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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 250, June 1979 

ORTHOGONAL POLYNOMIALS DEFINED BY A 
RECURRENCE RELATION 

BY 
PAUL G. NEVAI1 

ABSTRACT. R. Askey has conjectured that if a system of orthogonal 
polynomials is defined by the three term recurrence relation 

xp l(x) = - 
pn(x) + an-lPn-l(X) + Y 

Pn-2(X) 

and 

an 
I n 

const + ? 2) 

Tn n i n2)f 
(Y I)n 

Tn+iconst +O(- 2 

then the logarithm of the absolutely continuous portion of the correspond- 
ing weight function is integrable. The purpose of this paper is to prove R. 
Askey's conjecture and solve related problems. 

Let a be a nondecreasing function defined on the real line. Such a function 
a is called weight function if it takes infinitely many values and all its 
moments are finite.2 For a given weight a there exists a unique system of 
polynomials {pn(dac)) ??0 such that pn(da, x) = yn(da)xn + ... (yn > 0) 

and 

f_ PnPmda = Snm 
c<o 

These orthogonal polynomials satisfy the recurrence formula 

yn ,(da) 
xpn_I(da,x) = yn(da) Pn(da, x) + an (da)pn_I(da, x) 

+yn-2 (da) 
yn _(da) Pn-2( da,) (1) 

forn = 1, 2, . . . wherepo = Yo'P-I = Oand 

an (da) =f__xpn (da, x) dao(x). 

Received by the editors January 16, 1978 and, in revised form, July 7, 1978. 
AMS (MOS) subject classifications (1970). Primary 42A52. 
'Research sponsored by the National Science Foundation under grant No. MCS75-06687. 
2Many authors reserve the term "weight" for absolutely continuous a's. The present paper 

deviates from the norm in this regard. 
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370 P. G. NEVAI 

It is well known that if supp(da) is compact then 

sup Ian(da)I < oo sup yn (da) < o?. (2) 
n >O n > Yn da) 

On the other hand, if we take two sequences of real numbers {an})?' and 
{yn > } ?? o such that 

'yn-'I sup IanI , sup < oo 
n>O n >1 Yn 

and we build up a system of polynomials {pn}) =0 defined by 
'Yn -1_ Yn- 2 

XPnp (x) = Pn(X) + an-lPn_1(x) + Pn-2(X), (3) 
yn Yn - I 

n = 1, 2, ... 'po = yo and p = 0 then these polynomials are orthogonal 
with respect to some uniquely determined weight a having compact support 
[2]. Therefore every information concerning a and pn is contained in the 
recurrence relation (1) whenever (2) is satisfied. It is very likely that one of 
the main tasks of the theory of orthogonal polynomials in the near future will 
be to squeeze out that information from the recurrence formula. At the 
present time very little is known about solutions of second order linear 
difference equations. There is a special case, however, when something can be 
said about polynomials satisfying (3). In [3], [4] and [5] a number of results 
were proved concerning the class M which is defined by 

M= 1?a: lim an(da) = i 0 m (d) 2 1 
nl--oo n-->oo Yn(da) 21 

Let us mention that M contains many weight functions. In particular, the 
Szego class S is contained in M. Here 

S = {a: supp(da) =[-1, ], log a'(cos 9) E L'). 

Another example is the Pollaczek weight which belongs to M \ S. (See e.g. 
[3], [6].) Also, from a E M does not follow that the support of da is contained 
in [- 1, 1]. If, for instance, a jump is added to the Chebyshev weight then the 
new weight still belongs to M. Actually, M \ S must be large since from 
a E S the convergence of series 

E 2A + [2 - 
y 
1k 

and 

k=O k=O Yk+l 

follows. (See [3].) This suggests that investigation of the class M, containing 
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ORTHOGONAL POLYNOMIALS 371 

those weights a for which 

00 ~~~~Yk (da) 
k=E 

ak(da) + 2 
Yk+l(da) 

- I < ?? 

is a good starting point. It was shown in [3] that if a E M1 then one can get 
asymptotic formulas for the corresponding orthogonal polynomials. It turns 
out, however, that M1 is relatively small. If a E M1 then a must be absolutely 
continuous on (- 1, 1) and a' is positive and continuous on (-1, 1). Despite 
of this it is not clear whether a E M1 implies log a'(cos 9) E L1. K. M. Case 
[1] suggested that 

ak(da) = ? yk+l(da) 2 \ k2 ) 

(k = 1, 2,...) should imply the integrability of log a'(cos 9). In [4] we 
proved that a' is greater than a Jacobi weight whenever (4) is satisfied. 
Therefore K. M. Case was right. In this work we will show that log a'(cos 9) 
is integrable provided that series 

E log k [ak(da)I + 2 (da) -11 
converges. However, the true purpose of this paper is to solve some problems 
posed by R. Askey. 

Let /8 be defined by supp(d,8) = [-1, 1] and 

d,8(x) = Ixa(l'- x2)bdx (-1 < x < 1) (5) 
where a > - 1 and b > -1. It is clear that an (d,8) = 0 for every n. R. Askey 
noticed that yn(d,8) satisfy the condition 

Yn+I(d82) n + (n= 1, 2,...) 

where B is some fixed real number. This led R. Askey to the conjecture that 
log a'(cos 9) should be integrable whenever 

an (da) = n +D(i ) (6) 

and 

())= 2 + +? 
0 

2 )(7) -Yn+ I(da) 2 +n(7 

(n = 1, 2.... ) is satisfied with some fixed numbers D and E. Let us note 
that (6) and (7) are stronger than the condition 
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372 P. G. NEVAI 

n [yj (da) 
E j1I aj(da) + aj+ , (da) + 1 -4 

j=I ~~~~~~~~~~~~yj 2(da) 

+aj2(da) +1-2 
j 
(da) < const - log n (8) 

for n = 3, 4 .... We will show that from (8) follows that da is greater than a 
df3 defined by (5). Hence log a'(cos 9) is far from being nonintegrable if (6) 
and (7) hold. R. Askey had felt in the same way since he also conjectured the 
following. Let 

a,n(da) = 
n 

+ ?( D ) 

and 

Yn(da) + I) + P I 

for somep > 1. Then log a'(cos 9) is integrable. We will prove that R. Askey 
was again right. Actually, log a'(cos 9) is integrable whenever 

E log]j aj (da) + aj+, (da)I + 1-4 - 
i=3 '~~~~~~~~Yj + A(da) 

+aj2(da) + I1-2 ]j2} I |d | < ?? (9) 

We will also investigate orthogonal polynomials corresponding to weights a 
satisfying 

00 ~~~~~~~yj (da) 
{laj(da) + a+,(da)l + 1 - 4 - 

j=0 '~~~~~~~Yj+ 2(da) 

-yj(da) 2T 

+ aj2(d,) +[I-2 Ki ) | i < oo. (10) 

Let us note that if a E Ml then (10) holds. 
Before going into more details let us mention a third conjecture of R. 

Askey which we cannot solve at the present time: if 
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ORTHOGONAL POLYNOMIALS 373 

a,(da) = D + ( ) 

and 

-y,,(da) E + 0 1 

yn + 1 (da) n 2 / 

with D2 + E2 > 0 then log a'(cos 9) is not integrable. 
In the following by constants we mean positive numbers which are inde- 

pendent of x and n. The symbol A will always denote a closed interval. The 
measure of A is JAI. If x E [- 1, 1] then x = cos 9 with some 9 E [0, 7T]. This 
correspondence between x and 9 is taken for granted. Therefore a statement 
like f(9) is continuous on A c [-1, 1] means that f(9) is continuous for 
cos 9 = x E A. We will always assume that all weights considered belong to 
M. The only exception is Lemma 1. 

LEMMA 1. Let supp(da) be compact. Then 

lp,(da, x) - 2 cos 209pn2(da, x) + pn-4(da, x)I 

an[IPn-3(da, x)I + Ipna4(da, x)I] 

and 

Ipn(da, x) - 2 cos 209pn2(da, X) + Pn-4(da, X)I 
< an[IPn-2(da, x)I + Ipn-3(da, x)I] 

forn = 4, 5,... and I x I 1 where x = cos 9 and 

<n K 2 Iaj(da) + aj+I(da)I + - 4 ( 
j=n-4 'j+2(a 

ja2(da)+[1 -2 yj(da) 
2 

2(da) + I 2 
(da 

with K depending only on the smallest interval containing supp(da) and 

SUpk>o{Yk+ l(da)/yk(da)). 

PROOF. Using repeatedly the recurrence relation we can expand X2pn-2 into 
Fourier series in { pj). We have 
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374 P. G. NEVAI 

2 Yn-2 Yn2 [ -2 +n 

+y [?n2 + +tn-32]Pn-3+2 n4 

Therefore 

- 2(2x - l)p--2 + Pn-4 

Yn Y -I 
Y-2 J 2l n 1n 2P - 

-41 4 Yn-2 Yn -3 Y2 1 + 

Yn- Yn-2 / 2 ( YJIanP2 n-2 

Y Yn- I Yn_2 

4 la ?n-2 + atn-3 ]Pn _3 +[1 4 ] Pn- 4. 

The first part of the lenmma will be proved if we show that 

IPk(x)I ( const[I|pn3(x)I + IPn_ 4(x)I ] (11l) 

for k =n-2,n- 1, nwhen n-4,5,. .. and-i < x < 1. Rewriting the 
recurrence formulas as 

Pn- ) (x - 22+ P n4(x) 

'Yn3 YYn--3 

we see that for k = n - 2 (11) holds with a constant depending on Y 

supp(dax) and SUPk O{ + / 4}. Using induction we obtain (11) also for 
k = n-1 and k = n. The second part of the lemma follows from 

IPk(x)I < const[lPn-32(x) + lPn43(x)l ] 
(k = n - 2, n - 1, n n n 4 5... . and 1)which can bewproved 
in the same way as (11). 

LEMMA 2. If Tx is a trigonometric polynomial of degree at most n then from 

max T ( t)sin2tI 1 

the inequality 
max I Tn (t)I s 72(n + 1) 

0 < 2lof 

follows. 
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ORTHOGONAL POLYNOMIALS 375 

PROOF. Let D,(t) = In - eik be the nth Dirichlet kernel. Then jDn(t)j < 

Dn(O) = 2n + 1 and 
1 j D,2(t)dt = 2n + 1. (12) 

Since Tn convolved with Dn equals Tn the inequality 

IT (t)1 < 2n+ 1 fIT (o)Ido (13) 

holds for every t. Therefore 

<|E|2n2+ 1 fIT2 (9)Id9 

for every measurable set E, that is 

f0ITn(9)Id9 <' 2O]\ Tn(])\dE + JE 2n+ 1 fIT (9)IdO. 

Thus we obtain that 

f|2|ITn (t9)1do S 2I I Tn (O)d9 

whenever the measure of E is less than g/(2n + 1). Using (13) we get 

IT 1' ,27r]\E 

if 0 < t < 27T and JEl < 'T/(2n + 1). Now let us replace here Tn(O) by 
Tn(O)Dn2(t - 0). Since the latter is a trigonometric polynomial of degree at 
most 3n we have 

nD, (0)Tn(t)l 6n< 1T 2r]\E IT()jDn O)dO 

for 0 < t < 2'i and JEl < i/(6n + 1). Consequently by (12) 
max II Tn (t)l < 6 sup I Tn (t) 0 t <2?r te[0,27rf]\E 

provided that IEl < ?TI(6n + 1). Let us choose E to be 
3 

u kv _ X k7T+ S7 

k=O L 2 8(6n + 1)' 2 8(6n + 1)1 
Then I E l = 7r/(6n + 1) and 

Isin 2tl >2 -~ Isn2t|>4T *8(6n + 1) 2(6n + 1) 

for t E [0, 27T] \ E. Thus 

max ITn(t)I < 12(6n + 1) sup ITn(t) sin2t| 
0 < t < 21T tIE [0,21T]\rE 

which proves the lemma. 
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376 P. G. NEVAI 

LEMMA 3. Let 4, (da) be defined by 

{n da, 0 ) = pn (dat, x) - e2i%-A_2 dat, x),(14 
x = cos 0 and let 6j be the numbers introduced in Lemma 1. Then for-i S x 
< 1 the inequalities 

I4'(da, O)I + |I4' _(dax, )I 

<[IAn2(da,l )I + I -3(da, 0)I][ + sin 2 ] (15) 

I4-A2(da, 0)I + I4'-3(da, 0)I 

< [ lM(da, 0)| + I4ni (da, 0)1 ] [1 + 'i28 7 ] (16) 

I4'(da, 0)1 < C1 exp Isin 201I 
S } (17) 

and 

I4n (da, )I < C2 eXp C3 I j}i (18) 

hold for n = 10, 11,... where the constants C1, C2 and C3 do not depend on n 
and x. 

PROOF. Since 

{> - e-2 2 =2 = - 2 COS 20pn-2 + Pn-4 

we have by Lemma 1 

I4'% - e 2i4 n-21 < 3n[lPn-31 + lPn-41 ] 
that is 

-21 nIlm(e-2i 
3)1 + IuM 4n-21 (19) l4'~ - e2i64,n21 

~Isin 201 . (9 

Similarly 

-- -2ie m31 < n 
1 n-21 + 11mM4n-31 (20) 

e2i64,n31 ~~~ sin 201 
Therefore 

%1l < %n-21 + 4n-31 + -21 
14'fl ? 1'n21 3f Isin 201 

and 
| |+ n-21 + bPn-31 

I4fl11 < I4'n31 + fn-j Isin 201 
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ORTHOGONAL POLYNOMIALS 377 

Adding the last two inequalities together we obtain (15). Inequality (16) can 
be proved in the same way. Repeated application of (15) yields 

I4pnl + liP-11 < Cl expt sin 201 j S4 

which implies (17). To prove (18) we use Lemma 2. We have by (19) and (20) 

(An-e e -2i 2) sin 201 < Sn[maxI4'_31 + maxI4'_21] 
and 

1(+n-j- e 2iAn-3) sin 201 <SAn- I [maxI4'_31 + maxI4'_21]. 
Consequently by Lemma 2 

maxI4-e- e-2i,% _21 < 72(n + 1)8n[maxI4' 31 + maxI4'-21] 

and 

maxij - eI- 2i'4'l3l s 72n8n1j[maxI4'-31 + maxl4n-21I] 

From the last two inequalities we obtain 

maxI4QI + maxI4'_11 

<[maxI4' 21 + maxI4'_3I][1 + 72(n + 1)3n + 72n3n-1]. 
Applying repeatedly this inequality we get (18). 

LEMMA 4. Let (10) be satisfied and let 4n(da) be defined by (14). Then 

{(da, 0) = lim e in% 4(da, 0) 

exists for x E A = (-1, 1) \ 0 and the convergence is uniform inside A. The 
limit function 4 is continuous on A and its absolute value satisfies the inequality 

I1i(da, 0)I" < exp{const/Isin 201) (21) 
for x E A. Furthermore 

14(da, 0)I = 2 (1 (22) 
I 

a'(x) 

for x E A. In particular, a' is continuous and positive for x E A. 

PROOF. It follows from (10) that 
00 

=E 8 < Co 
j=4 

Therefore by (17) 

I4'(0)j < Cl exp{S/Isin 201) (23) 

for n = 10, 11, ... and -1 S x < 1 (x = cos 0). Consequently the 
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378 P. G. NEVAI 

inequality 

Ipn(x)I ~Isin 201 tsin (24) 

(n = 10, 11,... and -1 < x < 1) also holds since sin 2Op,(x)= 
Im{ e 2i4 (0)}). We have 

n 

e2in@+2n ( 0 - e 22ik4[ 1 2k( f e -2i'%k-2( 0)] + elOiO41i(0). (25) 
k=6 

By Lemma 1 and (24) the series 
00 

E e2ik9 [4i2k (0) - e2i-2k2 ( 0)] 
k=6 

converges uniformly inside A = (-1, 1) \ 0. Thus 

4i(O) = lim e2inO,2fn (0) (26) 

exists- and it is continuous for x E A. By (23) 

14(0)1 < Ci exp{S/Isin 201). 
The next step is to show that e(2n + I)i4n + 1(0) converges to the same function 
A(O) when n -* oo and again the convergence is uniform inside A. By the 
recurrence formula 

2X42n+ 1 ( - 4)2n(0) -2n+2( ) 

= 2XP2n + I (x) -P2n (x) -P2n + 2 (x) 

- e2i[2xp2n (X) -P2n-2 (x) - P2n (x)] 

[ 2 Y2 1 ]P2n +2(X) + 2a2nf+lP2nf+l(x) + [2 - ]P2n (X) L 2n +2 J Y2n+ I 

-e 2 [2 -2n - 1Ip2n(x) + 2a2n-IP2n-I(x) 
L Y2n J 

+ 2 Y2n -2 _1P2 2(X)_ ) [ 2n -1 I 1 2x) 

Thus by (24) 

lim J2x4/2n +1(0) - 4'2n (0) - 4'2n+2(0)1 = 0 

uniformly inside A. Therefore (26) implies that 

4'(0) - lim e(2n + )i2n + 1 () 

is also true and the convergence is uniform inside A. Applying (16) repeatedly 
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ORTHOGONAL POLYNOMIALS 379 

we obtain 

4/9(O)1 + I4/o(0)j <I%/n(0)l + I4/n+j(0)j] exP{ sin 201 k k } 

where n > 11 is any odd integer. Therefore 

[19(0)1 + I4 (0)j] < 2 rim sup I4(0)j - expf - , 2'k (27) 
n--*oo I~sin 201 k=11 . 

We have 

Isin 201 [ lp9(x)l + 1pjo(x)j] ? 149(0)1 + I4/o(0)1I 
Since two consecutive orthogonal polynomials have no common zero we get 

const - Isin 201 < 1/9(0)1 + I4/0(o)L 
Thus by (26) and (27) 

1(0)1-1 < exp{const/Isin 201) 
for x E [-1, 1]. 

Now we will show (22). From 

I4/(0)12 = P2(x) - 2 cos 20pn(x)pn-2(X) + pn-2(X) 

we obtain 

I/()1)|2 = lim -!E [pk(x) -2 cos 20Pk(X)Pk-2(X) + Pk-2(X)]1 

It was shown in [3, Theorem 4.1.19] that if 1 is a fixed nonnegative integer 
then 

* k=OPk(X)Pk+l(X) 
lim - cos 10 

noo n 2=oPk(X) 

provided that a E M, x e [-1, 1] and a is continuous at x. Thus 

k 
= j[pk2(x) -2 cos 2OPk(X)Pk-2(X) + Pk-2(X)] _ 

lim - _ = 
2(1 cos 2 20) 

for almost every x E [- 1, 1]. Therefore 

I/(0)12 = 2 sin220 plm k (X), 

in particular, 

I4/(0)12 = 2 sin22O lim inf k2 p,2(x) 

for almost every x E [-1, 1]. By Theorem 6.2.54 of [3] 
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380 P. G. NEVAI 

iminf 2 (X) 

for almost every x E [-1, 1] whenever a E M. Consequently 

1,(O)12- 
8x 1 2 

,va'(x) 

for almost every x E [- 1, 1]. Changing a' on a set of measure zero we get 
(22) for every x E A. 

THEOREM 5. Let (10) be satisfied. Then da can be written in the form 

da(x) = w(x)dx + I { jumps outside (-1, 0) U (0, 1)) 

where w is a continuous function on (- 1, 0) U (0, 1) and satisfies the inequality 

w(x) < exp i Cflst } 

for-1 < x < 1. For the corresponding orthogonal polynomials the asymptotic 
formula 

lw(x) 1- x2 pn(da, x) = cos[nO + r(o)] + a(1) 

(x = cos 0) (28) 

as n -x oo holds uniformly inside (- 1, 0) U (0, 1) where r is a continuous 
function on (- 1, 0) U (0, 1). 

PROOF. The asymptotic formula (28) follows immediately from Lemma 4 
since sin 2Opn = - Im 4n+2. Because 4 is continuous and different from 0 for 
x E (- 1, 0) U (0, 1) the argument of 4 is also continuous for x E (-1, 0) U 
(0, 1). Thus r is a continuous function on (- 1, 0) U (0, 1). Now assume that 
a has a jump at some x* E (-1, 0) U (0, 1). Then 

00 

E pn2(x*) < ?? 
n= 1 

has to be true. (See e.g. [3].) Thus 

hlM pn(X*) = 0 

must hold. Consequently i(O*) = 0 (x* = cos 9*) should be satisfied. But 
this contradicts (22). Therefore a has no jump in (- 1, 0) U (0, 1). By 
Theorem 3.3.7 of [3] the absolutely continuous and the singular components 
of da are supported in [-1, 1] whenever a E M. Therefore the theorem will 
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ORTHOGONAL POLYNOMIALS 381 

be proved if we show that 

das = O (29) 

for every interval A c (- 1, 1). We can assume without loss of generality that 
0 I A. By Theorem 4.2.14 of [3] if a E M then 

lim fp2da = I 
| . (30) 

We obtain from the asymptotic formula (28) that 

lim I E p2(x)= 1 (31) 
k=1 1 -a 

uniformly for x E1 A. Therefore 

lrmn 
I 

|2(x)da(x) 1 da(x) n k-io fn() IT '(X) 1 -~ 

f1 dx + 1 da (x). (32) 
-2 ~TA A (x) l- 

Using (30) and (32) we get 

J 1 x(x=O 

Aa'(x))l-x2 da (x)=0 

which implies (29) since a'(x)N(1- x2 is uniformly bounded for x E A. 

THEOREM 6. If (9) holds then log a'(cos 0) is integrable on [0, 2wT]. 

PROOF. Since sin Oa'(cos 0) is integrable the function log+ a'(cos 0) is 
certainly integrable. Therefore we have to show that 

log+ 
1 dO <coo. (3 

lo0g xa'(cos0) (3) 

From (9) follows that 
00 

E log js < co (34) 
j=4 

where the numbers 8j were defined in Lemma 1. Let n =5, 6,... the sets en 
be defined by 

kO [2 lOn2 2 lOn2] 
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Then en C en1 and len-2 \ e, l <32(n - 2)-3. We have by (15) 

log [1i4n(0)l + I4'n-1(0)I] < log [14n-2(0)1 + I4'n-3(0)1] + in 201 

for n = 10, 11 .... Therefore 

@[O21T]\e, log D )l + I4'-1(0)1]d0 

+ 02I\eIa2 log+[ [-2(0)1 + 14'n-3()1]d 

- + |~-en_ \ enlmax log+[ %-n21 + %A-31 ] 

+ (3n + n- )O27r \ e sin 2d1 

By (18) and (34) 

max log+[ j -21 + 31j] < const(n -2). 
By the construction of en 

f[27]\ IdO < const log(n - 1). 
2[,ff]\e, Isin 201 

Hence we obtain 

I lg+ [ |M()1 + A- ()]d 
[02 7r\e,, 

2 I\e, 
log +[ n-2(0)1 + I4'-3(0)1]dO 

+ const (n + 2 log(n - 1) + 8n log n]- 

Repeated application of this inequality gives us 

2rI\e,, 19g+ [i4M(O)l + Ip- 1(0)j]d0 f log+ [i410(0)l + 149 (0)I]d0 

+ const[ Y 
I + 2 log kck 

k=10 k2 k=10 

Recall that jenj 0 when n -o o. Thus by (34) 

T lim inf log+ [I4M(0)l + I4i- 1(0)j]d0 < o. 

Consequently (33) follows from Lemma 4. 
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THEOREM 7. If (8) is satisfied then there exist three positive numbers a, b and 
c such that 

pn (da, x) < C|X|a(l - x2)b (-1 < X < 1) (35) 

for n = 1, 2, ... and 

a'(x) > C-lXla(l - X2)b (-1 < X < 1) (36) 

PROOF. It follows from (8) that 
n 

j8j < const log n (37) 
j=4 

where Oj were defined in Lemma 1. Therefore by (18) 

%A(#9)j < n C4, 

n = 10,11,... and -1 < x < 1 with some fixed constant C4. Since 
Isin 20pnl = TIm e- 2i9, Iinequality (35) will hold if we can show that from the 
estimate 

Isin 20Ic5%I4,(O)I < const n c6 (38) 
(n = 10, 11,... and -1 < x < 1) the inequality 

C5+ ~~ const if 0<C6 <1,( 
5jfl 29 '+ lAn(9 )j < ( const nC6-2 ifC6 > 1 

(n = 10, 11, . . . and - 1 < x < 1), follows whenever (37) is satisfied. We 
have 

n 
%An(#9)j < I I4k(O) - e -2ik-2(O)1 + I4'(8)I + 19(0)I* 

k=10 

Thus by Lemma 1 
n 

on(#9) X < 2 8k[lPk-2(X)I + IPk-3(X)I] + const. 
k =10 

Therefore we obtain 
n 

sin 2On(O)l 
< X 8k[141k-2(O)I + 14k-3(G)I] + const. 

k=IO 

Using (38) we get 
n 

Isin 201c5+114,n(o)l < const 2 kc6 0k + I 
-k=10 

If 0 < c6 < 1 then by (37) 
00 

2 k ck< 
k-10 
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and (39) follows. Otherwise 
n n 

k kc0k < nC6-112 E k 8k 
k=10 k=10 

Since by (37) 
00 

E k < X0 
k = 10 

inequality (39) follows again. Thus we have proved (35). The estimate (36) for 
a' follows immediately from (35) and (31). 
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