
MATHEMATICS OF COMPUTATION
VOLUME 61, NUMBER 203
JULY 1993, PAGES 365-372

GENERALIZED FIBONACCI AND LUCAS SEQUENCES
AND ROOTFINDING METHODS
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Dedicated to the memory ofD. H. Lehmer

Abstract. Consider the sequences {«„} and {v„} generated by un+x =
pun - qu„-X and vn+x = pv„ - qv„-X, n > 1 , where Uq = 0, ux = 1, v0 =
2,vx = p, with p and q real and nonzero. The Fibonacci sequence and
the Lucas sequence are special cases of {u„} and {v„}, respectively. De-
fine r„ = un+j/u„ , R„ = vn+d/vn , where d is a positive integer. McCabe
and Phillips showed that for d = 1, applying one step of Aitken acceleration
to any appropriate triple of elements of {r„} yields another element of {>„}.
They also proved for d = 1 that if a step of the Newton-Raphson method or
the secant method is applied to elements of {r„} in solving the characteristic
equation x2 - px + q = 0,  then the result is an element of {rn}.

The above results are obtained for d > 1. It is shown that if any of the
above methods is applied to elements of {Rn} , then the result is an element
of {/•„}. The application of certain higher-order iterative procedures, such as
Halley's method, to elements of {r„} and {R„} is also investigated.

Fibonacci and Lucas numbers appear repeatedly in the works of the father of
computational number theory, D. H. Lehmer, who contributed also to numerical
analysis, notably [5]. To his memory is dedicated this extension of results of
McCabe and Phillips [6] and Jamieson [4] about applying iterative formulas for
solving nonlinear equations to ratios of generalized Fibonacci numbers.

1. Introduction

Let p and q be real and nonzero. Define the generalized Fibonacci sequence

(1.1) «o = 0,    «i = l,    un+x =pun -qun-X,        n>\,

and the generalized Lucas sequence

(1.2) vQ = 2,    vx=p,    vn+l=pv„-qvn-x,        n>\.

Let d be a natural number. If u„ / 0,  define the ratio

(1.3) rn = u„+d/un.

If vn t¿ 0, define the ratio

(1.4) R„ = vn+d/v„.
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Related to the recurrence relation appearing in (1.1) and (1.2) is the charac-
teristic equation
(1.5) x2-px + q = 0.
If the equation has two real and unequal roots, then when d = 1, the sequences
of ratios {r„} and {Rn} converge to the root of larger modulus. If there is a
double root, then the sequences {r„} and {Rn} converge to this root. McCabe
and Phillips determined the condition for a generalized Fibonacci sequence
to have no zero members; a necessary condition is that equation (1.5) have
complex roots ([6, p. 554]). Their analysis can be adapted readily to generalized
Lucas numbers, by Lemma 3 below.

If a and ß are the roots of (1.5), then they satisfy ([3, equation (1.4)])

(1.6) a + ß=p,     aß = q,     (a - ß)2 = (a + ß)2 - 4aß = p2 - 4q.

If a = ß,  then

(1.7) 2a=p,     a2 = q = (p/2)2,     p2 - 4q = 4a2 - 4a2 = 0.

Lemma 1 ([3, equations (2.6), (2.7)]). // a and ß are the distinct roots of'(1.5)
and n > 0,  then

u„ = (a"-ßn)/(a-ß)    and   vn=an + ßn.

Lemma 2. If a is the double root of (1.5) and n > 0, then un = n(p/2)n~x
and vn = 2(p/2)n.

If d > 1, and the roots of (1.5) are real, then the sequences of ratios {r„ —
un+d/u„} and {Rn = vn+d/v„} will converge to the dth power of a root of
(1.5). In other words, the sequences of ratios {rn} and {R„} converge to a
root of
(1.8) x2 - (ad + ßd)x + (aß)d = x2 - vdx + qd = 0,

by Lemmas 1 and 2 and (1.6) and (1.7).
Define the Aitken transformation by

(1.9) A(x, x', x") = (xx" - x'2)/(x - 2x' + x").
Define the secant transformation S(x, x') for equation (1.8) by

n im     SYr   y'\ = x(x'2 ~ VdX' + gd^ ~ x'(*2 ~ VdX + qd^ =    xx' ~ qd
{       '     *^>x>        tx>2_VdX> + qd)_{x2_VdX + qd)        x + x,_Vd>

and the Newton-Raphson transformation N(x) for equation (1.8) by

(1.11) N(x) = x-(x2- vdx + qd)/(2x - vd) = (x2 - qd)/(2x - vd).

McCabe and Phillips proved that, if d — 1 , then
(i)   A(rn-,, rn , r„+l) = r2n  if r2n¿0,

(ii)   S(rn ,rm) = rn+m  if rn+m ¿ 0,
(iii)   N(rn) = r2n if r2n ^ 0.
It is now possible to state the extensions. As long as division by zero is

avoided, then
(i)   Airn-t, r„, rn+t) = r2n,   A(R„_,, Rn , R„+t) = r2n ,

(n)   ¿(rn , rm) — rn+m ,   i>(Rn , Rm) — rn+m -,
(iii)   N(rn) = r2n,   N(Rn) = r2n,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



GENERALIZED FIBONACCI AND LUCAS SEQUENCES AND ROOTFINDING METHODS       367

for any natural number d . The idea of considering d > 1 is due to Jamieson
[4], who applied it only to the ordinary Fibonacci sequence.

The other extension is to apply the Halley transformation H(x), which is a
third-order refinement of the Newton-Raphson transformation:

H(r„) = r3n,        H(Rn) = R3n.

Note that in the latter case the image is a ratio of generalized Lucas numbers.
The Newton-Raphson and Halley transformations are two members of a certain
infinite family of transformations; proofs applicable to the infinite family will
be given.

Applying any of these transformations to elements of the sequence {Rn},
where (1.5) has a double root a, gives rise to division by zero. In this situation
Rn = (p/2)d = ad for every n > 1 ; i.e., Rn is the root of (1.8), by Lemma
2 and (1.7). In this case the ratios are constant, so the sequence is trivial. In
the sequel the transformations will be applied to Rn under the assumption that
(1.5) has distinct roots.

Section 2 contains a list of elementary relationships about generalized Fi-
bonacci and Lucas numbers. In §3 the Aitken transformation is studied. Section
4 is devoted to the secant transformation. Section 5 begins with the presenta-
tion of the Halley transformation. Then an infinite family of transformations,
which includes those of Newton-Raphson and Halley, is investigated.

2. Properties of generalized Fibonacci and Lucas numbers
For n > 0 define V-n = a~" + ß~n. Then by (1.6) and Lemma 1,

(2.1) qnv-n = iaß)nv-n = ßn + an = v„.

Similarly, if equation (1.5) has distinct roots, define w_„ = (a~n- ß~n)/(a- ß).
Then by (1.6) and Lemma 1 ([3, equation (2.17)])

(2.2) q»u-n = iaßfu.n = (ßn - an)/(a - ß) = -u„.

Formula (2.2) is applicable also if equation (1.5) has a double root, for if U-„ is
defined by -n(p/2)-"-y, then ?"«_„ = -n(p/2)-"-l(p/2)2n = -n(p/2)n~l =
-u„.

It is easy to verify that the recurrence relations in (1.1) and (1.2) are valid
also for negative subscripts.

Lemma 3 ([3, equation (4.10)]). If n is an integer, then u2n = u„v„.

Lemma 4. If n, m,  and e are integers, then
(a) un+eun-e -u\ = -q"-eu¡,
(b) un+eum — unum+e = —q  ueun-m ,
(c) un+eum+e — q unum = ueun+m+e,
(d) un+e-qeu„-e = v„ue,
(e) un+e - veun = -qeu„-e.

On the right side of statements (a)-(d) of the following lemma, there appears
the factor p2 - 4q. If (1.5) has a double root, then p2 - 4q = 0, by (1.7). It
suffices to show in the case of a double root, accordingly, that the left side of
each of these statements vanishes.
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Lemma 5. If n , m,  and e are integers, then
(a) vn+ev„-e - v2 = qn'e(p2 - 4q)u],
(b) vn+evm - vnvm+e = qm(p2 - 4q)ueun-m ,
(c) vn+evm+e - qevnvm = (p2 - 4q)ueun+m+e,
(d) vn+e - qevn_e = (p2 - 4q)unue,
(e) vn+e - vev„ = -qevn-e.

Lemma 6. If n, m,  and e are integers, then un+evm - u„vm+e = qmuevn-m.

Lemma 7 ([3, equation (4.13)]). // n is an integer, then un(v2 - qn) = Ut,„.

3. The Aitken transformation
Theorem 1. Let n > t > 0 be integers, and assume that division by zero does
not occur. Then (A) A(r„-t, rn, r„+l) — r2n ;    (B) if equation (1.5) has distinct
roots, then A(R„-t, Rn, Rn+l) = r2n.
Proof. We prove only part (A). The proof of part (B) is similar. By (1.3) and
(1.9),

-A
A(rn-t, r„, rn+t)

rn-trn+t — r*
rn-t — 2r„ + rn+t

(Un-i^/Un-^Un+t+d/Un+i) - (un+d/u„)2

un-t+dlun-t — 2un+d/un + Un+t+d/un+t
2 2un-t+dun+t+dun ~ un-tUn+iUn+d

Un[Un-t+dunUn+t — 2un+dUn-(Un+, + Un+t+dUn-tUn]

(un-l+dun+t+d - u2n+d)u2„ - (u„-tUn+t - u2n)u2n+d

un[(Un-t+dun — Un+dUn-t)Un+t — (Un+dUn+! — Un+t+dUn)Un-,\

-qn-t+du2u2n + q"~'u2u2n+d

u„ud(q"-'utun+i - q"u,un-t) '

by Lemmas 4(a) and 4(b),

u,(u2n+d-qdu2n)     =u,udu2n+d

UnU^U^i-q'Un-f)    '   U„UdVnU,  '

by Lemmas 4(c) and 4(d),

= u2n+d/u2n = r2n ,

by Lemma 3 and then (1.3).   D

4. The secant transformation

Theorem 2. Let n and m be positive integers, and assume that division by zero
does not occur. Then (A) S(rn , rm) = rn+m ;    (B) if equation (1.5) has distinct
roots, then S(Rn , Rm) - rn+m .
Proof. We prove only part (B). The proof of part (A) is similar. By (1.4) and
(1.10),

RnRm -qd    _ (vn+d/v„)(vm+d/vm) - qd
Sd(Rn , Rn

Rn + Rm- Vd Vn+d/Vn + Vm+d/v,„ - Vd
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_ Vn+dVm+d - qdVnVm (/72 - 4q)udUn+m+d
Vn+dVm + Vn(vm+d - VdVm)       Vn+dVm - qdVnVm_d '

by Lemmas 5(c) and 5(e),

_ (P2 - 4q)UdUn+m+d    __    Un+m+d    ..
(p2 - 4q)udun+m un+m

by Lemma 5(c) and then (1.3).   □

5. The Newton-Raphson and Halley transformations
The Halley transformation for the equation f(x) — 0 is given by ([1, p.

131])
H(x) = x- f(x)/[f'(x) - f(x)f"(x)/2f'(x)].

Applying the Halley transformation to equation (1.8) yields

H(x) = ' - VdX + q"
(2x - vd) - (x2 - vdx + qd)/(2x - vd)

x3 - 3qdx + vdqd
3x2 - 3vdx + vd - qd '

An infinite family of transformations, which includes those of Newton-
Raphson and Halley, will now be investigated. To this end, define the ho-
mogeneous polynomials in y and z by

(5.2) uhdq-fThjj(y, z) = -¿ (k\-y)kzh~kudk_f.
k=o v '

Lemma 8. For 1 = 0, 1, 2, ..., h define

EU) = udqií£(h-l)(-ut)ku>¡;d1-k»dk-f-it.
k=oK       J

Then E(i) is independent of i.
Proof. It suffices to show that if 0 < t < h - 1,   then E(i) = E(i +1). By
definition, (¿) = 0 if k < 0 or k > j. Thus

h-i r

ut) ",+J    ^dk-f-u

="¿/e (h-lk-[)(-u<)kuirk»dk-f-„
k=0    v '

wae (h~i~x)(-ut)^uh-¡-^Udj+d_f.it
j=0    v       J        '

= Ud^'   E    ( l )(-U')ku'!+d~k~i(U'+dudk~f-i,-U,Udk +
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ui+iq(i+i)t g  ß    i
k=o   ^

k,,h-i-l-k,.
t+d Hdk-f-(i+l)t

by Lemma 4(b),

= E(i+l).   0

Theorem 3. Ifud¿Q,  then Thtftd(ut, ut+d) = uht+f.
Proof. By Lemma 8,

uhdq-fThjtd(ut, ul+d) = -E(0) = -E(h) = -uhdqhtu_ht_f.

By (2.2),
Tn,f,d(Ut, Ut+d) = Uht+f-   D

Lemma 9. For 0 < i < h , i even, define

F(i) = u'dq"J2(h~l)(-vt)kv^J-kudk_f_lt.
k=oy       J

For 0 < s < h, s odd, define

Gis) = -udqs' ¿ (h    S) (-vt)kv^J-kvdk.
k=0 ^ '

f-st-

Then F(i) = G(i+l) if i < h, and G(i+ 1) = (p2 -4q)F(i + 2) ifi<h-l.
Proof. We have

h-i
(-vt)kv'/-J-kudk_f_ith-i-l\     (h-i-I

k     )+{k-lF(i) = udqi'YJ
fc=0
h-i-l

= uldqH Y^   ["    k    ' )(-Vt)kv?-j-K-l(vt+dudk-f-it-v,udk+d-f-
fc=0

h-i-l ,t ft-i-fc-i/

h-i-l-"¿+v'+i)'E (*"rl)
fc=0    v /

(-«»)**>,+«/ k  lvdk-f-(i+i)t'

by Lemma 6,

= G(i + l).
Continuing,

h-i-l h-i-2\     fh-i-ly6«+.)-c'^'»E ("TM*Y)
k=Q

h-i-l

(-v,)kvf-j k   V-Z-O'+i)/

■A - ¡' - 2
= -uj+V+1)'    ^    ( )(-««)*»,*+,/   k   2(Vt+dV,tk-f-(i+l)l-VtVdk+d-f-ii+i)t)

k=0
h-i-2

£
k=0

= uMq(i+2)llj>2_4g) £ (*-*   2)(-„()Sf+-; í—Ar —2vdk-f-(i+2)t>
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by Lemma 5(b),
= (p2 - 4q)F(i + 2).    D

Theorem 4. Assume ud ^0. If h is even, then

Th,f,d(Vt,vt+d) = (p2 - 4q)h/2uht+f.

If h is odd, then
Th,f,d(vt,vl+d) = (p2-4q)(h-l»2vht+f.

Proof. Apply Lemma 9 [h/2] times:
If h is even, then

uhdq-fThjj(vt,vt+d) = -F(0) = -(p2 - 4q)F(2) = -(p2 - 4q)2F(4)
= ... = -(p2 - 4q)hl2F(h) = -uhdqht(p2 - 4q)hl2u.ht.f.

By (2.2), TnJid(vt,vt+d) = (p2 - 4q)hl2unt+f.
If h is odd, then

uhdq-fTnj<d(vt, vt+d) = -F(0) = -(p2 - 4q)F(2)
= ... = -(p2-4q)(h-iy2F(h- 1)

= -(P2 - 4q){-h-l^2G(h) = (p2 - 4q){-h-x)l2udqhtv_hi_f.

By (2.1), TnJ,d(vt,vt+d) = (p2-4qih-VI2vhi+f.   D

Define

«*(z/>") =       .—m-•■âCDfô)
Multiply the numerator and the denominator of the fraction by udh(-y)h :

-u-d\di(h\-y)kz^kud(k_x)

(5-3) gh(z/y) = -      -*f%r-=T v   zY
h £  h\< „\kj,-kt. Th,o.d(y,z)-ud  E [k)(-y)k^-kudk

The immediate consequences of Theorems 3 and 4 are:

Theorem 5. (a) Assume that ud # 0 and u„, / 0. Then gn(ut+dlut) = uht+d/Uh,.
(b) Assume that ud ^ 0, v, / 0,  and vnt ± 0. Then

,       ,   y     \ uht+d/uht,       h even,
•"'■I^hA,       h odd.

Theorem 6. If n is a positive integer, and division by zero does not occur, then
N(rn) = N(Rn) = r2n.
Proof. In view of Theorem 5, it suffices to show that g2(z/y) — N(z/y), where
N(x) is given by equation (1.11). By (5.3),

-qd(z2u_d+y2ud)       z2ud-qdy2ud
g2(z/y) =

-(-2yzud + y2u2d)     2yzud - y2udvd '
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by (2.2) and Lemma 3,

(z/y)2-qd

2z/y - vd
= N(z/y).   D

Theorem 7. If n is a positive integer, and division by zero does not occur, then
H(rn) = r3n and H(Rn) = R3n.
Proof. In view of Theorem 5, it suffices to show that gi(z/y) = H(z/y), where
H(x) is given by equation (5.1). By (5.3),

-qd(ziu_d + 3y2zud - y3u2d)
gi(z/y) =

-(-3yz2ud + 3y2zu2d - y3uid)
z3ud - 3y2zqdud+y3qdudvd

3yz2ud - 3y2zudvd + y3ud(v2 - qd) '

by (2.2), Lemma 3, and Lemma 7,

(z/yf-3qd(z/y) + qdvd
3(z/y)2-3(z/y)vd + v2-qd

= H(z/y).    G

Remark. Theorem 3, with / — 0 and d = 1, resembles a formula given by H.
Siebeck, cited in [2, p. 394].

I wish to acknowledge helpful suggestions from my colleagues Professors H.
Furstenberg and S. Shnider.
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