M tM

M !TN−1(t)FN (0, t) + tN

N !TM−1(−t)FM (0,−t)

=
∞∑

n=0
(−1)M

(
M + N

M

)
δn−M−N

tn

n! + TN−1(t)
∞∑

n=0
(−1)M

(
n + M

M

)
BN,n

tn+M

(n + M)!

+ TM−1(−t)
∞∑

n=0
(−1)n

(
n + N

N

)
BM,n

tn+N

(n + N)!

=
∞∑

n=0
(−1)M

(
M + N

M

)
δn−M−N

tn

n! +
(

N−1∑
m=0

tm

m!

) ∞∑
n=M

(−1)M
(
n

M

)
BN,n−M

tn

n!

+
(

M−1∑
m=0

(−1)m tm

m!

) ∞∑
n=N

(−1)n−N

(
n

N

)
BM,n−N

tn

n! (48)

Now use the fact that BN,n = 0 for n < 0 to rewrite (48) as

(−1)M tM+N

M !N ! + (−1)M tM

M !TN−1(t)FN (0, t) + tN

N !TM−1(−t)FM (0,−t)

=
∞∑

n=0
(−1)M

(
M + N

M

)
δn−M−N

tn

n!

+
∞∑

n=M

[
N−1∑
m=0

(−1)M
(
n + N − 1
n + m

)(
n + m

M

)
BN,n+m−M

]
tn+N−1

(n + N − 1)!

+
∞∑

n=N

[
M−1∑
m=0

(−1)n+M−1−N

(
n + M − 1
n + m

)(
n + m

N

)
BM,n+m−N

]
tn+M−1

(n + M − 1)!

=
∞∑

(−1)M
(
M + N

M

)
δn−M−N

tn

n!

n=0
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+
∞∑

n=M+N−1

[
N−1∑
m=0

(−1)M
(

n

N −m− 1;M

)
BN,n−N+1+m−M

]
tn

n!

+
∞∑

n=M+N−1

[
M−1∑
m=0

(−1)n−N

(
n

M −m− 1;N

)
BM,n−M+1+m−N

]
tn

n! (49)

Then re-index the last two summations in (49) and equate it with (47) to obtain (44) as
desired.

We next prove (45) similarly. The left-hand side of (39) simplifies to

[
TN−1(t) − TM−1(t)

]
FN (x1, t)FM (x2, t) (50)

=
(

N−1∑
m=M

tm

m!

) ∞∑
n=0

(
n∑

k=0

(
n

k

)
BN,n−k(x1)BM,k(x2)

)
tn

n!

=
N−1∑
m=M

1
m!

∞∑
n=0

n∑
k=0

(
n

k

)
BN,n−k(x1)BM,k(x2)

tn+m

n!

=
∞∑

n=0

(
N−1∑
m=M

n−m∑
k=0

(
n

m; k

)
BN,n−m−k(x1)BM,k(x2)

)
tn

n! (51)

As for the right-hand side of (39), we have

tM

M !FN (x, t) − tN

N !FM (x, t)

=
∞∑

n=0
BN,n(x) t

n+M

M !n! −
∞∑

n=0
BM,n(x) t

n+N

N !n!

=
N−1∑
n=M

(
n

M

)
BN,n−M (x) t

n

n! +
∞∑

n=N

[(
n

M

)
BN,n−M (x) −

(
n

N

)
BM,n−N (x)

]
tn

n! (52)

Eq. (45) now follows by assuming N � M and equating (51) with (52). �
We note that part (1) of Theorem 15 is equivalent to Theorem 24 since the right-hand

sides of (24) and (44) are identical (up to sign). For example, if M = 1 and N = 2, then
it can be shown that (44) and (45) reduces to (28) and (29), respectively. If M = N = 2,
then (44) reduces to (31), but (45) becomes trivial. This is because both sides of (45)
vanishes when M = N . To obtain non-trivial identities in this case, it is necessary to
replace (37) with the following formula by applying Leibniz’s rule for derivatives:

d

dt

[
ext

(et −A)p

]
= ext

d

dt

[
1

(et −A)p

]
+ x

ext

(et −A)p

= −pext
et −A′

t p+1 + x
ext

t p
(e −A) (e −A)
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= p
(
A′ −A

) ext

(et −A)p+1 + (x− p) ext

(et −A)p (53)

This leads to the following result.

Lemma 16. Suppose z = x1 + x2 + · · · + xp+1 = y1 + y2 + · · · + yp. Then

p+1∏
k=1

FN (xk, t) =
[
(z − p)t
pN

+ 1
] p∏
k=1

FN (yk, t) −
(

t

pN

)
d

dt

[
p∏

k=1

FN (yk, t)
]

(54)

Proof. Set A = TN−1(t). It follows from (53) that

pN

p+1∏
k=1

FN (xk, t) = −t

(
tN

N !

)p

p
(
A′ −A

) eyt

(et −A)p+1

= (z − p)t (t
N/N !)peyt

(et −A)p − t

(
tN

N !

)p
d

dt

[
eyt

(et −A)p

]

= (z − p)t
p∏

k=1

FN (yk, t) + t
d

dt

[(
tN

N !

)p]
eyt

(et −A)p − t
d

dt

[
(tN/N !)peyt

(et −A)p

]

= (z − p)t
p∏

k=1

FN (yk, t) + pN

p∏
k=1

FN (yk, t) − t
d

dt

[
p∏

k=1

FN (yk, t)
]

which proves (54) as desired. �
Following Dilcher [1] and Kamano [4], we define sums of products of hypergeometric

Bernoulli polynomials of order p by

S
(p)
N,n(x̂p) =

∑
i1+i2+···+ip=n

n!
i1!i2! · · · ip!

BN,i1(x1)BN,i2(x2) · · ·BN,ip(xp) (55)

where x̂p = (x1, x2, . . . , xp). Moreover, we set S(p)
N,n(x̂p) = 0 for n < 0. Then observe that

p+1∏
k=1

FN (xk, t) =
∞∑

n=0
S

(p+1)
N,n (x̂p+1)

tn

n! (56)

On the other hand, we can expand the right-hand side of (54) as follows by first defining

ŷp = (y1, y2, . . . , yp)

so that z = x1 + x2 + · · · + xp+1 = y1 + y2 + · · · + yp. It follows that
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[
(z − p)t
pN

+ 1
] p∏
k=1

FN (yk, t) −
(

t

pN

)
d

dt

[
p∏

k=1

FN (yk, t)
]

=
[
(z − p)t
pN

+ 1
] ∞∑
n=0

[
S

(p)
N,n(ŷp)

] tn
n! −

∞∑
n=0

[
n

pN
S

(p)
N,n(ŷp)

]
tn

n!

=
∞∑

n=0

[
(y − p)
pN

S
(p)
N,n(ŷp)

]
tn+1

n! +
∞∑

n=0

[
S

(p)
N,n(ŷp)

] tn
n! −

∞∑
n=0

[
n

pN
S

(p)
N,n(ŷp)

]
tn

n!

=
∞∑

n=0

[
n(y − p)

pN
S

(p)
N,n−1(ŷp) + S

(p)
N,n(ŷp) + n

pN
S

(p)
N,n(ŷp)

]
tn+1

n! (57)

By equating coefficients of (56) and (57) we obtain the following theorem, which
establishes a recurrence for S

(p)
N,n(x̂p) and generalizes Kamano’s recurrence formula for

sums of products of hypergeometric Bernoulli numbers (expressed in terms of a modified
hypergeometric zeta function) given in [4, Lemma 3.1].

Theorem 17. Let x̂p+1 = (x1, x2, . . . , xp+1) and ŷp = (y1, y2, . . . , yp) be such that

z = x1 + x2 + · · · + xp+1 = y1 + y2 + · · · + yp

Then

S
(p+1)
N,n (x̂p+1) = 1

pN

[
(pN − n)S(p)

N,n(ŷp) + n(z − p)S(p)
N,n−1(ŷp)

]
(58)

As an example, we use Theorem 17 to recursively generate formulas for S(p)
N,n(x̂p) for p

equals 2 and 3 in terms of S(1)
N,n(z) = BN,n(z). These formulas generalize those given by

Dilcher [1, Eqs. (3.2) and (3.8)] for Bernoulli polynomials and by Kamano [4] (conclusion
section) for hypergeometric Bernoulli numbers.

Example 18.

(1) S
(2)
N,n(x̂2) = 1

N

[
(N − n)BN,n(z) + n(z − 1)BN,n−1(z)

]
(59)

(2) S
(3)
N,n(x̂3) = 1

2N2

[
(N − n)(2N − n)BN,n(z) +

(
(2N − n)n(z − 1)

+ n(z − 2)(N − n + 1)
)
BN,n−1(z)

+ n(n− 1)(z − 1)(z − 2)BN,n−2(z)
]

(60)

To obtain a general formula for S
(p)
N,n(x̂p) as a linear combination of hypergeometric

Bernoulli polynomials, we take advantage of a theorem proven by the first author in [5]
regarding two-dimensional sequences satisfying recurrences of the type similar to (58).
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Towards this end, suppose a two-dimensional sequence x(n, k) satisfies the generalized
triangular recurrence

x(n, k) = a(n, k)x(n− 1, k) + b(n, k)x(n− 1, k − 1), x(0, k) = f(k) (61)

where a(n, k) and b(n, k) are known two-dimensional sequences, k is an integer, and n

is a non-negative integer. Next, denote by An(m) to be the set of m-element subsets of
A = {1, 2, . . . , n} and let σ = {i1, i2, . . . , im} ∈ An(m) be such a subset. We define the
rank of a positive integer j relative to σ, and denote it by Rσ(j), to be the number of
elements in σ that are greater than j, i.e.

Rσ(j) =
∣∣{i ∈ σ: i > j}

∣∣
Then define the product

πa,b(σ̄, σ; k) =
n−m∏
s=1

a
(
js, k −Rσ(js)

) m∏
r=1

b
(
ir, k −Rσ(ir)

)
(62)

where σ̄ = {j1, j2, . . . , jn−m} denotes the complement of σ in A. The following theorem
gives a general formula for x(n, k) in terms of f(k).

Theorem 19. (See [5, Theorem 4].)

x(n, k) =
n∑

m=0

( ∑
σ∈An(m)

πa,b(σ̄, σ; k)
)
f(k −m). (63)

We now apply Theorem 19 to obtain our desired formula for S
(p)
N,n(x̂p).

Theorem 20. Let a(p, n) = 1 − n
pN , b(p, n) = n

N ( zp − 1), and f(n) = BN,n(z). Define
πa,b(σ̄, σ;n) as in (62). Then

S
(p)
N,n(x̂p) =

p−1∑
k=0

( ∑
σ∈Ap−1(k)

πa,b(σ̄, σ;n)
)
BN,n−k(z). (64)

Proof. Set x(p, n) = S
(p+1)
N,n (x̂p). Since x(n, p) satisfies the recurrence (61), Eq. (64)

follows immediately from Theorem 19. �
4. Conclusion

In this paper we established new convolution identities for hypergeometric Bernoulli
polynomials by considering two different, but equivalent, definitions of Appell sequences.
Some of these identities generalize those found by Euler and Dilcher [1] for classical
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Bernoulli numbers and polynomials and by Kamano [4] for hypergeometric Bernoulli
numbers.

We end by noting that the expansion formulas in Lemma 13 can be generalized to
contain more than two factors, e.g.,

(A−B)(A− C)(B − C)
(et −A)(et −B)(et − C) = B − C

et −A
− A− C

et −B
+ A−B

et − C
(65)

where A, B, and C are three different quantities. It is then natural to use (65) to derive
higher-order identities, thereby generalizing Theorem 15.
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