
#A11 INTEGERS 13 (2013)

GENERALIZED BINOMIAL EXPANSIONS
AND BERNOULLI POLYNOMIALS

Hieu D. Nguyen
Department of Mathematics, Rowan University, Glassboro, New Jersey

nguyen@rowan.edu

Received: 5/2/12, Revised: 1/4/13, Accepted: 2/28/13, Published: 3/15/13

Abstract
We investigate generalized binomial expansions that arise from two-dimensional
sequences satisfying a broad generalization of the triangular recurrence for bino-
mial coefficients. In particular, we present a new combinatorial formula for such
sequences in terms of a ‘shift by rank’ quasi-expansion based on ordered set par-
titions. As an application, we give a new proof of Dilcher’s formula for expressing
generalized Bernoulli polynomials in terms of classical Bernoulli polynomials.

1. Introduction

The binomial expansion formula

(a + b)n =
n�

k=0

�
n

k

�
akbn−k, (1)

where
�n

k

�
denotes the binomial coefficients given by the formula

�
n

k

�
=

n!
k!(n− k)!

(0 ≤ k ≤ n), (2)

is well known to all mathematicians. In this paper, we consider instead a generalized
binomial expansion of two sequences a(k) and b(k) where the first few cases are given
by the quasi-expansion that we shall refer to as ‘shift by rank’:

(a(k) + b(k))0 := 1
(a(k) + b(k))1 := a(k) + b(k)
(a(k) + b(k))2 := a(k)2 + a(k − 1)b(k) + b(k)a(k) + b(k − 1)b(k)
(a(k) + b(k))3 := a(k)3 + b(k)a(k)2 + a(k − 1)b(k)a(k) + a(k − 1)2b(k)

+b(k − 1)b(k)a(k) + b(k − 1)a(k − 1)b(k)
+a(k − 2)b(k − 1)b(k) + b(k − 2)b(k − 1)b(k).

(3)
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Can the reader guess the correct expansion for the next case, (a(k) + b(k))4, and
more generally the formula for (a(k) + b(k))n where n is any non-negative integer?
Observe that if a(k) and b(k) are constant sequences, then the pattern reduces to
that for binomial coefficients.

As we shall explain in this paper, the ’shift-by-rank’ expansion above appears in a
formula for two-dimensional sequences x(n, k) satisfying the generalized triangular
recurrence

x(n, k) = a(n, k)x(n− 1, k) + b(n, k)x(n− 1, k − 1) (4)

where a(n, k) and b(n, k) are arbitrary two-dimensional sequences. If a(n, k) and
b(n, k) are constant and equal to one, then (4) reduces to the classic triangular
recurrence satisfied by the binomial coefficients:

�
n

k

�
=

�
n− 1

k

�
+

�
n− 1
k − 1

�
. (5)

This recurrence is commonly illustrated by arranging the binomial coefficients into
the much-celebrated figure known as Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...

(6)

Moreover, the recurrence (5) uniquely defines the binomial coefficients if we initialize
the values on the boundary of Pascal’s triangle to be 1, i.e.

�
n

0

�
=

�
n

n

�
= 1, (7)

since all other entries can then be generated by this recurrence.
Of course, the mathematical literature contains many extensions of (5) which

are special cases of (4) (see [1], [2], and [5]). For example, the unsigned Stirling
numbers of the first kind are defined by the recurrence

�
n
k

�
= (n− 1)

�
n− 1

k

�
+

�
n− 1
k − 1

�
(8)

and Stirling numbers of the second kind are defined by
�

n
k

�
= k

�
n− 1

k

�
+

�
n− 1
k − 1

�
. (9)

An even more interesting recurrence is one satisfied by the generalized Bernoulli
polynomials B(n)

k of order n:

B(n)
k (z) =

�
1− k

n− 1

�
B(n−1)

k (z) + k

�
z

n− 1
− 1

�
B(n−1)

k−1 (z). (10)



INTEGERS: 13 (2013) 3

We shall consider this recurrence further in Section 3.
Our approach to studying x(n, k) relies on a different initialization of Pascal’s

triangle, which will appear quite natural if we realize it as an infinite rectangular
array (also referred to as Pascal’s matrix or square; see [3] and [6]), where infinitely
many 0’s are appended to both ends of each row as shown in (11):

(k = −1) (k = 0) (k = 1) (k = 2) (k = 3) ...
(n = 0) ... 0 1 0 0 0 0 ...
(n = 1) ... 0 1 1 0 0 0 ...
(n = 2) ... 0 1 2 1 0 0 ...
(n = 3) ... 0 1 3 3 1 0 ...
...

(11)

In this case, it suffices to initialize only those values along the first row (n = 0) as
follows: �

0
k

�
≡ δ0,k, k ∈ Z (12)

where
δi,j =

�
1 if i = j
0 if i �= j

(13)

is Kronecker’s delta. All other binomial coefficients in this array can then be gen-
erated from the triangular recurrence as before.

As an example, let x(n, k) be any two-dimensional sequence which satisfies the
classical triangular recurrence, i.e.

x(n, k) = x(n− 1, k) + x(n− 1, k − 1), (14)

but whose values along row n = 0 are prescribed by an arbitrary bi-directional
sequence f(k), i.e.

x(0, k) = f(k), k ∈ Z. (15)

It is straightforward to show that x(n, k) satisfies the following convolution formula:

x(n, k) =
n�

m=0

�
n

m

�
f(k −m). (16)

This demonstrates that binomial coefficients can be considered as fundamental
building blocks for generating all two-dimensional sequences which satisfy the tri-
angular recurrence.

In this paper we shall describe the fundamental building blocks for two-dimensional
sequences x(n, k) satisfying the generalized triangular recurrence (4). This will re-
quire us to introduce the notion of rank for comparing the relative size of an integer
with respect to a given subset. As a result, we obtain what seems to be a new
combinatorial formula for x(n, k) (Theorem 1) involving ordered set partitions; an



INTEGERS: 13 (2013) 4

extensive search of the literature, including the standard reference [1], which men-
tions (4) but only discusses special cases, did not reveal any formula similar to
ours. As an application, we give a different proof of Dilcher’s formula ([1], The-
orem 2), which expresses generalized Bernoulli polynomials in terms of classical
Bernoulli polynomials. We conclude by presenting a generalization of our results to
three-term recurrences.

2. Generalized Triangular Recurrences

We begin our study of generalized triangular recurrences by first considering the
simple generalization

x(n, k) = ax(n− 1, k) + bx(n− 1, k − 1), (17)

where a and b are constants. Cadogan has proven in [2] that

x(n, k) =
n�

m=0

�
n

m

�
an−mbmf(k −m) (18)

which shows that the coefficients in (18) can be generated by expanding the binomial
(ax + by)n.

As a next step, let us assume that the more general triangular recurrence holds:

x(n, k) = a(n)x(n− 1, k) + b(n)x(n− 1, k − 1), (19)

where a(n) and b(n) are one-dimensional sequences. In this case, the situation
becomes much more interesting. To gain some intuition, let’s write out x(n, k)
explicitly for the first several values of n:

x(0, k) = f(k)
x(1, k) = a(1)f(k) + b(1)f(k − 1)
x(2, k) = a(1)a(2)f(k) + [b(1)a(2) + a(1)b(2)]f(k − 1) + b(1)b(2)f(k − 2)
x(3, k) = a(1)a(2)a(3)f(k)

+[a(1)a(2)b(3) + a(1)b(2)a(3) + b(1)a(2)a(3)]f(k − 1)
+[a(1)b(2)b(3) + b(1)a(2)b(3) + b(1)b(2)a(3)]f(k − 2)
+b(1)b(2)b(3)f(k − 3).

(20)

Guided by the combinatorial definition of binomial coefficients as counting the num-
ber of subsets of a given set, we look to describe the coefficients of f in (20) by
ordered partitions of {1, 2, 3}.

Definition 1. Let An = {1, 2, ..., n}. We define P = (σ1,σ2) to be a 2-block ordered
partition of An if σ1 and σ2 are disjoint sets whose union is An. Morever, let P2(An)
denote the set of all 2-block ordered partitions of An.
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Observe that in the definition above we allow either σ1 or σ2 to be empty (but
not both), which differs from the standard definition of set partitions (see [8]). Also,
the correspondence (σ1,σ2) ↔ σ2 gives a bijection between P2(An) and the power
set of An, i.e., the set of all subsets of An, since σ1 and σ2 are complements of each
other in An. Thus, we can express any 2-block ordered partition as (σ̄,σ), where σ
is a subset of An. Moreover, P2(An) has cardinality 2n.

Definition 2. Given (σ̄,σ) ∈ P2(An) where the elements of σ and σ̄ are denoted
explicitly by {i1, i2, ..., im} and {j1, j2, ..., jn−m}, respectively, we define the product

πa,b(σ̄,σ) ≡ a(j1)a(j2) · · · a(jn−m)b(i1)b(i2) · · · b(im). (21)

It follows from this definition that x(n, k) can be described by the formula

x(n, k) =
�

(σ̄,σ)∈P2(An)

πa,b(σ̄,σ)f(k − |σ|), (22)

or equivalently,

x(n, k) =
n�

m=0




�

σ∈An(m)

πa,b(σ̄,σ)



 f(k −m). (23)

where An(m) denotes the set of m-element subsets of An. We shall prove a more
general formula later on.

Let us now assume that x(n, k) satisfies the recurrence

x(n, k) = a(k)x(n− 1, k) + b(k)x(n− 1, k − 1) (24)

where a(k) and b(k) are again one-dimensional sequences as in (19), but this time
dependent on the second index k instead of the first index n. How does this affect
our formula for x(n, k)? Again, we write out x(n, k) explicitly for the first several
values of n:

x(0, k) = f(k)
x(1, k) = a(k)f(k) + b(k)f(k − 1)
x(2, k) = a(k)a(k)f(k) + [a(k − 1)b(k) + b(k)a(k)]f(k − 1)

+vb(k − 1)b(k)f(k − 2)
x(3, k) = a(k)a(k)a(k)f(k) + [b(k)a(k)a(k)

+a(k − 1)b(k)a(k) + a(k − 1)a(k − 1)b(k)]f(k − 1)
+[b(k − 1)b(k)a(k) + b(k − 1)a(k − 1)b(k)
+a(k − 2)b(k − 1)b(k)]f(k − 2) + b(k − 2)b(k − 1)b(k)f(k − 3).

(25)

The pattern in this case appears more complicated than the previous case due
to shifts in certain indices; in fact, (25) is essentially the ‘shift and rank’ expansion
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(modulo f) discussed at the beginning of this paper. To shed some light on this
pattern, we first fix an ordering for how the factors a and b should appear in
each coefficient: indices should be written left to right in ascending order and
if two factors have the same index, then they are written left to right in reverse-
alphabetical order. For example, the expansion in (25) is written using this ordering.

Next, we compare the shifts of each index with the corresponding positions of
the factor a and b. In particular, if we denote by sj the amount of shift in the index
of the j -th factor of a given coefficient of f , then what pattern does sj satisfy? The
answer is that the shift in the index of a given factor depends on the number of
factors involving b that are higher in position, i.e., further to the right.

We formalize this pattern by introducing a rank function to indicate the relative
size of an integer with respect to a given subset.

Definition 3. Let σ = {i1, i2, ..., im} ∈ An(m). We define the rank of a positive
integer j relative to σ, and denote it by Rσ(j), to be the number of elements in σ
that are greater than j, i.e.

Rσ(j) = |{i ∈ σ : i > j}|

.

For example, if σ = {1, 2, 4} ∈ A5(3), then Rσ(3) = 1 since there is only one
element in σ, namely 4, that is greater than 3. We also have Rσ(5) = 0. In general,
Rσ(n) = 0 for every subset σ ∈ An. Then given (σ̄,σ) ∈ P2(An), we define the
product (analogous to (21))

πa,b(σ̄,σ; k) =
n−m�

s=1

a(k −Rσ(js))
m�

r=1

b(k −Rσ(ir)). (26)

As a result, we are now able to express x(n, k) by the shift-by-rank expansion formula

x(n, k) =
n�

m=0




�

σ∈An(m)

πa,b(σ̄,σ; k)



 f(k −m). (27)

This brings us to the last case where we assume that x(n, k) satisfies the most
general recurrence given by (17) in terms of arbitrary two-dimensional sequences
a(n, k) and b(n, k). Again, given (σ̄,σ) ∈ P2(An), we define the product

πa,b(σ̄,σ; k) =
n−m�

s=1

a(js, k −Rσ(js))
m�

r=1

b(ir, k −Rσ(ir)). (28)

By combining the results of the two previous cases, we obtain the following main
theorem, which we prove rigorously.
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Theorem 4. Suppose a two-dimensional sequence x(n, k) satisfies the generalized
triangular recurrence

x(n, k) = a(n, k)x(n− 1, k) + b(n, k)x(n− 1, k − 1)
x(0, k) = f(k)

where n is a non-negative integer and k ∈ Z. Then

x(n, k) =
n�

m=0




�

σ∈An(m)

πa,b(σ̄,σ; k)



 f(k −m). (29)

Proof. For n = 0, formula (29) reduces to x(0, k) = f(k). By induction on n, we
have

x(n + 1, k) = a(n + 1, k)x(n, k) + b(n + 1, k)x(n, k − 1)
= a(n + 1, k)

�n
m=0

��
σ∈An(m) πa,b(σ̄,σ; k)

�
f(k −m)

+b(n + 1, k)
�n

m=0

��
σ∈An(m) πa,b(σ̄,σ; k − 1)

�
f(k − 1−m)

=
�n

m=0

��
σ∈An(m) a(n + 1, k)πa,b(σ̄,σ; k)

�
f(k −m)

+
�n

m=0

��
σ∈An(m) b(n + 1, k)πa,b(σ̄,σ; k − 1)

�
f(k − 1−m).

Next, we simplify the inner summation in each of double summations above as
follows. First, assume σ = {i1, i2, ..., im} ∈ An(m) so that σ̄ = {j1, j2, ..., jn−m} ∈
An(n −m). Then observe that we can view σ as a subset of An+1(m); moreover,
the complement of σ in An+1(m) equals σ̄∪{n+1}. Set jn−m+1 = n+1 and recall
that Rσ(n + 1) = 0. It follows that the inner summation of the first term can be
rewritten as

�

σ∈An(m)

a(n + 1, k)πa,b(σ̄,σ; k)

=
�

σ∈An(m) a(n + 1, k)
�n−m

s=1 a(js, k −Rσ(js))
�m

r=1 b(ir, k −Rσ(ir))

=
�

σ∈An+1(m)
n+1/∈σ

�n+1−m
s=1 a(js, k −Rσ(js))

�m
r=1 b(ir, k −Rσ(ir))

=
�

σ∈An+1(m)
n+1/∈σ

πa,b(σ̄,σ; k).

As for the second term, since Rσ�(j) = Rσ(j) + 1 for σ ∈ An(m), where σ� =
σ ∪ {n + 1} and 1 ≤ j < n + 1, we can simplify it as
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�

σ∈An(m)

b(n + 1, k)πa,b(σ̄,σ; k − 1)

=
�

σ∈An(m) b(n + 1, k)
�n−m

s=1 a(js, k − 1−Rσ(js))
�m

r=1 b(ir, k − 1−Rσ(ir))

=
�

σ�=σ∪{n+1}
σ∈An(m)

�n−m
s=1 a(js, k −Rσ�(js))

�m+1
r=1 b(ir, k −Rσ�(ir))

=
�

σ�∈An+1(m+1)
n+1∈σ�

πa,b(σ̄�,σ�; k).

It follows that

x(n + 1, k) =
�n

m=0

��
σ∈An+1(m)

n+1/∈σ

πa,b(σ̄,σ; k)
�

f(k −m)

+
�n

m=0

�
�

σ�∈An+1(m+1)
n+1∈σ�

πa,b(σ̄�,σ�; k)

�
f(k − (m + 1)).

But the two summations above can be viewed as a partition of An+1 into those
subsets σ� that contain the integer n + 1 and those subsets σ that do not. Then
by re-indexing the second summation on the right hand side above and making the
limits of summation the same for both, which involve inserting empty cases, we can
combine both summations into one as follows:

x(n + 1, k) =
�n+1

m=0

��
σ∈An+1(m)

n+1/∈σ

πa,b(σ̄,σ; k)
�

f(k −m)

+
�n+1

m=0

�
�

σ�∈An+1(m)
n+1∈σ�

πa,b(σ̄�,σ�; k)

�
f(k −m)

=
�n+1

m=0

��
σ∈An+1(m) πa,b(σ̄,σ; k)

�
f(k −m).

This completes the proof.

3. Application to Bernoulli Polynomials

As an application of Theorem 1, we prove Dilcher’s formula ([1]) for expressing
generalized Bernoulli polynomials in terms of classical Bernoulli polynomials Bn(z).
The latter arises in many important applications involving special functions such
as the Riemann zeta function.
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Let p be a positive integer. Then the generalized Bernoulli polynomials B(p)
n (z)

of order p are defined by the generating function

tpezt

(et − 1)p
=

∞�

n=0

B(p)
n (z)

tn

n!
. (30)

If p = 1, then Bp
n(z) reduces to the classical Bernoulli polynomials Bn(z). Since

tpezt

(et − 1)p
=

p�

q=1

�
tezqt

et − 1

�
=

p�

q=1

� ∞�

n=0

Bn(zq)
tn

n!

�
(31)

where z = z1 + ... + zp, it follows from equating (30) and (31) that

Sn,p(z) ≡
�

i1≥0,i2≥0,...,.ip≥0
i1+i2+...+ip=n

n!
i1! · · · ip!

Bi1(z1) · · · Bip(zp) = B(p)
n (z). (32)

In [3], Nörlund proved that the generalized Bernoulli polynomials satisfy the gen-
eralized triangular recurrence

B(p)
n (z) =

�
1− n

p− 1

�
B(p−1)

n (z) + n

�
z

p− 1
− 1

�
B(p−1)

n−1 (z) (33)

for n > p ≥ 1. By applying Theorem 1 to this recurrence, we obtain the following
corollary.

Corollary 5. The generalized Bernoulli polynomials are given in terms of the clas-
sical Bernoulli polynomials by

B(p)
n (z) =

p−1�

k=0




�

σ∈Ap−1(k)

πa,b(σ̄,σ;n)



Bn−k(z). (34)

Proof. Formula (34) follows immediately from (29) by setting x(p, n) = B(p+1)
n (z),

a(p, n) = 1− n
p and b(p, n) = n

�
z
p − 1

�
.

The following lemma describing certain properties of the rank function will be
useful in demonstrating that formula (34) reduces to Dilcher’s formula, which we
show afterwards.

Lemma 6. Let σ = {i1, i2, ..., im} ∈ An(m) with i1 < i2 < ... < im and σ̄ =
{j1, j2, ..., jn−m} ∈ An(n−m) with j1 < j2 < ... < jn−m. Then

{Rσ(ir)}m
r=1 = {0, ...,m− 1} (35)

and
{Rσ(js) + js}n−m

s=1 = {m + 1, ..., n}. (36)



INTEGERS: 13 (2013) 10

Proof. Since i1 < i2 < ... < ik we have Rσ(ir) = m− r for r = 1, ...,m and so

{Rσ(ir)}m
r=1 = {0, ...,m− 1}.

This proves (35). To prove (36), we first show that Rσ(js) + js is bounded between
m + 1 and n for s = 1, ..., n−m. This is because Rσ(js) ≥ m− js + 1 and so

Rσ(js) + js ≥ (m− js + 1) + js = m + 1.

On the other hand, we have Rσ(js) ≤ n− js and so

Rσ(js) + js ≤ n− js + js = n.

Next, we claim that the values Rσ(js) + js are all distinct for 1 ≤ s ≤ n−m and in
particular increasing in s, i.e., Rσ(jr) + jr < Rσ(js) + js for r < s. To prove this,
we set k = js − jr > 0 (recall that jr < js). Since Rσ(jr) < Rσ(js) + k, it follows
that

Rσ(jr) + jr < Rσ(js) + jr + k = Rσ(js) + js

which proves our claim. Thus, (36) holds.

Let s(n, k) denote the Stirling numbers of the first kind, which are defined by
the generating function

z(z − 1)(z − 2) · · · (z − n + 1) =
n�

m=0

s(n,m)zm. (37)

In particular, we have

s(n,m) =
�

{i1,i2,...,im}∈An(m)

(−1)mi1i2 · · · im. (38)

We are now ready to prove Dilcher’s formula.

Theorem 7. (Dilcher [1]) For positive integers n and p with n > p ≥ 1,

Sn,p(z) = (−1)p−1p

�
n

p

� p−1�

k=0

(−1)k

n− k

�
k�

m=0

�
q − 1
m

�
s(p, q)zm

�
Bn−k(z) (39)

where q = p− k + m.

Proof. Because of (32) it suffices to show that B(p)
n (x), given by (34), equals

the right-hand side of (39). Towards this end, suppose σ ∈ Ap−1(k) with σ =
{i1, i2, ..., ik} and σ̄ = {j1, j2, ..., jp−k−1}. Then since a(p, n) = 1− n

p and b(p, n) =

n
�

z
p − 1

�
, we have
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πa,b(σ̄,σ;n) =
p−k−1�

s=1

a(js, n−Rσ(js))
k�

r=1

b(ir, n−Rσ(ir))

=
p−k−1�

s=1

�
1− n−Rσ(js)

js

� k�

r=1

[(n−Rσ(ir))
�

z

ir
− 1

�
]

=
(−1)p−k−1

(p− 1)!

p−k−1�

s=1

(n−Rσ(js)− js)
k�

r=1

(n−Rσ(ir))
k�

r=1

(z − ir)

where we have used the fact that i1 · · · ikj1 · · · jp−k−1 = (p− 1)!. By the previous
lemma, the products involving Rσ can be combined into

p−k−1�

s=1

(n−Rσ̄(js)− js)
k�

r=1

(n−Rσ(ir)) =
p−1�

r = 0
r �= k

(n− r) =
(n)p

n− k

which yields

πa,b(σ̄,σ;n) =
(−1)p−k−1

(p− 1)!
· (n)p

n− k
·

k�

r=1

(z − ir).

It follows that

�

σ∈Ap−1(k)

πa,b(σ̄,σ;n) = (−1)p−k−1 p

n− k

�
n

p

� �

σ∈Ap−1(k)

k�

r=1

(z − ir).

Now, write the polynomial Pσ(z) ≡
�k

r=1(z − ir), which has degree k, in the form

Pσ(z) = ck(σ)zk + ck−1(σ)zk−1 + ... + c0(σ).

Here each coefficient cm(σ) corresponding to zm is a sum of terms of the form
(−1)k−mir1ir2 ...irk−m , where {ir1 , ..., irk−m} is an (k−m)-element subset of σ. Since
σ is a k -element subset of {1, ..., p− 1}, we claim that there are exactly

�p−1−k+m
m

�

subsets σ ∈ Ap−1(k) that contain {ir1 , ..., irk−m}. This is because, assuming the
elements {ir1 , ..., irk−m} have already been chosen, we can fill in the remaining m
elements of σ by choosing them from the (p − 1 − k + m) un-chosen elements. It
follows that

�

σ∈Ap−1(k)

Pσ(z) =
k�

m=0

�
q − 1
m

�


�

{r1,...,rk−m}∈Ap−1(k−m)

(−1)k−mir1ir2 ...irk−m



 zm

=
k�

m=0

�
q − 1
m

�
s(p, q)zm
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where q = p− k + m. Thus,

Sn,p(x) = B(p)
n (x)

=
p−1�

k=0




�

σ∈Ap−1(k)

πa,b(σ̄,σ;n)



Bn−k(z)

=
p−1�

k=0



(−1)p−k−1 p

n− k

�
n

p

� �

σ∈Ap−1(k)

Pσ(z)



Bn−k(z)

= (−1)p−1p

�
n

p

� p−1�

k=0

(−1)k

n− k

�
k�

m=0

�
q − 1
m

�
s(p, q)zm

�
Bn−k(z)

as desired.

4. Generalization to Three-Term Recurrences

Our results for two-term triangular recurrences can be generalized to three-term
recurrences of the form

x(n, k) = a(n, k)x(n− 1, k) + b(n, k)x(n− 1, k − 1) + c(n, k)x(n− 1, k − 2) (40)

where a(n, k), b(n, k) and c(n, k) are given arbitrary two-dimensional sequences.
Towards this end, let σ = {i1, i2, ..., im1} ∈ An(m1) and τ = {j1, j2, ..., jm2} ∈
An(m2) be two disjoint subsets of {1, 2, ..., n}. We define the rank of a positive
integer j with respect to (σ, τ) to be

Rσ,τ (j) = |{i ∈ σ : j < i}| + 2 |{i ∈ τ : j < i}| . (41)

Let P3(An) denote the set of 3-block ordered partitions of the form (σ1,σ2,σ3),
where σ1, σ2, and σ3 are mutually disjoint and whose union equals An. Write out
the elements of these three sets explicitly as

σ1 = {j1, j2, ..., jn−m1−m2}
σ2 = {i1, i2, ..., im2}
σ3 = {h1, h2, ..., hm1}

and define the product

πa,b,c(σ1,σ2,σ3; k) =

m3�

s=1

a(js, k −Rσ2,σ3(js))
m2�

r=1

b(ir, k −Rσ2,σ3(ir))
m1�

q=1

c(hq, k −Rσ2,σ3(hq))
(42)

where m3 = n−m1 −m2.
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We conjecture the following formula for x(n, k), which generalizes (29) to three-
term recurrences:

x(n, k) =
�

(σ1,σ2,σ3)∈P3(An)

πa,b,c(σ1,σ2,σ3; k)f(k − |σ2|− 2|σ3|). (43)

Formulas (29) and (43) can of course be naturally extended to higher order n-term
recurrences for n ≥ 4.
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