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ABSTRACT

In this paper, we review Levinson and fast Choleski algorithms
for solving sets of linear equations involving Toeplitz or almost
Toeplitz matrices. The Levinson-Trench-Zohar algorithm is first
presented for solving problems involving exactly Toeplitz matrices.
A fast Choleski algorithm is derived by a simple linear transforma-
tion. The almost Toeplitz problem is then considered and a
Levinson-style algorithm is proposed for solving it. A set of linear
transformations converts the algorithm into a fast Choleski
method. Symmetric and band diagona! applications are con-
sidered. Formulas for the inverse of an almost Toeplitz matrix are
derived. The relationship between the fast Choleski algorithms
and a Euclidian algorithm is exploited in order to derive
accelerated "doubling” algorithms for inverting the matrix.
Finally, strategies for removing the strongly nonsingular con-
straint of Levinson recursion are considered. We conclude by
applying the techniques to several applications, including covari-
ance methods of linear prediction, rational Toeplitz matrices, and
optimal finite interval ARMA smoothing filters.
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1. Introduction

One of the most common problems in numerical calculation is to solve a set

of linear equations:

RyZy =Yy (1.1)

for the (N+1) long vector z where Ry is an (N+1)x(N+1) matrix. Standard
methods for solving this problem, such as gaussian elimination or Choleski
decomposition, generally require O(N3) operations. When Ry has additional
structure, however, the computation can often be significantly reduced. In par-
ticular, if Ry is Toeplitz with (1,7)% element Ri'j=r(1‘,—j), then the Levinson-
Trench-Zohar recursive algorithms!:2.3.4 can solve the linear equations using
only O{N?) operations and O(N) storage. Similar fast algorithms proposed origi-
nally by Friedlander, Morf, Kailath, and Ljung® and others apply when Ry is
almost Toeplitz in the sense of having "low displacement rank”. These
Levinson-style algorithms can be viewed as fast procedures for decomposing
the inverse matrix Rﬁl into a prc 'uct of Upper triangular, Diagonal, and Lower
triangular (UDL) matrices. Applying a simple linear transformation to these
algorithms yields a set of '"fast Choleski” algorithms which compute an LDU
decomposition of Ry itself using only O(N?) operations. These algorithms were
first discussed by Bareiss® Morf,” and Rissanen.® In general, the fast Choleski

algorithms will either require much more storage or somewhat more computa-
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tion than the Levinson-style algorithms in order to compute zy. When the
matrix Ry is also band diagonal, however, variants of the fast Choleski algo-
rithm can be derived which are significantly superior to the Levinson-style band
diagonal algorithms suggested by Trench® and Dickinson,10 and asymptotically
superior to the O(NlogN) matrix splitting and imbedding approaches of Jain!!

and Morf, Kailath.1?

The fast Choleski algorithms bear a remarkable resemblance to a Euclidian
polynomial algorithm. Since a "divide and conquer"” strategy combined with
Fast Fourier Transforms (FFT's) can be used to accelerate Euclidian algo-
rithms,13 it can also be used to accelerate our fast Choleski algorithms. The
result is an O(NlogzN) doubling algorithm for computing Rﬁl. which is similar to
those of Gustavson and Yun,!4 Bitmead and Anderson,!> and Morf!é Unfor-
tunately, the algorithm is relatively complex, so that even for exactly Toeplitz

matrices it is only advantageous for matrices of size N>2000.

One difficulty with all these algorithms, except that of Gustavson and Yun,
is that they require that all the upper left principal minors of Ry must be non-
singular. In the closing sections of this report, we show how this constraint can

be removed.

This paper is intended as a coherent summary of Toeplitz matrix algo-
rithms, as well as a presentation of several new results. The approach used for
deriving the fast Choleski algorithm appears to be new. The displacement rank
formalism of Kailath, Kung, Morfl7 is used in deriving the Levinson-style
almost-Toeplitz algorithms, instead of that of Friedlander ef al.18 This simplifies
the derivation and the inversion formulas. The band diagonal fast Choleski
algorithms using forward and backward recursions to minimize storage appear
to be new. Section B contains a new partial LDU decomposition formula for Ry,

which suggests an interesting result for Schur complements. The derivation of
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the doubling algorithms is completely new, and is considerably more concise
and powerful than previous algorithms. The method for dealing with degen-
eracy is also new. Finally, in addition to several examples previously considered
in the literature, we also present several new applications of the methods,
including a very fast finite interval Wiener-Hopf smoothing filter for ARMA
models, and a problem in which Ry is a rational matrix. This last example has
also been considered by Dickinson;1® our approach is much faster, and appears

to be numerically stable.

2. The Levinson-Trench-Zohar Algorithm for Exactly Toeplitz Matrices

The Levinson-Trench-Zohar (LTZ) algorithm* is a recursive method for
solving the simultaneous linear equations Ryzy=y, when the matrix Ry is
exactly Toeplitz. For simplicity we will consider the case when the entries of Ry
are scalar, although the case of block Toeplitz matrices can be hanc_lled in much
the same way8:20.21 Let the entries of vectors zy and yy be z; 5 and y; y for
1=0,...N. Let R, be the (n+1)x(n+1) upper left principal minor of Ry, and let
Y, be the vector containing the first (n+1) components of yy. Note that
because of the Toeplitz structure of Ry, we can partition each minor R, so as to
show its relationship to the lower order minor R, _;:

Rn1 r(-n) r(0) --- r(-n)

R, = : =1: (.1)
r(n) -+ 7(0) r(n) Rp

This structure suggests an approach for solving the linear equations (1.1) in
which we recursively calculate the solution to the following problems for

n=0,...,N:

En 0,
R

n
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where 0, is a vector of n zeroes, ¢, will be defined later, and where:

an =(1al,n " Can )T ‘ (2.3)
_b.n=(bn,n"'bl.n1)T
En"-(zo,n ' Ian )T

The solution for n =0 can be found by inspection:
Y

ag=by= [1] . g =7(0) i zZg= [s_o_] (2.4)
0

The solutions at stage n>0 can now be calculated recursively using the solu-

tions at stage m-1. To do this, assume that we know the values of

8n 4.5, 1. 8,4 and 2, ;. Thenfrom (2.1) it is easy to show that:

o, 4 En—-1 0 “Vntn-1
Rn 4] = .gn-l and Rn L)_“_I] = .Q.n—l (2-5)
_Ensn—l En—1
where

1 A . '

én == £ 2 T(n_J )aj,n—] (2'6)
n-1 j=0
1 I ,

Vp =~ 2 T(—J)bn—j,n-l
n-1 j=1

Values of g, and b, which satisfy (2.2) can thus be computed as appropriate

linear combinations of 2, _, and b, _;:

L2/ 0
g, = [ 0 1] + 6"[2?;—1] (2.7)
0 Zn -1
'9“=[.‘Zn—1]+v"[ 0 ]

Direct substitution shows that:

En T En—y(1-€5vp) (=.8)

Finally, from (2.1) we see that:

R, [EJE)-I] =¥Yn — [)\D ] ) (2.9)

n
n-1

where A\, =y, -jz—:o T(n=3)z; n
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Thus the solution z, can be computed as:

T, =

)

2 b, (2.10)

n

To summarize, we start with the initial solutions @y, by, zy in (2.4), then use the
recursions in (2.7) and (2.10) to calculate g,, b,, z, for n=0,...,N, at which
point we will have found the desired solution zy. Total computation will be
about 3N? operations (1 operation & 1 add + 1 multiply). Because the computa-
tion can be done in place, total storage required will be about 5N locations for
8., b, Yy, and 7(=N), ... ,7(N). (The solution for z, can be stored in the same
location used for y,,.) The algorithm will work correctly provided that ¢, #0 at
each stage n. We will see later that this condition is .equivalent to requiring
that all the principal minors R, of Ry must all be non-singular, a condition
known as "'strong non-singularity”. In the terminology of linear prediction, the
vectors ¢, and b, are'known as the forward and backward predictors, ¢, is the

prediction error, and £, and v, are the forward and backward reflection

coeflficients.

Note that if Ry is symmetric, with 7(n)=r(-n), then the vector a, will be
identical to b, except with the elements in reverse order, a; n=b; . The for-
ward and backward reflection coefficients will also be identical, ¢, =)A,,. These
relationships can be used to cut the computation required to only 2N? opera-
tions, and cut the storage required to about 3N locations. If the matrix Ry is
also positive definite, then by Sylvester's criterion all the principal minors R,

will be non-singular and thus ¢, will never be zero.

An interesting interpretation of the vectors g, and b, can be gained by
forming the (n+1)x(n+1) matrices A, and B, whose jt* rows contain the

coefficients of the vectorsg_j andgj.



1 0 1 0
A’l = . . . Bn = : . . (2-11)
Gpnn ~ 21 1 bn.n ” bl,n 1

From (2.2), and noting that R, is a principal minor of Ry, it is easy to show that

A R, and R, Bz are upper and lower triangular matrices respectively:

&g . ¢ 7] O
. . : r .
AR, = o and R,BI=|. | (2.12)
0 En v Yey
This in turn implies that
g O
A, =ApRBi=| - (2.13)
0 e,
Rearranging gives:
R =BIA'A, (2.14)

The various predictor coefficients generated by the Levinson-Trench-Zohar thus
form an Upper triangular, Diagonal, Lower triangular (UDL) decomposition of
the inverse matrix R,fl. This interpretation suggests several interesting results.

For example, we could calculate the vector z, by exploiting the fact that:

Zn = BaA Anyy (2.15)

We could thus compute z, recursively by:

= [E“O'l] + ﬁ‘—gﬂ (2.16)

En

n
where A\, = ), @p_jn¥;
=0
As noted by Zohar, however, this formula for A, appears to have no obvious
advantages over the formula in (2.9).

The UDL decomposition in (2.14) also implies that:



n ,
det(R,) = [] ¢; (2.17)
i=0
This proves that the restriction that &, #0 for all n is equivalent to requiring
that all principal minors R,, of Ry must be non-singular.
Several interesting formulas for the inverse matrix R;’ were suggested by

Gohberg and Semencul?? If R, and R,_, are both invertible, then they can be

expressed as sums of products of upper times lower triangular Toeplitz

matrices:
[
1 byn = byt 0
. . e a]n '
-1 - ..1_ : ' 2.18
Rn 8n * bl,n . L ( )
0 1 Qn.n @yn 1
(
0 a,, - ain 0 0
bn,n
an'n .
0 0 bl,n " bn.n 0
\
4
1 bl,n ” bn—l.nw 1 . 0
-1 1 . a‘l,n
Rp-y = . by, : .. (2.19)
0 1 Qn-1n Q1,n 1
J
a'n.,n al.n bn.n O
0 an.n bl,n bn,n

We will derive similar formulas for the more general case of almost Toeplitz
matrices in section 8. The important point is that the inverse matrix Rﬁl can
be completely specified by the vectors ay, by and gy. Moreover, we can com-
pute zy=Rjlyy solely from knowledge of ay. by, £y and do not need to actually

compute or store the elements of Rﬁ‘. In fact, forming the product R;,‘yN only




. lmRe bt s L e

PP

-8 -

involves multiplying triangular Toeplitz matrices with vectors, an operation
which is equivalent to convolution of the matrix elements with the vector ele-
ments. It is thus possible to calculate zy=Ry'yy very efficiently by using 2N+1
point FFT's in O(NlogN) operations. In section 13 we will further exploit this
idea to accelerate Levinson recursion by a doubling procedure employing Fast

Fourier Transforms for speed.

Finally, another interesting interpretation of the Levinson recursion can
be found if we define the Levinson-Szégo polynomials 4, (z) and B, (z) by:
A‘n(z)zl +a’1,‘nz-1+ +an,nz—n (220)
By(z)=1+byp,z7 1+ - +b, 27"
Because of the structure of Levinson recursion, the n* order polynomials can
be written as a function of the {(n —1)** order polynomials as follows:
A (2)=A,_(2)+£,2"B,_(z7}) (3.21)
B,(2) =B, _(z) + v,z A, _,(z7}) .
Let us suppose that the entries 7(n) of Ry are samples of an infinite sequence

[1' (n)}“ with a Z-transform R(z) = 3, r(n)z™ whose region of convergence

n=-w

includes the unit circle. Let us define the function <P(z),Q(z)>F(z) of the poly-

nomials P(z), @(z), F(z) by:

<P(2).Q(2)>p(z) = i P(z)Q(z‘l)F(z)gf-' (2.22)
where the circular integral is evaluated on the unit circle C in a clockwise
direction. Then it is easy to show that equations (2.2) imply that the polynomi-
als 2™ A, (z) and z™ B, (z) are "biorthogonal”’ under the measure R(z) on the
unit circle in the sense that:

<z™A,(z).2™B,(z) >R(z) = &nbn.m (2.23)

where 6, ,, is the Kronecker delta function, 6, ,=1 if n=m, =0 else.
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3. Fast Choleski Algorithm for Exactly Toeplitz Matrices

Bareiss® has devised an alternative algorithm for solving the Toeplitz linear
equations (1.1) which is based on a clever scheme for accelerating gaussian
elimination on Toeplitz matrices. Though it is not obvious from his paper, his
algorithm is actually quite similar to the “fast Choleski" algorithms of Morf? and
Rissanen.® In this section we present a new derivation of these results, which
presents the fast Choleski algorithm as a "mirror image” of the Levinson algo-

rithm.

Start by defining new polynomials a,(z) and B,(z) in terms of the

Levinson-Szégo polynomials of (2.20):

0, (2) = A (2)R(z) = ¥ ;27 | (3.1)

Bu(z) = B(2)R(z™) = 3 6,27

J=—w

Unlike the Levinson-Szégo polynomials, a,(z) and B,(z) have an infinite

number of non-zero coefficients. However, using (2.5) it is easy to show that:

(¢, for j=0
®jn =10 for j=1,...,n (3.2)
~$ntn for j=n+1
\
r .
&, for j=0
Bin =10 for j=1,...,n
o 2 for j=n+1
\

The zeroth order coefficients are simply the prediction error g,, the next n
coefficients are all zero, and the (n+1)®* order coefficients are proportional to
the reflection coefficients £, and v, . Multiplying the Levinson Szégo polynomial
recursion formulas in (2.21) by F(z) then leads to the following recursive algo-
rithm for computing a, (z) and 8, (z):

Initialization: ag(z) = R(z)
Bo(z) = R(z™1)
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For n=1,...,N

€n-1 = Qon—-1 = Bon-1

f __an,n-l

= ——
Ep—
Bron-

v, = ——=2-L (3.3)
En

an(z) = an—-](z) + Snzmﬂn—l(z_l)

Br(z) =Bp(2) + unz'"an_l(z'i)
These recursions form the core of the fast Choleski algorithm.
To understand the role of these polynomials, note first that the polynomi-

als 2™a, (z) and z™g,,(2) are biorthogonal with respect to the measure

R(z)

in the sense that:

R(z)

<zlon(z) . 2MBp(z) > | =<2zM4,(2), 2™ BL(2) >p(2) (3.4)
| sndn,m

Let us form the (n+1)x(n+1) lower triangular matrices &,, and 8, whose j*

columns are coefficients of the polynomials «;(2z) and 8;(z):

®9,0 0 Bo,0 0
a_10 Qo1 B-10 Boa
Qp = : ’ ﬁn = : . . (3.5)
& pno Xn+1,1 7 Xon ﬁ—ﬂ.o ﬁ—n+1,l ’ ﬁO,n
From (3.1) and (2.11) it is easy to see that:
Q, =R,A, and f8, =R,B, (3.6)
Substituting (3.6) into the UDL decomposition formula (2.14) yields:
1T
Rn = 6nAn Xn (3.7)

Thus the fast Choleski algorithm (3.3) can be interpreted as calculating an LDU

factorization of the matrix Ry by generating a series of polynomials a,(z) and

B,(z) which are biorthogonal with respect to the measure Note the

1
R(z)
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symmetrical relationship of this algorithm to the Levinson-Trench-Zohar algo-
rithm, which performs a UDL factorization of the inverse matrix Rj}l by generat-
ing a series of polynomials which are biorthogonal with respect to the measure
R(z).

This LDU factorization suggests a two stage method for solving our original
set of linear equations Ryzy=yy. First we compute an intermediate solution Ay

by solving:

By An=3yn (3.8)

then we solve for zy:

T
Since Xy and fy are triangular matrices and Ay is diagonal, solving these

equations requires only about N2 operations.

The chief difficulty is that since the polynomials a, (2z) and 8, (z) have an
infinite number of non-zero coefficients, the recursions in (3.3) would require
an infinite amount of computation. Fortunately, to solve for z,, we only need to
compute a finite number of these coefficients. As noted by Bareiss® and by
Morf? there are at least two different approaches for solving for the desired
coefficients, depending on whether we generate the matrices X, and ﬁn

column by column or row by row.

3.1. Detailed Columnwise Fast Choleski Algorithm

The columnwise recursion starts with the values of «;, and g;, for

th

j==N.....N and on the n"" step recursively generates the coefficients a; ,

and 8; , for j=—(N-n),...,N. The nt® recursion of the algorithm thus gen-

erates the coefficients of the n** columns of Oy and . The algorithm is as

follows:
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LCohimnwise Fast Choleski
Initialization: @50 =7{7) } for j=—N,...,-1

Bjo =7(-7) and j=1,...,N
g =7(0)
For n=1,...,N
& -
b=~ 1 (3.10)
n-1
v =_ﬁn,n-—1
" En-1
X =1 *énbrjnr | for j=—(N-m),...,-1
Bin =PBin-1+Vnln_jn- and j=n+1,...,N

Ep = en-l(l_fnvn)
Note that on the nt* pass we can store the reflection coefficients £, and v, in
the locations previously used by ap ,; and 8, ;. It is convenient to organize

storage so that after the nt pass we will have saved:

X_NO ' Cn-Nn Xn-N+in "~ Gn H £y 0 €n Qn+in ~°° CNn
(3.11)

B-No " Ba-Nmn Brn-N+in " B-1n Il Vi " Vp Brsin " BN
Computation can thus be done in place. About 4N storage locations and about
2N? operations will be needed to compute X and f . which is identical to the

requirements of the Levinson-Trench algorithm for computing A, and B,,.

The solutions Ay and zy to the linear equations in (3.8) and (3.9) can also

be computed by using the coeflicients of &X,, and B, in columnwise order. Solv-
ing for Ay requires a forward substitution step; solving next for zy requires a

backward substitution step.
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Initialization: y;q «y; for j=0,....N
For n=0,....,N : (3.12)
_Yan
A = -
Yin+1 = Yjn -—k,,ﬁn_j',‘ for j=n+1,... N
Back Suhstituti
For n=N,...,0
1 N
Z, = A, — T 2 Kp—jnTj (3.13)
n j=n+l

Since the computation can be done in place, putting A, and then z, in the
same location used for y,, only N+1 extra storage locations are needed. Total
computation for generating &; , and §; , and then solving for zy is thus only

about 3N? operations, which is identical to the Levinson-Trench-Zohar algo-

rithm.
The forward substitution phase for calculating the intermediate solution
Ay uses the coefficients §; , in ascending order of n, which is the same order in

which they are generated. It is thus easily integrated into our columnwise fast

Choleski algorithm (3.10) for calculating a;, and B; .. Unfortunately, the
backward substitution phase for calculating zp from Ay requires the

coeflicients ®jn in descending order of n, which is the reverse of the order in

[o 93
which they are generated. One approach would be to save the values of ;’n as
n
N2
they are generated. This, however, would require an extra = storage loca-

tions, which is an order of magnitude more than Levinson recursion requires. A
more storage efficient approach is to use a backward recursion to regenerate
these polynomial coefficients in descending order of n for use in calculating z,, .
To do this, we will need to save the reflection coefficients ¢, and v, and the

coefficients o, _p , calculated during the forward phase (note that these are
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exactly the values saved in the scheme illustrated in (3.11)). Given these
values, in the backward phase we can then reverse the polynomial recursion in
(3.3):
tn-1(2) = Topy] @ ®) ~ a2 (=7 | (3.12)
Brei(2) = Topy| B () = V= e (=) |
Normalization by (1—£,v,)"! can be avoided by calculating the scaled polyno-
mials &, (z)= -z—N— a,(z) and En(z)z-?,— B, (z) instead and compensating accord-
n n

ingly. Computational effort can also be reduced by exploiting the fact that we
only need to calculate the matrix Xy. The complete backward phase will then
be:

Backward Phase (Minimal Storage)

Saved from forward phase: &, _yn,Vpn. én Ay for n=0,... N
For n=N,....0
1 N
Zn =>\7l - Z an_j|n2' (315)
EN jsn+l
If n=0 END

aj,ﬂ.—l = Kj.n, - $n’§n-j.n
~ e ~ for j=—(N-n),....—-1
ﬁn-—j,n—l - ﬁn-—j.n ~ Vn&in

_ ¥
a*n--l—l\/.‘n-l - £ Xpn-1-N,n -1
n

b1 —
ﬂu n-1= "Vptn

En
€ 94 =
n-1 (1—$nvn)

Total storage required with this approach will now only be about 5N locations,

which is the same as the Levinson-Trench-Zohar (LTZ) algorithm.
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Unfortunately, about 4N? operations are needed, compared to only 3N? opera-
tions for the LTZ algorithm.

Note that if the matrix Ry were symmetric so that R(z)=R(z71), then
¢, =v, and o, (z)=8,(2) for all n. This symmetry could then be used to reduce

the requirements for calculating zy to 3N? operations and 3N locations.

3.2. Detailed Rowwise Fast Choleski Algorithm

A somewhat different Choleski algorithm results when we solve for the

coefficients of the &, and 3,. matrices in rowwise order. The n®* pass of this

th

algorithm will generate the coefficients of the n™ row a;_, ;. @, j. Bj_n ;. and

Bnjforj=0,...,n.
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R ise Fast Chaleski
Initialization: &5 = 7(0)
For n=1,... ,N
Cno = Bno= T(n)
Apn,0=Pno= r(-n)
Qjnj =®pj-1*EiBn,j
Bnj =Pnj-1 +Vi%n i
Bpj = Qp joy * £Bjm i1 for j=1,... ,n-1
Binj = Bjonj-1tVi0 ;1

Qp,n -1
b= (3.16)
n-l1
v = — ﬂn,n—l
i tn—l

En T &g —1(1—£nyn)

The coeflicients f, ; and &, ; do not need to be stored since they are not used
in the (n+1)"* pass, nor are they needed for solving for z,. Total storage
required for saving the coefficients Qjpy g+ Bj-n and the reflection coeflicients

fJ- and v; is therefore about 4N locations, and all computation can be done in

place. About 2N? operations will be needed to compute the matrices &y and

B

It is also possible to solve for the solution A,, and z,, to the linear equations

in (1.1) by using the coefficients of Q and 8y in rowwise order. Once again we
have a forward substitution phase for generating A, and a backward substitu-

tion phase for generating z,,:
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F i Substituti
For n=0,... ,N
1 r n-1
Ap = ;—[yn - Z Bj-n,j}\j (3.17)
n j=0
Racl 1 Substituti
Init: Aj,N = Ajsj for j=0,....,N
For n=N,....0
z, = Ann | (3.18)
£, v
Aj.n-l = Aj.n —znaj_n'j for j=0, N Ottt

Computation can be done in place, so that the same (N+1) long array can be
used for storing y, . A, and z,. Unfortunately, the rowwise algorithm has the
same difficulties as the columnwise 1ilgorithm with the backward substitution
step. The forward substitution phase for calculating A, uses the coefficients
Bj-n,; in ascending order of n=0, ... ,N, and is thus easily integrated into the
rowwise fast Choleski algorithm (3.18). The backward substitution.phase, how-
ever, requires the values of a;_, ; in descending order of n=N,...,0, which is

the reverse of the order in which they are generated. These coefficients could

2

be stored as they are computed, but this would require -}\—é— extra storage, which

is an order of magnitude more than that used by the LTZ algorithm. Alterna-

tively, we could recalculate the values of «;

j-n,j in descending order of n by

exploiting the backward polynomial recursion (3.14). We will start with the
values of a,_yn. €n. Vn. Ay, and £y as calculated on the forward pass. Rescal-
ing as in the columnwise algorithm to reduce the operations count, and elim-
inating all unnecessary computation, then yields the following backward substi-

tution phase:
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Backward Substitution (Minimal Storage)
Initialization: A, n « A, for n=0,... N
For j=N-1,....,0
P L1 S—
T (L= 41v541)
~ En
%j-Ng © & &j-N.j

For n=N,....,0 (3.19)

If n=0 END

A

=15 Aj,n _"""'n.a

ji—n.Jj

for 7=0,...,n-1
Brnn-1= ~VntyN

pnj-1=%n,j —&iPn,;

r Y ~ for j=n-1,...,1
Brnj-1=8nj —Vi&in;

Once again, computation can be done in place. Also note that, as in the forward
phase, it is not necessary to save the values of ﬁn‘j since they are not used in
computing zy nor are they used in the (n —1)# pass. Total storage and compu-
tation requirements for the rowwise fast Choleski algorithm are thus SN loca-
tions and 4N? operations, which is the same as the columnwise algorithm. If Ry
is symmetric, then ¢, =v, and a,(z)=8,(2). and the storage and computation

requirements reduce to 3N locations and 3N? operations.

The rowwise algorithm thus has the same storage and computation
requirements as the columnwise algorithm. Its chief advantage is in certain
applications where the length of the available data N may increase as new data
arrives. The rowwise algorithm easily adapts to this situation simply by resum-
ing the forward iteration where it had left off. In general, both the fast Choleski

algorithms are slower that the LTZ algorithm, unless ILN? extra storage loca-
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tions are used to save the values of Ajm As we will see in section 12, however,
the fast Choleski algorithms are far superior to the LTZ algorithm when the

Toeplitz matrix is band-diagonal.

4. Almost Toeplitz Matrices

Toeplitz matrices arise in applications in which the underlying system is
characterized by some form of “shift invariance” (or "stationarity” or "homo-
geneity"). Many shift invariant systems, however, may lead to sets of linear
equations which are closely related to Toeplitz matrices, but are not exactly
Toeplitz. For example, we may have the (non-Toeplitz) inverse of a Toeplitz
matrix, or the (non-Toeplitz) covariance matrix of a stationary process with an
initial transient. Friedlander, Morf, Kailath, and Ljung® and Kailath, Kung, and
Morf17 have shown that in fact we can characterize such “almost-Toeplitz"
matrices by a "distance from Toeplitz” x, such that the amount of computation
required to invert the.matrix is O(xN?). Kailath's idea was to consider the class
of matrices Ry which could be represented as the sum of «, products of lower x

upper triangular {block) Toeplitz matrices:

Ry = ‘le L(z;)U(y,") (4.1)
where L(z) (and U(y")) are the (block) lower triangular (and upper triangular)
Toeplitz matrices whose first column is z (and whose first row is ¥ ). in the fol-
lowing discussion, we will also use the notation L(zT) (and U(y)) to refer to the
(block) lower (and upper) triangular Toeplitz matrices whose last row is =" (last
column is y.) One reason for choosing a representation for Ry like (4.1) is that
if we form the shifted difference _|Ry defined by:

o - -0

Roo  Rown-1

JRy =Ry~ (4.2)

0 RN—].O v RN-—I.N-I
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then this matrix _|Ry can be factored in terms of the vector z; , y;:

&, <,
Lemmal Ry = Y L{z;)U(yT) if and only if |Ry = 3, zy,T
=1 =

This can be proven by direct calculation. In particular, this implies that «_ is
the minimum number of terms in a lower X upper representation for Ry like
(4.1) if and only if £, =rank(_|Ry). (If the entries of Ry are pxp blocks instead

+

of scalars, then % will be the smallest integer greater than %rank(_] Ry))

Hence we call x, the (+) displacement rank of Ry. In general, (block) Toeplitz
matrices can be written as the sum of £, =2 products of lower X upper triangu-

lar (block) Toeplitz matrices. For example, we could choose

T(0)
Z1=] (4.3)
r(N)

=[10--0] y3 07‘ (-1) - "'(—N)]

This representation is not unique; for example, we could also have chosen:

(0) 0
Zz, = T(;l) r(0)#%  zp= T(;l) T(0)# (4.4)
T(N) T(N)

yy =r@OF[r@ r(-) - r(-M))  wp=r©OH[0r(-1) - r(-m)]

This latter form is most convenient when Ry is symmetric, since then z;=y;.

Now the form of Ry in (4.1) is not the only one suitable for our needs. We
might also consider matrices of the form of sums of products of upper x lower

triangular (block) Toeplitz matrices:

= 3 UL (45)

The interesting feature of this representation is that if we form the shifted
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difference [ Ry defined by:
Ryy " By O

=Ry — : .
I-—RN N RN,I i RN.N .

0 PR 0

(4.6)

then this matrix [ Ry can be factored in terms of the vectors z;, ¥;:
K_ <
Lemma2 Ry = Y U(z;)L(y") if and only if [Ry = ¥} zy!
t=1 i=1 ]

Once again, «_(Ry) will be the minimum number of terms in this upper x lower
decomposition of Ry if and only if x_=rank([ Ry). (This must be modified
appropriately if the entries of Ry are themselves matrices.) We call k_(Ry) the

(-) displacement rank of Ry.

The lower X upper and the upper X lower representations are equivalent in

the sense that if we can represent Ry in one form, we can also represent Ry in

the other form with approximately the same number of terms. To do this, note

that:
Zg 0 yg ’ yﬁ
Lz)Uy") = |: :
zy %o )| 0 va
( 3
T
xN . 20 0 . 4 . yg .
— T T _ '
- yo yN xN .
O ZN xo AN O 0 y'll' yﬁ 0
0 ¢
\ s
T
=T-0, H[vT-vfo] (4.7)
0

where T is a Toeplitz matrix with entries equal to the convolution of the z; and
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yiT sequences. We can thus convert the lower x upper representation (4.1) into

the form:
z}
o T L+ : - 7
Ry= % Ue)owh =7+ % ol (vl i o] (4.8)
i=1 i=1
0

Since a Toeplitz matrix T can be represented by a sum of no more than 2 pro-
ducts of upper X lower triangular Toeplitz matrices, we have shown that we can
construct an upper X lower representation for Ry with x_<«_ +2. Applying a

similar argument in reverse proves that:

Lemma3 |k (Ry) —k_(Ry) |=<2
Thus the minimum number of terms in the lower X upper and upper X lower
representations for Ry will differ by no more than 2.

The most interesting result for our purposes, however, is the following

theorem proved by Kailath, Kung and Morf:17?

Theorem 1:If Ry is invertible, then its (+) displacement rank is equal to the

(+) displacement rank of its inverse:

£+ (Ry) = k_(Ry") £_(Ry) = £(RFY) (4.9)
Proof: The proof we give is due to Delosme and Morf.23 Let Z be the "lower shift”

matrix:
0 0
1 .
Z = .. (4.10)
0 10
so that
_|R=R-2zZRZT (4.11)

MR =R-Z'RZ




-23-

Then:
Ry Z |1 o) [Ry © 1 R7'Z
[ = i
mnk'lz& Ryt | = TRk | ZTR5! 1|0 rz'-zTRz'z|l0 1
4 \
Ry O
=rank 0 I—REIJ
= rank 'RN] +rank[ TRy! (4.12)

where we use the fact that the rank of a matrix is not changed by multiplication
by a full rank matrix. Similarly, by performing a UDL rather than an LDU
decomposition on the matrix on the left of {4.12), we can show that:

Ry Z

rank 2T R

:rank[Rﬁ1]+rank[__]RN] (4.13)
Since rank(Ry) = rank(Ry!) = N+1, we are left with:

k4 (Ry) =rank( |Ry ) =rank( [Ry') = x_(R7?) (4.14)
The other equality can be proven in much the same way. =

Note that the Gohberg-Semencul formula (2.18) expresses theorem 1 for
exactly Toeplitz matrices. Starting with a Toeplitz matrix Ry with «,=2, this
formula expresses Rﬁl as a sum of 2 products of upper x lower triangular Toe-
plitz matrices. Moreover, the elements of this representation can be calculated
by Levinson recursion. In the following sections we will develop an analogous
constructive procedure for starting with any « term (not necessarily minimal)
lower X upper representation of Ry, and calculating the corresponding upper x
lower representation of Rﬁl in only O(ICNZ) operations. Both Levinson and fast
Choleski algorithms will be developed. LDU decomposition formulas for Ry and

Ry} will also be given, as well as techniques for calculating z without explicitly
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calculating RA‘,I. We will assume throughout that the lower X upper factoriza-
tion of Ry is given a priori by the structure of the applications. Finding such a
representation otherwise would be a difficult numerical problem, especially if an

upper bound on «,(Ry) were not known.

5. Almost Toeplitz Matrices - Levinson-Style Algorithm

Let us assume that we are given a factorization of Ry as a sum of « pro-

ducts of lower X upper triangular Toeplitz matrices:

x X .
Ry = 3 Lcf)u@k) (5.1)
=1
] c‘é . da
where: ¢} = 3 ar = 3
Cn dn

To simplify the presentation, we will assume that c,"; and d,"; are scalars (note
that i is a superscript and not an exponent.) Extending the algprithm to the
case where c,"; and d,’i are matrices is simple, and only requires somewhat
greater care in the order in which we multiply and transpose the various quan-
tities. We will implicitly assume that the (+) displacement rank & is small rela-
tive to N. Let R, be the (n+1)x(n +1) upper left principal minor of Ry; we will
assume that Ry is strongly non-singular so that all the minors R, are non-

singular. By definition, R, _; is the upper left principal minor of R, :

R‘n—l :
Ro=|e ... » (5.2)
Also, by lemma 1:
o -0 £ .
R, =| | + ) chay (5.3)
0 Rn- =

In the same way that (2.1) is the key partitioning relationship which defines

Levinson recursion for exactly Toeplitz matrices, these two partitioning formu-
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las are the key to the almost Toeplitz algorithms. As in Levinson recursion, we

will use the solution to a set of auxiliary equations to help solve our given prob-

lem. In our case, the equations we will need to solve have the following form:

O
ot o)
Ru,[_,'.:,, =£,‘; for i=1,... .k
RnZn =Un

where:
bn,n ff),n Ton

bmlos | fi=] | oz

1 f,in Tn,n

The solution for n =0 can be found by inspection:

i
€o

e =] — for i=1, K
£o

X yO

=0 £o

where R, ; is the (i.j)®*

(5.4)

(5.5)

(5.6)

element of R,,. The solution at the n* stage for n>0

can now be recursively expressed in terms of the solutions at the (n—1) stage.

To see this, note that by using (5.3):

Fn [ﬁno—l] ) [Sno-l] - g“l Vih

ol
. x] O
where: v}, = —g,‘,’[gﬂ 1]

Also, by using (5.2):

(5.7)

(5.8)
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It is thus possible to find a solution b, to (5.4) by corhbining appropriate multi-

ples of L,‘;__l with b, _, in order to cancel out the terms on the right hand side

of (5.7):

_ 0
bu=ly

Then it is easy to show that this b, satisfies (5.4) with:

+ Z: Vi [LB-I] (5.9)

K ..
Ep = Enoy -‘Z_:l Ve n (5.10)

The solution for L,’; can then be constructed by combining appropriate multi-
ples of b, and fi_; in order to cancel the extra term on the right hand side of

(5.8):

i) g
G=[ 0 J* %, bn

for i=1,...,x (5.11)

Finally, to solve for z,, let us suppose we know the solution for z, _,. Then:

0
Rn[ 0 |TUn ~ [;\n} (5.12)
n-1
where: A, =y, - 12 R iTimn-
=0
The solution for z, can then be constructed in much the same manner used in

constructing fi:

By applying equations (5.9), (5.11) and (5.183) recursively forn=1, ... ,N, we will

be able to construct zy. The coefficients 5,‘; and v,‘; can be viewed as general-
ized reflection coefficients, b, and L‘L can be viewed as generalized predictors,
and g, is a prediction error. Note that the algorithm requires that ¢, #0 at
every step; as in the Levinson algorithm, we will see that this is equivalent to

requiring that Ry be strongly non-singular.
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The basic form of the algorithm above was 'given by Dickinson.19 It can be
simplified somewhat further so that only «—1 of the vectors .U; need to be cal-

culated. The key is to note that:

£ . 1
Y dbfl =[ ] (5.14)
i=1 _Qn
To prove this, it is only necessary to multiply both sides by R,, and note that the
x . .
first column of R, is ) dici. We will assume that c¢ldJ #0 (if this is not true,
i=1
simply renumber the vectors; at least one of these pairs must satisfy this, since

£ . .
by the assumption of strong non-singularity, g = ), cd§ #0.) From (5.14):
i=1

[
fl= { . }—‘_gz diri ' (5.15)

0x

Substituting this into our update formula for b,, gives:

1 1 i
Un/ dO L4 .[-t.n-l]
b, = + 3 v 5.16
- Qn-l ;2:—':2 n{ 0 ( )
di
where: P =vi — -1 for i=2 K
’ n n dl n L
0
and:
K . .
En = En_y — 2 Vnén (5.17)
i=2

Since L,} and f,{ are no longer needed for calculating b, or g,, they need not

be calculated at all. The complete Levinson-style algorithm thus takes the

form:
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Initialization: Get by, £&.....f.&. Zo. & from (5.6)

Forn=1,....N

a) Calculate reflection coefficients £2,...,£% and v}, ... vf trom (5.8)
and (5.7)

b) Update b, and ¢, using (5.16) and (5.17)

¢) Update f2 ...,f,using (5.11)
d) Calculate A, from (5.12) and z, from (5.13)
Total computation is approximately ¥%(4x—1)N? operations and about 3Nk

storage locations are needed for c}, dk, by, £} and yy. One difficulty with this
algorithm is that it requires the values K, ; for j<n. If these are not stored,

they they may have to be calculated recursively during the recursion above:

- K . .
Y etdh for j=0
i=1
Rnj= (5.18)

£ .
Ry_y -1+ 2 cpd}  for 0<j<n
i=1

This would require an additional %«N? operations and N storage locations. If Ry
is symmetric, then the computation can be simplified slightly because it will be
possible to calculate the 'ﬁ;‘; coefficients directly from the 5,‘; coefficients or vice
versa. The details of this, however, we leave to a succeeding section. Finally, if
¢l and d} were TxT matrices instead of scalars, the block almost Toeplitz ver-
sion of the algorithm above would require only 7° as much computation and 72

as much storage.

As a simple example of this technique, consider the case when R, is an
exactly Toeplitz matrix and we express Ry in the form suggested in (4.3). Then
it is easy to see that b, is the backward predictor of the Levinson algorithm,
e L2 is the forward predictor, £, is the prediction error, v1=0, and ¢2 and

v

. are the forward and backward reflection coefficients respectively (the "2"
n-1

is a superscript, not an exponent).
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8. UDL Decomposition of Ry! by Extended Levinson-Style Algorithm

The Levinson-style algorithm we have presented does not calculate a full
UDL decomposition of Ry!. To accomplish this, we will need to repeat our
almost-Toeplitz algorithm except with Ry replaced by R}\',. At each stage n we

will need to solve for the (n +1) long vectors a,, and e} which satisfy:

10
Rla, = e where: a, =(a, . - a;, 1)
n

Rlel =d} where: e} = (e}, - e,’j”n)T (6.1)
By considering the quadratic form (a,'R, )b, =a, (R, b, )=¢, it is easy to show
that the prediction errors ¢, of the original and the transposed almost-Toeplitz
problems are identical. As in “he previous section, we can show that the solu-

tion a,, el to the n™* order problem can be recursively constructed from the

(n—1)# order solution as follows:

1 1 T :
Hp/ Cp X [En—l ]
- 1
8 =] o, |* g}e A4 N (6.2)
. ) 0
. - T
where: p) = —¢} [P.n-l]
. Ci
Pn = Hn = =5
Q)
and:
i .
R | Pr
.g;l. ={ 0 ]+ —En o, (6.3)

. A (e .
where: p} =d} — 3 Rjnel._,
j=0
Note that because the prediction errors of the original and the transposed

problems will be identical, we will have:

L3 ., . L4 . L4 .. K . .
Lbnvn = 2 E2VE = ) phut = ) palln ] (6.4)
i=1 i=2 i=1 i=2

Now that we have calculated b,,, [_},, and g_n.g,‘;, let us define the (N+1) long vec-
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tors a,, 8, by:
0,
o ] S (6.5)
o, = = . i
= N-QN-n ’
‘aN.n
0,
o by ] Br.n
ﬁn' N g.N—n - :
ﬁN,n

where @, ,=fp n=tn,- As in the Levinson algorithm, let us form the
(n+1)x(n+1) lower triangular matrices A,, and B, whose j rows contain the

coefficients of the vectors o, and b,,:

1 0 1 0
0.1'1 1 b1.1 1

A= . . B, =| . , (6.8)
Qom " %1 1 ban " b1n 1

Let us also form the (n+1)x(n+1) lower triangular matrices Q,, and 8, whose

j"‘ column contains the first (n +1) entries of the vectors a,, and 8,:

0,0 0 ﬂo'o 0
1,0 %11 B10 B1.1
an = . : 67& = . (67)
Cno Cn,1 " Guan ﬂn,o ﬁn.l " Bn.n
Then from the definitions of &, and g,, in (6.5) it is easy to see that:
RnB;f = 671. (6.8)
T
ApRp =&y
From this we can conclude, as in the Levinson case (2.14), that:
R71=BIAJIA, where: A, =diag{gy - - &, ) (6.9)

Thus the extended Levinson-style algorithm which calculates a,,, b, fi and e}

effectively performs a UDL decomposition of the inverse matrix R;'. From (6.8)



-31 -
we can also conclude that
_ —1p 7
R, = ﬁnAn Xn (6.10)

This formula suggest that a fast Choleski algorithm for computing the LDU fac-

torization of R, will need to recursively compute the vectors a, and 8, in (6.5).

7. Fast Choleski Algorithms for Almost-Toeplitz Matrices

Fast Choleski algorithms for solving almost Toeplitz linear equations can be
developed in much the same way as for exactly Toeplitz equations. We start
with the extended Levinson-style algorithm above which calculates the full UDL
decomposition of the inverse matrix Ry!. A linear transformation similar to the
one used in section 3 then converts the algorithm into a fast Choleski method
for computing the LDU factorization of Ry. Exploiting several relatibnships
among the various predictors and reflection coeflicients reduces the computa-

tional effort substantially, and gives us our final algorithm.
The vectors a,, and g, in (6.5) are linear transformations of the vectors g,
and b, . In fact, their definition is quite similar to the linear transformation

used in section 3 for the exactly Toeplitz problem. To complete the transforma-

tion, let us define the (N+1) long vectors _Q}l and ﬂ as transformations of ﬂ;

andgfl:

¢ 1

| Lan

i ﬂl i ¢7‘;+1,n

2“~RNQ,N_n -ch = : | (7.1)

| o |

[ 0n4y

ﬂ =R]TV O-E;L —_zi};,: w::,#-l.n

~N~-n ’

\ ‘Wiv"" )

Note that the (n+1) elements of these vectors are the reflection coefficients:
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9";::.4-1,7; = - E:L (7.2)
v’;:u-l.n =-ps

Because g,,, 8. ¢% and ¥} have been defined as linear transformations of the

vectors a,, b,, f1 and e}, they will obey the same type of recursive relation-

__nl __nl
ships:
0
ﬁO.n-l x ..
En = . +¢22 7;2:‘_1 ‘ (7.3)
BN-1n-1
(oo, b |
£n=£n..1+;—-§,, for i=2,... .k
n
and:
0
qo,n-1 © ..
gﬂ = . +i¥2 /'1'121. t—l (74)
AN-1,n~-1
i = i Pn _
Yn ¥na ¥ T %n for i=2,... .,k

These recursions form the heart of the fast Choleski algorithm for almost Toe-
plitz matrices. The chief remaining difficulty is to find the values of the
reflection coefficients ?7,‘;, ¢, i and p% without having to calculate the original
vectors g, , b,, L'i or _e_};. The reflection coefficients v,{ and y.,{ do not appear
explicitly in the fast Choleski recursion, and so do not have to be computed. As
noted in (7.2), the coefficients g,i and p,’; can be read off directly from the vec-

tors g} and gi. This leaves the more difficult problem of finding the values of

¥ and i, To do this, note that:

[ T
Hn/ Cp x £n-1
= + 2 oA cj
e i=2 0 -
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. L3 . . .
=i + 3 el R _fi_. for j=2.....x (7.5)
t=
But also:
[ i ¢
fetmaet =0 0e 7| [T ) ot
= ¢ (7.6)
Combining (7.5) and (7.8) yields:
£ i
=M ] (7.7)
(3 Py

where M, _; is a (k—1)x{x—1) matrix with entries {Mn_l ij:_g,i:_.l Rp_1f3_,-6;.

Similarly, by considering the quadratic product g,{TRngn we can show that:

Pr Va
. = Mﬂ -1 . - ( 7 8)
Pr Vn

Equations (7.7) and (7.8) together suggest that we can calculate the reflection
coefficients ﬂ,”, and 'ﬁ,’; from f,‘; and p} provided we know M, -, and provided that

this matrix is invertible. To calculate this matrix efficiently, note that:

K
n

[ 4 i T [, )
e % J 2
T . =n-1 p Lﬂ—l t
%&ﬁﬂ[OLfﬁ Rn[[o]‘“;ﬂ‘ﬁn
n n
. el
=it R 11, + E2in (7.9)
n
Thus:
1 Pﬁ [ EZ .. 4K ]
Mp =M,y + =1 : roon (7.10)
n
P
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Assuming that M, _; is invertible, then the inverse of M, can be calculated

recursively by using the Woodbury formula:

(A-BD~1C)™! = A~1 — A1B(CA™1B+D)"!cA™! (7.11)

Applying equations (7.7) and (7.8), and noting that:

2
[ . pn
En TEp-1~ 2 v:;gn =épa1 T [ETZI. a3 ]M;ll : (7.12)
=2 px
n
leads to:
vy (272
M,'[l = M,ﬂ.] - : An + Fn (7.13)
gn'_l ~NKC
Vn

Thus M,, will be invertible if and only if M, _, is invertible and ¢, _;#0. Applying
this argument recursively leads to the conclusion that M,, is invertible if and
or;ly if Ry is strongly non-singular.

Let us summarize our progress so far. Calculating a full LDU decomposi-
tion of Ry requires calculating the vectors &, and 8,. Equations (7.3) and (7.4)
define a recursion for the vectors &,,, 8,,. _rp_}L and ﬁ The reflection coefficients
f,‘; and p,‘; for this recursion can be found directly from _Q;i_ and 3’1}1 by using
(7.2). The coefficients W,‘; and ﬂ.,’; can be calculated as a linear transformation
of £ and p} from (7.7) and (7.8). This linear transformation matrix M1, can

be calculated recursively from (7.13).

Given the LDU factorization of Ry, the sclution zy to our linear equations

can be found by the usual two stage forward /backward substitution algorithm:

Solve: By Ay =uy (7.14)
Solve: a;_:gv =Ay Ay
As in the fast Choleski algorithm for exactly Toeplitz matrices, the forward sub-

stitution phase for calculating Ay is easily integrated into the fast Choleski
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algorithm. The backward substitution phase, however, requires the coefficients

p)

therefore either be stored or regenerated in a backward phase.

@; n is the reverse order in which they are generated. These coefficients must

The iteration can be simplified slightly if we define our initial conditions for

n=-1:
Initialization: e_; = cdd}
Bj-1,-1 = dicf for j=0,....N
Qj_y,-1 c&djl
¢;.—1 =- C}:
¥} = —dj
M} =-1

The forward phase of our fast Choleski algorithm will then be as follows:

Forward Phase:

For n=0,...,N -

'3 =—¢;‘;’n_1 for i=2,... .,k
i — 1
Prn = ¢n,n-—1
4 2 3 4 21
Un Pn
. - -1 .
. - Mn-1
I3 c
{‘D‘na \an
4 2\ 4 2\
A n
. ~T
. - Mn—l
K <
Lp‘"'a san
vE
2 .. ~K
MI_M—I - 1 . [ﬁn p‘n]
n T Yn-1 € .
n-1 x
Vn
N i i
& T Epg —{z;‘ Vnin

X . .
- i
ﬁj.n - ﬂj—l.n—l + 22 iynﬁp},n
£ =

14 . .
-— k2
Bin T &-1n-1t _22 Hn¥in
=

for j=m+1, ...

(7.15)

(7.16)
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i

R I .t
1. -1 ® im j=n+1,... N
pi for j=2, .. . .«
¢Jn—¢gn—l+;—a1
n
Yn
Ay = =
En
Y <Y~ A Bjin for j=m+1,...,N

Total storage required in this forward phase is about (2«+1)N locations for the
. Bn. gL, Yt and yy vectors. Computation can be done in place, and it will be
convenient on the n'® pass to save the values of the reflection coefficients ,Ti.,’;
and p,"; in the locations previously used by the entries ¢,‘;‘n_1 and '¢,";.n_1. It is
also useful to retain the values of ay ;. Storage after the nth pass'should thus

be organized as follows:

& aNo " ANn CN-1,n " Cn+in

B Bno " BNn Bn-1n " Brn+in

& eha o Clan  BE o B | (7.17)
Y Yhm o VYreim PR P

E: yN"'yn-H Xn...xl

Total computation on the forward phase will be about %(4x—3)N? operations.

We still need to calculate zy from Ay. If an extra %N? storage locations are

«
available for saving the values of —2—, then we can solve for z, using simple

back substitution:
Back Substitution {Extra ¥N? storage)

For n=N,...,0

N
z, = A_n - — O T : (7.18)
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Total computation will then be about '(2/c—1)N2+0(1c2N) operations, which is
slightly faster than the Levinson-style algorithm in section 5.

If no extra storage is available, it will be necessary to recalculate the
values of a; , in descending order of n in order to solve for zy. If the forward
phase has saved the values of ﬁ};. p,‘; and ay, as suggested above, then the

backward substitution phase would be as follows:

Backward Phase: (no extra storage)

Ty = AN (7.19)
For n=N,...,1
-pi for j=n
Yin-1= pi for i=2, K
%‘,n—-efa“, for j=n+1,...,N
2 ~ L N
®1m-1 = %Gn = _22 Bra¥ia-1 for j=n+l,... N
i=

(value ay ,_; saved from forward phase)
SIS
Ep-1 T8y + 22 BrPn
i=

1 N
ZTpog = Anoy — T 2 Zi%a-
€n-1 j=n

Total computation time is now about W(56—2) N?+0(k?N) operations, and total
storage required is about {2k£+1)N locations. This fast Choleski algorithm thus
uses 507 less storage and about %xN? more computation than the Levinson-

style algorithm.

The above algorithms are similar to the columnwise fast Choleski algo-
rithms for exactly Toeplitz matrices. As in section 3, it is possible to rearrange
the computation into a rowwise form, which computes the LDU decomposition of
Ry row by row instead of column by column. Although we will not present the
details, this variation has certain advantages in problems such as adaptive

filtering where the data length N may not be fixed in advance.




- 38 -

8. Formulas for Ry and Ry!

Before continuing, given a vector zy, let us define:

0 z,
zy
v Zo .
zy =1 Ex= zy Zy=| : (8.1)
X
IN-1 0 N

Also let us define:
Co=[c? - cx]  Du=(a?- dr]
Fn=[Lfer] En=[§:§£7f] (82)

o =02 - uf]  wa=(ud - uE)

As we have emphasized in earlier sections, the fast Choleski algorithm can
be interpreted as an N step algorithm for performing an LDU decomposition
(6.10) of the matrix Ry. After n steps of the columnwise fast Choleski algo-
rithm, we will have computed only the first (n +1) columns and rows of this LDU

decomposition. It is of considerable interest to note that the matrix Ry can be
T

written as the product of these first (n +1) columns and rows of &y and Sy plus

a matrix 'ﬁn which is 2zero everywhere except in the lower right

(N-n-1)x{(N—n -1) corner, and which can be expressed as a sum of k£ products

of lower, diagonal, and upper triangular block Toeplitz matrices:

4 1

0
:B°'° , g0 0 |7 [ago = = - ey
Ry =|: Bnom . - : +R, (8.3)
: : 0 ¢, 0 Cpn " ANn
'ﬂN,O " ﬁN.nJ
where:
Ry = LB, )D(e7)U(,) - L&, DU UE]) (8.4)

where L{z), U(yT) should be interpreted as block lower (upper) triangular Toe-
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plitz matrices with first column of z (first row of _'_:LT) and D(S) is a block diago-
nal Toeplitz matrix with diagonal elements S. The proof of this formula uses
induction, and may be found in Appendix A. This formula has a very interesting
interpretation in terms of Schur complements. Partition off the first (n +1)

rows and columns of Ry

AB]

where A is (R +1)x(n+1), D is (N-n)x(N-n), and B and C are sized accordingly.
Factor A=L,U, into lower and upper triangular matrices. Then:
L, -1 ] 00
— Ug Lg'B
= +
Ry Ut [ 0 D-CA™'B (8.8)

Comparing (8.3) and (B.6), it is clear that:

09 =R 8

0 D-CcA™1B)” "n . (8.7)
Thus the Schur complement D—CA™!B can be represented as a sum of lower X
upper triangular Toeplitz matrices composed of the nt* order fast Choleski

predictors 8, &,. g, ¥i. This fact could have been used, for example, to sim-

plify the doubling algorithms of Bitmead and Anderson!5 and Morf.16

The important Gohberg-Semencul formulas (2.18) and (2.19) for exactly
Toeplitz matrices can also be generalized to almost-Toeplitz matrices. Appendix
A proves that if Ry and Ry_; are both invertible, then we can write Ry and
R;,_‘_1 as sums of upper times diagonal times lower triangular Toeplitz matrix

products:

Ry = Uby)D(s7)Lef) - U(F, ) DM HER) (8:8)
Ryl, = Uby)D(e )L(Zy) — U(F)D(M7L(ER)
where U(z) (and L{yT)) are block upper (lower) triangular Toeplitz matrices

with last column z (last row ). These formulas are the upper X lower
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representation of Ry! whose existence was guaranteed in Theorem 1 of section
4. The advantage of these formulas is that they completely specify Rﬁl and
Rﬁ’_l in terms of the Levinson-style algorithm predictors ay. by, L/‘.\/-E}.v and g5?,
My'. We can thus calculate zy=Ry'yy directly from the output of the
Levinson-style algorithm without needing to actually compute or store Rﬁl.
Furthermore, computing Rylyy only involves multiplying (block) triangular or
diagonal matrices times vectors, which is equivalent to convolving the matrix
and vector coefficients. Thus we can use 2N+1 point FFT's to solve for zy in
O(NlogN) operations. It is these formulas for Ry! which allow the use of the
doubling algorithm described in sections 13 and 14 for computing zy in

O(«®Nlog?N) operations.

9. Alternative Algorithms Exploiting Other Almost-Toeplitz Forms

The Levinson-style and fast Choleski algorithms developed above are not
the only available algorithm for dealing with almost-Toeplitz matrices. Other
algorithms can be easily devised which normalize the various predictors in
different ways, or define the L‘,, and ef vectors differently (see, for example, the
square root algorithms of Morf?4 or the Friedlander algorithm5 .)

Other almost-Toeplitz algorithms can be developed by using different for-
mulations of Ry. In the preceding algorithms, we have assumed that Ry can be
written as the sum of x, products of lower and upper triangular Toeplitz

matrices.

K, .
Ry = 3, Le})Ud}) (9.1)

=1
Similar algorithms could be developed for the case when Ry can be written as

the sum of «_ products of lower and upper triangular Toeplitz matrices:

Ry = f;; U(cfL(ak) (9.2)
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The Levinson and fast Choleski algorithms appropriate to this form of Ry will
look similar to those developed above, except that they work with the lower

right principal minors of Ry. Mixed representations of the form:

Ry= 3 LU + 5 u(@iLedh (0.3)
i=1 K+l

could also be considered. Again, the corresponding algorithms will be similar to
those above, except that the recursions on the predictors will be considerably

more complicated.

Of course, as described in section 5, all these representations are
equivalent in the sense that each form can be converted into any of the others.
Nevertheless, certain representations may have slightly fewer terms than the
others, and may lead to a faster algorithm. Moreover, certain forms ma‘y allow
exploiting any additional structure in Ry,. Marple,?3 for example, considers the
modified covariance method of linear prediction in which a set of-linear equa-
tions must be solved for which rank(_|Ry)=rank([ Ry)=6. By choosing a mixed
representation of the form (9.3), however, he is able to exploit the symmetry of

Ry about both the main and secondary diagonals in order to reduce the

number of different predictors to only 3.

Finally, we should note that the key concept expleoited by all these algo-
rithms is the type of partitioning of Ry in (5.3), where we express Ry in terms of
a matrix Ry_,, for which we know how to solve the problem, plus a correction
term of low rank. This same idea can be exploited in many other contexts as
well. Morf, for example, has developed numerous "time update” recursive algo-
rithms for linear prediction problems in which the size of the matrix does not
change from iteration to iteration, but low rank correction terms are added as
new data points arrive. Jain11.28 has also exploited this idea in order to express

a band diagonal almost-Toeplitz matrix Ry as the sum of a circulant matrix (or
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some other convenient matrix) plus a correction term. The Woodbury formula

(7.11) is then used to calculate Ry! using FFT's (or similar transform.)

10. Quadratic Forms

Many applications require evaluating the quadratic form:

r=yiR Y, (10.1)
where R is almost-Toeplitz. If we use a fast Choleski method to factor

R=ﬁA‘1aT. then:

T= [O(_lyl)TA[ﬁ‘ly_z] (10.2)
Evaluating a—l_yl and ﬁ -lgz will only require forward substitution, and is easily
integrated into the fast Choleski recursion. The backward recursion will be
unnecessary. A different approach would be to use the Levinson-style algorithm

to factor R-1=BTA~1A, in which case

T= [ By, ]T AT [ Ay_Z] (10.3)
Evaluation of the terms By, and Ay, is easily integrated into the recursion.
Still another approach would be to use the Levinson-style algorithm to calcu-
late the upper X lower representation of Rﬁi in (8.8), in which case T can be

evaluated using Fast Fourier Transforms in O(NlogN) operations.

11. Symmetry
Both the fast Choleski and Levinson-style algorithms simplify when Ry is
symmetric, R;;=R;;. The first step is to start with a symmetric representation of

Ry in the form:

Ry = fj, Lehueh) - fﬂ L(ck)u(ed) (11.1)
= i=k,
For example, if Ry were exactly Toeplitz, we could choose «,;=1, £=2 and:
r(0) 0
e = V-;l-(m 'r(:l) cf= .,-10 "'(:1) (11.2)
r(N) T(N)
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Yith this representation, symmetry guarantees that:

8y =b, o =6n

Li=tel  gf =iyl | (11.3)
tn =tp,  Vh = tpy

where the + sign is valid if i<«; and the - sign is valid if k¥;<i<x. These relation-
ships immediately cut the computational effort and storage requirements of the
fast Choleski algorithm in half. Solving for z, using our storage efficient
forward /backward recursion will require only about 2¢N? operations and about
(k+1)N storage locations.

The Levinson-style algorithm does not simplify quite so drastically. The
chief savings is that now it is not necessary to calculate the reflection
coeflicients E}; using the formula in (5.8), since they cah be calculated exactly
from ¥} and M,, _;:

¢ s

=M, (11.4)
24 Ay

where ﬂ,‘; = t’ﬁ,‘; as explained above. This removes the need for storing and/eor

calculating the values of Ry;, and it reduces the computational effort for calcu-

lating z to about g—/ch operations and about (2c+1)N storage locations for c},

by. I}, and yy. The symmetric Levinson-style algorithm thus is still faster than
the symmetric fast Choleski algorithm for calculating zy, but it uses more

storage.

12. Band Diagonal Toeplitz Matrices

When Ry is band diagonal with R; ;=0 except for —g<i—j=<p, then the fast
Choleski algorithm simplifies so that the computational effort is only O(N(p +q))
operations. Band Diagonal Levinson-style algorithms can also be devised,? 10

but they are usually numerically unstable. It is difficult to treat this case in




- 44 -

general because of the wide variation in the structure of the problem for Vafi-
ous applications. We therefore treat the exactly Toeplitz band diagonal case in
some depth, and then indicate how the ideas can be extended to the almost-
Toeplitz case. Several examples involving band diagonal almost-Toeplitz

matrices are presented in sections 18,19.

Trench® and Dickinsonl® have noted that when the matrix Ry is Toeplitz
and band diagonal, with 7(n)=0 for n<—g and n>p, then the Levinson-Trench-
Zohar algorithm can be simplified somewhat. They pointed out that if we knew
the last p coefficients zy_j ,.,_1. ....xzy of zy, then the remaining coefficients

could be recursively generated by exploiting the band diagonal structure of Ry:

In = T(;) {yn ~r(P-1)z . — - —r(—q)zn+p+q ] (12.1)

for n=N—p,...,0. Dickinson and Trench further pointed out that calculating
the last p points of zy only required knowledge of the coeﬁicieqts @i n and
bpjn for j=0,....9-1 and j=n-p+1,...,n. Total computation required to
calculate zp using the band diagonal LTZ algorithm is thus only about
(6p +4q)N operations. Total storage required for saving yy. 25, bp_jn and
r(n) is only about N+3(p +q +1) locations.

The crucial flaw in this algorithm, which was not remarked on by Trench or
Dickinson, is that the recursion in (12.1) for z, is often numerically unstable

for many problems of interest. Suppose, for instance, that Ry is symmetric and

positive definite, with R(z)= f} r{n)z™™. Let us factor R(z)=P(z)P(z~!) where
n=-p

P(z) is a causal and minimum phase polynomial of order p. The recursion in

(12.1) is thus equivalent to filtering y,, with an infinite impulse response filter

with transfer function

1 - 1
2P R(z) - 2P P(z71)P(2) (12.2)
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Unfortunately, all the roots of P(z~1) will be outside the unit circle, and thus

this recursion for calculating z,, will be numerically unstable.

The fast Choleski algorithm, on the other hand, is ideally suited for solving
linear equations involving band diagonal Toeplitz matrices. Because only
(p+q +1) cbefﬁcients of R(z) are non-zero, the polynomials «,(2) and g, (z) will
also have only (p+g+1) non-zero coefficients. Thus the matrices Qy and Sy
will be band diagonal. This enables us to significantly reduce the storage and
computation requirements of both the columnwise and rowwise faét Choleski
algorithms. Several variations are possible which use differing amounts of
storage and computation. The most storage efficient method (and the slowest)
uses less storage than the Trench-Dickinson algorithm and about the same
number of operations. Unfortunately, this particular variation is not numeri-
cally stable in general. The less storage efficient (and faster) fast Choleski algo-

rithms, however, appear to be numerically stable.

We will assume that 7(p),r (—g)#0. Only the following coefficients of a,(z)

and B, (z) will be non-zero:

a, (z): Qgn """ O0n Cni+in ' Cnipm (12.3)
ﬁn(z)3 ﬁ-—p,n T ﬂo,n ﬁn«&-l,n T ﬁn+q.n

It is thus quite feasible to compute the coefficients in ascending order of n
using the polynomial recursion in (3.3). About 2(p+g)N operations will be
required. If we need to solve Rpyzy=yy. then we will use the usual
forward/backward substitution algorithm of section 3. The forward substitu-
tion phase for calculating Ay uses the values B_; ,, is ascending order of n, and
is easily integrated into the fast Choleski algorithm. If Ng extra storage is

&jn

available for saving the values of forn=0,...,Nand j=—g....,-1, then

€n

the backward phase for computing z, would take the form:
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Backward Phase (Ng extra storage for a_; )

For n=N,...,0
1 max{g N-n)

R )

n i=1

Tn+j%—jn (12.4)

Total computation would then be about (3(p+q)+4)N operations, and total
storage required would be N(g+1)+2(p +q) locations. This is (3p+q)N fewer

operations but Ng more storage than the Dickinson-Trench algorithm.

If only 2N extra storage locations were available, then we could save the
values of the reflection coefficients £, and v, as they were calculated during
the forward phase of the fast Choleski algorithm. The backward phase for cal-
culating zy from Ay could then start with the values of ay(z) and 8y(z) and
exploit the backward polynomial recursion in (3.14). Renormalizing to decrease

the operation count, and noting that Bnign-1=0so that 8, .= then

V@& g n
gives the following algorithm for the backward phase for calculating z,: (we

delete the “~" to simplify the notation):

Backward Phase (2N extra storage for &,, v,)

zy = }‘N (12.5)
For n=N,...,1

Qjn-1=®in ~ snﬂn-j.n ; - .

- or ==1,...,—g+

pn-—j,n-—l = ﬂn-j.n “Vn%in 7 4

Brin-1="VnEN

Xgmn—1 = a-—q,n(l_guvn)

_ 1 min{g N-n +1)
ZTn-1 = )\ﬂ.-—l - ey jgl Tn+j-1%—j,n—-1

Total computation required is (3p +5g +5)N operations and 3N+2(p +q) storage
locations are needed. This is still faster than the Dickinson or Trench algo-

rithms, but it requires 2N more storage locations.
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Even if no extra storage locations are available beyond those needed for
the forward recursion, it is still possible to regenerate the Qi n coefficients in
descending order of n given only the values of £y, ay(z), and By(2z) calculated
on the forward phase. The trick is to note that in the band diagonal case we
can calculate the reflection coefficients £, and v, from the outermost

coefficients of a, (2) and 8, (z):

an +p,n ﬂn +q.,n

= and vy, = ——— 1.6
sn ﬁ-—p,n n a_q_n ( )
It is easy to show that:
a =a =r{(—q)#0
—q.n —-q.,0
ﬁ-p,n =ﬁ—p,0 =1‘(p) #0 } for alln (12'7)

and thus the denominators in (12.6) will always be non-zero provided that
7(p).r(—g)#0. Given a,(z) and B, (z) on the n?* pass of the backward phase,
we can thus use (12.8) to calculate ¢, and v,, and then exploit the backward
recursion in (3.14) to generate a, _;(2) and 8, _;(z). Renormalizing to minimize
the operation count then yields the following backward phase for calculating
zy

Backward Phase (no extra storage)

Iy = Ay
For n=N,...,1 (12.8)
'gn - a'n-l-p.n
Bpn
'Un = ﬂnd-q,n
Agn
&in-1=%Gn _snﬂn—j.n } for j=—g+1,...,-1
Brn—jmn-1=Bn_jn ~VanQin and j=n+l,... n+p-1

QRgn-1= a—q,n(l—‘fn Un)

Cpn-1 = —fn EN
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ﬁ—-p -1 = ﬁ-p .n(l—fnun)

ﬂn,n—l = TUntN

1 max(q . N-n+1)
Tpn-1 = Aﬂ—l - Tn+j=1%—jn-1

ey i=1
Total computation is (5(p+gq)+7)N operations, and total storage required is
only N+2(p +q) locations. If the matrix Ry is symmetric, then p=q. £, =v,, and
5 n=Bjn- This symmetry can be exploited to reduce the computation to

(3(p +g)+B8)N operations and N+(p+gq) storage locations. These figures are
quite similar to those of the Trench-Dickinson algorithm.

Unfortunately, while our first two backward phase algorithms are numeri-
cally stable, this storage efficient algorithm is not. If Ry is symmetric, Toeplitz
and positive definite, then it can be shown?7 that as n -+« the polynomials a,, (2)
and 8, (z) converge to anticausal, maximum phase polynomials a.(z) and f.(2)
with a; .=f; .=0 for >0 and R(z)=a.(z)B.(z~!). The minimum storage back-
ward phase algorithm above attempts to reverse this stable recursion, starting
from ap(z), By(z) and generating oy(2z) and By(2z) after N steps. The difference
between ap(z), By(z) and a.(2z). B.(z), however, can be quite insignificant for
large N, and small errors in the values of ay(z), fy(2z) will inevitably lead to
large errors in the final values of ag(z) and fy(z). (This problem can be par-
tially cured by saving “snapshot” values of a,(z), 8, (2) after every m steps of
the forward recursion, and using these to periodically "reset” the backward
recursion on a,(z), f,(2).)

To demonstrate the relative accuracy of our various methods, we have run
the Levinson-Trench-Zohar (LTZ) algorithm, the Trench-Dickinson (TD) algo-

rithm, and the last two variants of the fast Choleski algorithm (the “extra 2N”

storage and the "minimal” algorithms) on the same band diagonal Toeplitz
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matrix. The coefficients of yy were independent gaussian random variables

with unit variance. The following table compares the mean square error

N
Y (z, -2, )? between the calculated value of Zy and the known solution Z); for
n=0

various values of N. (Double precision floating point (64 bits) was used.)

R(z) = (1-B2~1)(1-7271)(1-.9e 7™ 4z)(1-9e /™ 4z)

LTZ TD Fast Choleski

extra 2N J minimal
N=20 | 501027 | 3.5#1025 | 1.3#10R7 | 1.2+#1073°
N=50 | 6.1*107%7 | 3010713 | 2.8#10727 | 49107 %R
N=100 | 2.9+#107%8 | 1.8*10™ | 7.2#10727 | g.2*10"!8
N=250 | 8.7*107°8 | 2.3+10%37 | 6.6*107 28 | 9.6*107!

Trench-Dickinson has the worst behavior due to the instability of the
recursion in (12.1) for z(n). The fast Choleski algorithm using 2N extra storage
locations to save the reflection coefficient values £, and v, from the forward
phase is most accurate. The minimal storage fast Choleski algorithm is also

clearly unstable, though it is not as bad as Trench-Dickinson.

Exactly the same type of reasoning can be applied to almost-Toeplitz prob-
lems involving band diagonal matrices. Only a few coefficients of the vectors o,
B,.. ¢i. ¥} will be non-zero, and this drastically simplifies the computational
effort and storage requirements. In solving for zy, a numerically stable back-
ward pﬁase will require saving the 2{x—1)N values p,’; and }J,‘;. Several examples

are given in section 18,19.

13. Doubling Algorithms - Exactly Toeplitz Matrices

The Levinson-Trench and fast Choleski algorithms are not the fastest avail-
ableralgorithms for solving Toeplitz or almost-Toeplitz problems. Gustavson and
Yun!4 have shown that the exactly Toeplitz problem can be solved using a Eucli-
dian algorithm involving repeated division of polynomials. Applying the divide

and conquer strategy of Aho, Ullman and Hopcroft (chap 8)!3 and using Fast
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Fourier Transforms for fast multiplication of polynomials, they arrived at an
algorithm for calculating Ay(z) and By(z) in only O(Nlog®N) operations. Using
the Gohberg-Semencul-like formulas (8.8) for Rﬁ’. they then calculate
:_u'J,,:Rﬁ’y_N-in only O(NlogN) additional operations. Their algorithm does not
require the strongly non-singular constraint of Levinson recursion. Bitmead
and Anderson!® and Morf1® applied a similar divide and conquer strategy to the
almost-Toeplitz problem, although their algorithms are rather complex and are
not easily automated. Bitmead and Anderson, in particular, rely on a “generic”
method for factoring a low rank displacement matrix, which will fail in many

applications.

We take a somewhat different approach towards deriving these doubling
algorithms, in which we exploit the resemblance between the fast Choleski
recursion and a Euclidian algorithm. Euclidian polynomial algorithms calculate
the greatest common divisor of two polynomials by recursively dividing polyno-

th and m® degree polynomials respec-

mials. Thus if F, (z) and G,(z) are n
tively with n>m, we can divide G,,(z) into F,(2), giving a quotient @,_,,(z) of

degree (n —m) and a remainder H.(z) with degree r<m.:

Fo(2) = G (2)Gp(2) + Ho(2) | (13.1)

The key idea is to subtract shifted and scaled versions of the polynomial G, (z)
from F,(z) in order to drive the (n—m) highest order coefficients of F,(z) to
zero. Now the polynomials a,(z) and 8, (z) potentially have infinite degree,
and thus applying a Euclidian algorithm to these would be infeasible. However,
the fast Choleski algorithm can be loosely viewed as an "inside out" Euclidian
algorithm, in which we subtract shifted and scaled multiples of z"’"ﬂn(z‘1)
from a,(z) and vice versa in order to drive the positive coefficients to zero,
starting at the zeroth coefficient and working outward. It is thus reasonable to

expect that the HGCD divide and conquer strategy of Aho, Hopcroft and Ullman
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for accelerating Euclidian algorithms can be modified for our "inside out” Eueli-
dian algorithm. The resulting scheme retains the strongly non-singular con-
straint of Levinson recursion, but its structure is more intuitive than that of
Gustavson and Yun. Furthermore, it direétly generalizes to almost-Toeplitz
matrices. For exactly Toeplitz matrices, our method requires approximately
18Nlog®N operations and about 10N storage, and is thus faster than Levinson

recursion for N>2500.
In this section we will treat the case of exactly Toeplitz matrices. Let us
first put the Levinson recursion on the predictor polynomials A, (2), B,(z) into

matrix polynomial form as follows:

A (2) Apy(2)
z""Bn(z"l) =% ,n-1 z—(n—l)Bn_l(z—l) (13.2)
1 ¢,2z71
where ¥, ,_ ;= v, 2z~

The matrix ¥, , _; transforms the (n—1)!* order polynomials into the nt* order

polynomials. Let us define Vp,m for n>m by:

'an,m = ""n.n—ldn—l.n—z e 13m+1,m (13-3)
Multiplying this matrix ¥, , by the m? order polynomials Ap(2), 27™R, (271)
yields the n® order polynomials A,(z), 2™ B, (2z7!). In particular, for m =0:

4, (z) 1
o ) a0
The goal of our doubling procedure will be to calculate the matrix polynomial
¥py,0 and the error gy. Formula (13.4) will then be used to give the desired poly-
nomials Ap(z), z‘NBN(z‘l), and Ry' can be constructed using the Gohberg-

Semencul formula (2.18).

Multiply both sides of (13.2) by R(z) to get a matrix polynomial form of the




-52-
fast Choleski recursion:

an(z) am(z)
z—'nﬂn(z—l) =13n.m. z-’"ﬂm(z_l) (13.5)

Note that the fast Choleski algorithm uses exactly the same recursion as the
Levinson algorithm. The important point is that it is easy to derive the matrices

¥, m in terms of the coefficients of the polynomials a,,(2z). 2z ™8,(2~1). To
calculate ¥, , . and g,, all we need are the nt order reflection coefficients En.

v, . Given o, _(z) and 8, _,(z), these can be calculated as follows:

Ep-1 = aO,n—l = ﬁo.n -1

- Ay n—1
fn = En—1
Bn.n-
v, = — =2l (13.8)
Ep—1
1 fnz‘l
'an,n—I = v z—l
n

&, = &q (1€ vy)
All we need to calculate ﬁn'n_l and ¢, , therefore, are the 4 coefficients Qg -1
@y n-1. Bon—-1 Bnn-1- In a similar manner, to calculate Yy m for n-m>1, we
will need the values of the (m+1)® through n* order reflection coefficients.
These can be calculated solely from knowledge of the 4(n —m) coefficients a; .,

Bim forj=—(n-m)+1,...,0and j=m+1,...,n.

To calculate ¥, ., for n-m>1, we will use a divide and conquer strategy.
We start with our 4(n-m) coefficients of a,,(2), 8,,(2). Let I=[{n+m)] be the
smallest integer greater than ¥%(n+m). The divide and conquer strategy will be

to compute ¥; ,, and 3, ; separately, and then form ¥, ,, =B, 1P -

Step 1 Calculate Yy m by calling our doubling procedure recursively with

the coefficients:

C_(t-m)+1,m " %m Cpmeim T Cm (13'7)
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ﬂ—(l—m)%—l.m T ﬂo,m ﬁm.+1.m. T ﬂl,m

Now in order to calculate ¥, , we will need the appropriate coefficients of a;(z)
and §;(z).
Step 2: Calculate the coefficients:
Q(n-t)+1l """ Qor  %usrl 77 Gnyg (13.8)

B—(n—l)H.l o Bog Biergr " Bag

by computing:

o (2z) s oy, (2) )
-n | = - - 13.9

2=, (z™1) tm | z-mg (z-1) (
The coeflicients of ¥; ,, are polynomials of degree no larger than ! —=m. Thus to
calculate the values of a;,,,,...,a, ;. for example, we will only need the

coefficients @ 41,ms -+ - 1 ®n . a0A B(n_m)41,m. - - - .Bo,m- Moreover, since mul-

tiplying two polynomials is equivalent to convolving their coefficients, it will be

possible to compute oy, ....,a,,; by taking an (n-m+1) po'mt. FFT of ¥ .
multiplying by (n-m+1) point FFT's of &pu41m.---/Qn, and of
B—n-m)+1,m+ - - - +Bo,m. and then calculating an inverse (n—-m+1) point FFT.

The other needed coefficients of o;(2) and §;(z) can be computed similarly.

Step 3 Calculate ¥, ; and &, by calling our doubling procedure recursively

with the coefficients of ¢;{z) and 8;{z) computed on step 2.

Step 4 Compute 3, =0, 1% n
Multiplying these two matrices simply involves multiplying (n ~1) degree poly-
nomials times (I -m )% degree polynomials to give (n—m ) degree polynomials.
Once again, since polynomial multiplication is equivalent to convolution of the

polynomial coefficients, these polynomials can be computed using (n-m+1)

point FFT's.

Now that we have defined how to recursively compute ¥p m forn-m=1and '
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for n —m >1, we can state the entire doubling algorithm for calculating Rﬁlz

a) Initialization: ag(z) = fo(z~1) = R(2)

b) Calculate ¥y and £y by our 4 step doubling algorithm

¢) Compute Ay(z) and By(z) from By o using (13.4)

d) Construct Ry! from the Gohberg-Semencul formula (2.18)

Note that to solve zy=Rylyy it is not necessary to multiply out the matrices in
the Gohberg-Semencul formula for Rﬁl. Multiplying a triangular Toeplitz
matrix by a vector is equivalent to convolving the (N+1) elements of the matrix
with the (N+1) elements of the vector. With some care, we can thus compute zy

using eight (2N +1) point FFT's in about 16 NlogN operations.

Total computation time is dominated by the time required to compute 4§y 4.

Let C(n—m) be the computational cost for generating ¥, ,,. In step 1 of our

doubling procedure, we will compute Q’No in C(g-) operations. Step 2 can be
2|

solved using four (N+1) point FFT's of the entries of ¥, , four (N+1) point
N ‘
2'

FFT's of N positive and N negative coefficients of ag{z), Bo(2), four (N+1)/2

point complex vector multiplies and adds, and four inverse FFT's to compute

the needed g— positive and g-negative coefficients of a y(z) and 8 y(z). Step 3
z 2

computes ﬂN N recursively in C(g—) operations. If we have saved the FFT's of
‘2

B N 0 from step 2, then step 4 only needs four (N+1) point FFT's of the entries of
2 .

'GN N eight (N+1)/ 2 point complex vector multiplies and adds, and four inverse
.'2_' .

FFT's.

With some cleverness, this computation time can be further reduced. For
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example, the last step of the calculation of 4 (and ¥ ) computes the
Yo nx P
2' '2

approximately peoint transforms of ‘0_,),_0 (and 13N n). and then inverse

2’ )
transforms them. The very next step is to take the approximately N point

transforms of ¥ y 0 and ﬁN y in preparation for further computation. Since the
2" 'z

g— point transform contains all the even samples of the N point transforms, it is

actually only necessary to compute the odd samples of the N point transforms.
This reduces the computational effort for computing the eight ®N point FFT's of

¥y and¥ , by about half. Thus:
2?0 Mz

c(N) ~ 2C(—!2l) + 16NlogN

= 16Nlogh + Z[ISglogg-

N. N ,
+4[16410g4]+
N 16Nlog?N (13.10)

This algorithm will thus be faster than Levinson recursion for N>2000.

We will need 2(2N+1) storage locations for saving ag(z) and By(z) until

a ) and B, are calculated. Also a workspace of about 4(N+1) locations will
-0 -2—-,0
2

be needed for computing '8N0. plus 4(N+1) more locations for computing 13N N
2" 'z

However, if the only purpose for computing 9y is as a means for getting the

Levinson-Szegd polynomials Ay(z) and By{z). then as soon as ¥ y o is computed,
—2—l

we could calculate 4 (z) and Bp(z) and discard 0N°. Then when 19N n has
2z 2 2" ‘2

been found, we simply multiply by 4 y(z) and Bx(2z) to get Ay(z). By(z). This
2 2

will cut the necessary storage to approximately 10N locations.

Further optimization will be useful for choosing reasonable sizes for the
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FFT's. For example, it may be worthwhile to split the computation of 9,4 into
three or more phases in order to efficiently use available storage or FFT sizes.

Also, beware also that choosing N+1 to be a power of 2 is a poor idea, since the

transforms on the next lower level will need to be length -jzy--l-l. which will be

slightly too large for the next smaller size transform.

14. Doubling Algorithms - Almost-Toeplitz Matrices

Except for one minor difficulty, the doubling procedure presented in the
previous section can be applied directly to the almost-Toeplitz matrix algo-
rithms. The problem is that the doubling algorithm for exactly Toeplitz
matrices relies heavily on the exact symmetry between the fast Choleski and
Levinson algorithms. By accelerating the fast Choleski algorithm we simultane-
ously accelerate the Levinson algorithm. The almost-Toeplitz problem has a
similar symmetry between the fast Choleski and the extended Levinson-style
algorithm, except that the reflection coefficients v,} and p.,’l needed by the
Levinson-style algorithm do not appear in the fast Choleski algorithm. To get
around this problem we will have to restrict our attention to almost-Toeplitz
matrices Ry for which the values of v, and u! can be deduced from the other
reflection coefficients. For example, suppose Ry could be written as the sum of
a Toeplitz matrix T plus products of lower and upper triangular Toeplitz

matrices:

3 . .
Ry =T+ Y Lck)u@k) (14.1)

1=3
where T;=£(0)#0. To put this into our usual lower X upper representation,

choose:

1 1 H0) dl = 1 #©) 14.2
DTG i) BT |l (142)




0 0
_ 1 t(1) 5 _ 1 t(-1)
cl = d2 =
=~ = VI(0) ; =N~ VI(O) :
t(N) ' t(—N)

Note that if Ry can be represented in this way, then v} and u,! do not have to

computed independently, but can be found from:

vl =2 =92 (14.3)
—m~2
Ba = 15 = Pn

In some cases Ry does not have the form (14.1), and cannot be put into any
other form in which v, and p} can be deduced from the other reflection
coefficients. Then as a last resort, we can consider using a non-minimal
representation for Ry so that cy is linearly dependent on the other c} vectors,
and _d_J\’, is linearly dependent on the otherg};, vectors. When this is done, u,} and
u,{ can be computed as appropriate linear combinations of the other u,’i and ,u,‘;

coefficients.

With this caveat, we now develop a doubling procedure for the case of
almost-Toeplitz matrices. Define the polynomials a,(2z), 8,(2). ¢i(z). ¥i(z)
and A, (2), B,(z). f,‘;(z), e,"t(z) and C*(z), D*(z) in the obvious ways. Then the

fast Choleski recursion can be stated in matrix polynomial form as follows:

Bn(z) Bn-1(2)
i (z) ea-1(2)
¢ [T Vana : (14.4)
er(z) ?r-1(2)
eﬂ
2l 2192 . px
where gn.nﬂ: é- . [z Pn V"].,.[g?]
€n
a-n(z) an—[(z)

Y2(z) Ye—1(z)

= n,n-1

: _ (14.5)
7 (2) Y -1(2)

¥
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where &, ,_; = .

n
1.2

Pn

N [Z-lﬂg .

7 )
+

00
01

The matrices ;"n.n—l' Bp.n-y transform the (n ~1)** order polynomials into the

th

n"" order polynomials. Define 5,,”,,1 and &, for n>m by:

1’ﬂ,m. =1’n.n—1'ﬂn—l.n-—2 e 'am+1,m (14‘-6)
nm = wn,n—la’n—l.n—z e am.-l-!,m.

These polynomial matrices ﬁn’m and @&, ,, have degree (n-m) and they

transform the mth degree polynomials into the nt® degree polynomials.

The Levinson-style recursion can also be stated in a similar form:

f 3 9
1 1
z—ﬂBn(z—l) z—(n-l)Bn_l(z-l)
ff(z) -ﬂu'n-—l fnz—l(z)
~(z) Tn-1(2)
1 0
where 9, ., = vi/dd
0 371.,71.-1
3 4 9
[ 1
2 A (277) 2 r g, (z7h)
e (2)  |=opan el ;(2)
es(z) ey _y(2)
Y 4 . L,
1 0
Where wﬂv.ﬂ"l = #7{/ Col
0 ajﬂn""l
Define ¥, ,, and , ,, for n>m by:
ﬁu.m = 1’n.n.-l'ﬂn--l.n—z e ﬂm+l,m
Onm = O n-19n-1n-2 * " Om+1,m

Because ¥, ,_; and w, ,_, are block lower triangular, 9

n.m

(14.7)

(14.8)

(14.9)

and will have

n,m
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the form:
1 0
dn,m =1, %1; m (14.10)
1 0
Cnm = | o B m

Our strategy for calculating Ry' or zy is the same as in the exactly Toe-
plitz case. Our goal is to compute ay, by. L. e}, £y, M5! so that we can com-
pute Ry! as a sum of upper times lower triangular Toeplitz matrices as in (8.8).
We do this by computing 8y 4 and wy o using an accelerated fast Choleski algo-

rithm. The desired vectors can then be found from:

( 3

1 ¢ 1 3
Z-NBN(Z-I) 1
TR(z)  [=0y0|cd/ e (14.11)
BRI | €6/ %0
’
r ] 4 3
-N ' -1 1
z7VAp(27Y) 1
25(2) = QN,O doz/ 80 (14.12)
efi(z) J ‘d(')c/ €o |

We again use a divide and conquer strategy to compute 4, ,, and w, ,,. Using

our assumption about the form of Ry in (14.1), we can compute ¥, ,_, and

T 1 -1 .
©p -1 froman 1. Bn g1 @n—1 ¥n-1. Mgy

b = "?1‘;,11.—1
Pr = "'"/’:i,n-l
(2 o2
_ -1
=ML
\wf‘ll \pﬁl
[ ~2 ) [ ;2]
n n
=M1, | : (14.18)
.4 ~
) ‘fn J
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En-1 = Cn-1,n-1=Bn-1n-1

1 'U,% [ﬁ’%ﬁ‘]
- - n
Mnl=Mnl_1"‘ . i H

n 77:

K . .
Ep S Ep—1 — 2 gtvrtt

=2
Calculate v,} and u,) from the other reflection coefficients as in (14.3)
Compute 8, ,_; and w, ,_; from (14.4,5) and (14.7,8)

Note that computing ¥, ,_, and o, ,_; only requires knowledge of the R«
values &, _y n—1: By n-1: PE et Vi et

Now to compute ¥, ,, and w, ,, for n—-m>1 we will need to start with ¢,,,
M..! and the 2k(n-m) coefficients &;_; m. B5-1,m. ;a};'m. Y} for j=m+l, ... n.

Let I=[%(n +m)]. Then:

: Compute §; ,,, w and M;!, g by calling the procedure recur-
i,m t,m 13 l

sively with coefficients

{ i for j=m+1,...,n
G-1m +Bjm  Pim ¥im  tor i=2.....x (14.14)

-1
M. . e,

Step 2 Compute the coefficients i1, Bj-14. go}'l. ';//}'., for j=l+1,...,n by

exploiting the relationships:

[ B,(2) ) (B (2) ]
ef(z) | . | v2(z)
N X T (14.15)
| ¢f(z) | vr(2) |
[ o, (2) | am(2) ]
YE(z) Y2 (z)
: = Om :
| V(=) | Y5 (2) |

Step 3 Compute ¥, ;. w,;, and M;!, &, by calling the procedure recur-

sively with the coefficients calculated in step 2.



-861 -

Step 4' Compute 8, ,, =0, ¥, and w, , =0, 10,
Step 2 can be performed using (n—m+1) point FFT's to convolve the (I-m)
degree polynomial entries of ¥; ,, and w; , with the appropriate elements of
the right hand sides of (14.5). Step 4 can also be performed using (n-m +1)
point FFT's to convolve the (n—{) and ({ —-m ) degree polynomial entries of Bp i
©p and Y .. 0 .. In all, steps 2 and 4 will require about (6«%+8k) FFT's of
length (n-m+1). Computing Uyo and wyo will thus require about
(6x%+Bi)Nlog®N operations. The vectors ay, by. £}, ef can then be found from
(14.11), (14.12) in O(N) operations, and the solution zy can be computed in
O(kNlogN) operations using formula (8.8). Total storage required will be about

(4x?+8k)N locations. Careful optimization can probabl; reduce all these

requirements somewhat.

15. Degeneracy

The Levinson-style, the fast Choleski, and the doubling algorithms will all
fail unless the matrix Ry is strongly non-singular so that the prediction error
£, is always non-zero. One practical solution to this difficulty, if the prediction
error &, should hit zero at some stage, would be to simply perturb the matrix
Ry slightly in order to drive g, slightly away from zero. More elegant methods
for dealing with this difficulty, however, can be devised. The strongly non-
singular constraint arises from Levinson recursion's inflexible strategy of solv-
ing a series of problems R, z, =y, in which the matrix R,, is always the nih prin-
cipal minor of Ry. A very desirable solution to the problem of zero prediction
error, therefore, would be to incorporate some form of partial pivoting into the
Levinson algorithm so that the sequence of nested minors R,, do not necessarily

lie along the main diagonal. Musicus has in fact presented a Euclidian algo-

rithm replacement for inverse Levinson recursion which has exactly this struc-
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ture. Unfortunately, this solution does not appear to be easily applicable to the
forward Levinson recursion algorithms that we have discussed in this paper. A
less desirable solution to the problem has been suggested by Gustavson and
Yun,14 whose algorithm effectively uses the lower left minors of Ry to recur-
sively construct ay, by. Bareiss also suggested a fix for one type of degeneracy
in the Choleski algorithms. We present yet another approach, a "“shifting" pro-
cedure which resumes the Levinson recursion when the prediction error g, at
some stage is exactly zero. Our approach will not cure the problems of numeri-
cal ill-conditioning which occur when g, is very tiny but non-zero, but it should
be regarded as a first attempt toward a more general procedure. The
Levinson-style almost-Toeplitz algorithm can also be patched up to handle the
case when gz, =0, but the method requires adding an extra predictor, and is

sufficiently inelegant that we do not present the details

Assume that Ry is exactly Toeplitz, and is non-singular but not necessarily

strongly non-singular. We will then modify Levinson recursion so that at the

h stage we calculate (n+7, ) long vectors @, and b, satisfying:

S -

where the first T,, coeflicients of @, a are zero:
= (0.1 T 15.2
&n = (._‘r,, la;, An.n ) (15.2)
=@‘:'r,. ban v bon )T

We start at n=0. Let T, be the smallest positive integer 0<7,<N such that

r(—79)#0. Then choose:

= [—;0] by = _:o £g = 7(—To) : (15.3)

&0
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Clearly there must be such an integer Ty or else the entire first row of Ry will
be zero and Ry would be singular. (In most cases, 7,=0 and the initial choices

above are similar to the initial choices of the usual Levinson algorithm.) Now we

can calculate the n?* order solutions g, . b, in terms of the (n —1)® order solu-

tions in the following way:

[g"_l + 0 15
= 4
Z2n 0 en En-l ( )
0 Vn
5n = [ﬁn—l ] Ve o
where:
n-1 .
¢ =— 2 T(n=j)a;n
=0
n .
Vn = —12 T(-J "Tn—l)bn—j,n—l (15.5)
=]

En T &p-1 —Snun

Trouble arises in this algorithm at some stage m if when we compute a,, from

Bpqs By in (15.4) we find that g,,=0. This makes it impossible to calculate
bm

. One possible solution to this deadlock is to try shifting the coefficients in

!0

—a

the vector g,, down ¢ steps until we find a {m +7, _;+0) long vector o ] with
Tm =Tm —1+0 leading zeroes such that:

£

m+a
0
d gm-l—a
RN an | = P (156)
0

9,
where &,,4, = [r(o) X -'r(—n)] a, #0
Clearly there must be such a e<N-m -1, _, for which we would find ¢, ,,#0. or

else we would find that

=0 (15.7)
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with a,, #0, which would contradict our assumption that Ry is non-singular. Let
us define the errors &, =¢,,,, for n=m, ... ,m+0, and let us define the (n+7,,)

long vectors a, by extending a,, with zeroes:

0

-
an =1 Bm (15.8)
On-m

b
—_m -1
Extend b,,_, with o zeroes, _lgm_l&—[ 0 ] and now recursively generate the
-

n+71,,) long vectors b,, ..., b,, 4, satisfying (15.1) by the following recursion:
m ~JT —m +q

For n=m,... , m+0
0 Vn
.Qu:{gn_l]*;n—ﬁn (15.9)
where v, = - [r(—l) e r(-ﬂ—o)]_b_n_l

At this point we will have (m +0+71,,) long vectors g, ,, and b, ., which satisfy
(15.1) whose first T,, . ¢=Ty =Ty -1 +0 coefficients are zero. We now resume our
normal Levinson recursion step (15.4) at n=m+o+1. Should &, =0 again at
some stage, we simply repeat our shifting step.

Eventually we will reach a stage M=N-14 at which the vectors ay, by will
have length N so that they can no longer shift down. For the last Ty steps we
will recursively create vectors a, by shifting a,_, up one notch and adding an
appropriate multiple of by to ensure that only the last N—#M coefficients of
Rya, will be non-zero. (Shifting a,_; upwards is feasible since its first

Ty—(n —M) coeflicients will be zero.)

For n=M+1,....N

u'l.ﬂ.-—l
a. = ’ +&. b 15.10
-t aN,ﬂ-—l fn__M ( )
0
~‘ .
where £, =~ Y T(M-j)ajy 0

Jj=N-n
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It is easy to verify that only the last N-M coefficients of Rya, will be non-zero;

call these coefficients ay,; 5. . .. Gy m:
7
Ql+1,n
Rya, = . for n=M+1,...,N (15.11)
aym

Now to solve for the vector zy, we can start by using our usual algorithm

for the first M steps:

Z_, =0y
For n=0,..., M (15.12)

EAY A

N
where A, =y, -;Z; r(n—5)z; n

At this point the vector zy will satisfy:

.0_514-1

’\H+1 v
Ryzy =un—| . (15.13)

Y

Computing the final solution z, will now require adding appropriate multiples of

IN=zZy+ ), Tals (15.14)
n=M+1

where the coefficients n,, solve:

AP+, M+1 T QUi N || TH+1

: : s l=] (15.15)
aQyu+1 T NN N Ay

This matrix on the left of (15.15) can be shown to have full rank because the

vectors ay.,,....ay will be linearly independent.

This particular algorithm can be viewed as an extension of an idea by

Bareiss® for dealing with the case when 7(0)#0. It has an interesting
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interpretation in terms of non-principal minors of Ry. Suppose that step n of
the algorithm is a "normal” step using the recursion in (15.4). Then because
the first 7, coeflicients of a,, b, are zero, the last n coefficients of these vec-

tors must satisfy:

4

Cr.n &
R =l "] (15.16)
. QJ‘ .
\aﬂ.ﬂ
(b
™ n.n _ 0,
Rn : =1
bO.n
\
where:
T(-Tp) = T(-n-1,)
R = (15.17)

r{n—r,) - r{-1,)
In other words, the last n coefficients of the vectors g,, b, satisfy a set of
linear equations involving a non-principal minor R;:" of Ry. This modified Levin-

son recursion therefore starts by solving linear equations involving principal

minors R, of Ry. If one of the minors R, happens to be singular, however, the
algorithm eflectively shifts off the main diagonal to a non-principal minor RZ, .,

and resumes the iteration.

18. Example - Covariance Method of Linear Prediction

We first consider a problem originally treated by Morf, Dickinson, Kailath

and Vieira.?8 The covariance method of linear prediction fits an optimal pt*

order linear predictor to a given N point data sequence z(0),...,z(N-1) by
minimizing:
E LS (o) k k—p)P (16.1)
<« min [.'z ta,z(k-1)+- - +a, ] .
oy N_P ¥=p 1 ( ) g ( Y

Since this is quadratic in the unknowns a;, minimizing (18.1) is equivalent to
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solving:
a, 0 |
Rp a, = 0 (162)
1 E
1 N . .
where: {-"Lj = Nep 20 w(k+i)w(k+5)

This matrix Ry can be written in the form of a symmetric almost-Toeplitz matrix

with displacement rank x=4:

0 0 T T T
Ry =|o R,_, | *oden —efed +efel —ches (16.3)
with
Ro0 0
1 1 Rl.l 2 _ 1 RI.O
& = . ey = .
VEyo VEgo |
RP-O %.0
(16.4)
0 0
5 _ | z(N-p) | =@
E = : L = :
z(N-1) z(p-1)

We now simply apply our symmetric almost-Toeplitz algorithm to calculate a,,

el. After p steps, the vector will solve (16.2), and will thus be the desired

™ 2y

predictor, with E=sp the prediction error. Moreover, the intermediate solutions

8., &, for n=0,...,p represent optimal nt order forward predictors and
prediction errors given the data z{p —n), ...,z (N-1).

In some cases, it would be convenient for the intermediate solutions @, to

th  order forward predictor given all the data

represent the optimal =n
z(0),...,z(N-1). This becomes possible by choosing a mixed representation
for R, like that in (9.3). Let R, be the covariance matrix formed as in (16.2)

with p replaced by n. The matrices R, are no longer the principal minors of
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R,. but instead satisfy:

R rx(Ndn)(»(N )~ z(N-1)0)

n-1 ¢ : z(N-n) - z(N~-1

Rn=[c 1 .]- z(N-1) (16.5)
|0
[ o

v z(0) |[|0=z(0)  z(n-1)

Rn:[.Rn—l]— . [ ]

‘x(n-l)

We will need 4 predictor vectors in order to solve this problem recursively.

Several selections are possible; we choose to calculate a,, b,, e,. f, defined

by:
1 0,
Rn.gn = ;g" Rn.@n = 1
(16.8)
[ z(N-n—1) z(0)
Ruen=| Rofn=| :
| z(N-1) z(n)

The nf* order predictors can be recursively computed from the (n—1)* order
predictors. The computation is somewhat involved, however, and so we will omit

the details.

A similar approach could be used for other pre-windowing and post-
windowing covariance methods, where we pad the data sequence on the left or
on the right with zeroes. Padding on the left with zeroes ensures that _gp‘*:_g_ in
(16.4), and then we need only retain 3 vectors in the recursion. Similarly, pad-
ding on the right makes _04,3=0. Padding on both the right and the left, as in the
Yule-Walker equations, sets _gp3=_c;=0. and the matrix R, becomes exactly Toe-

plitz with displacement rank 2.
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17. Example - Modified Covariance Method

The modified covariance method of linear prediction is quite similar to the
covariance method above, except that it selects an optimal predictor by averag-

ing the forward and backward prediction errors:

E « rmn 2(N—p) [ z(k)+a z(k—-1)+- +apz(k_p)]2 | (17.1)

+ Ni—l [z(lc)+a 1Z(e+1)+ - +az(k +p)]2 }
k=0

This is again quadratic in the parameters ¢;, and so minimizing (17.1) is

equivalent to solving:

a, 0
Ry ""1 = O (17.2)
1 BE

where L l -i (k+i)z{k+j7) + 2 (k —i)z(k—j5)
o)y = 2wy &=
Marple?5 treated this problem originally. It is possible to represent R, as a sum

of lower X upper triangular Toeplitz matrices with displacement rank x=6. How-

ever, Marple pointed out that if we let R, be the modified covariance matrix for

an n* order model, rather than simply the n* principal minor of R, then:
4 0 1 4 0 1
z(0) [02(0) -'z(n—l)] z(N-1) [Ox(N-l) "z(N-m.)]
o =] Rn—l ’ - i
‘x(n—-l)‘ | z(N-n) |
(17.3)
’Z(n—l)‘ r:r(N—'n.)‘
[Rn-l "] : [z(n-—l) --z(O)O] : [z(Nm) --z(N—l)O]
Rio=1e. «]”| =z(0) ~| z(n-1)
0 L \ 0 /

This partitioning can be exploited to produce a fast recursive algorithm for
computing the modified covariance predictor. We will need 6 different predic-

tors; let us use:
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1 | 0,
RnE:n = [.Q.n] Rn_qn = 1
[ z(0) [z (n)
Rpel=| : Rofd=| : (17.4)
(| z(n) | z(0)
[ z(N—n-1) [ z(N-1)
Rpel = : R, f2 = :
| z(N-n) |z (N-n -1)

These can be computed recursively by an updating procedure which is concep-
tually similar to those we have used before. The important point noted by Mar-
ple, however, is that the matrices R, are not only symmetric about the main
diagonal but are also symmetric about the secondary diagonal (i.e. they are
persymmetric.) Thus a,, e} are simply the vectors b,, f; upside down. Only 3
different predictors will need to be calculated; in fact, the final algorithm he

derives is almost as fast as Burg's linear prediction algorithm.

18. Example - Rational Toeplitz Matrices

A common problem in many filtering and deconvolution applications is to
solve a set of linear equations:

SNZN = UN (18.1)

where the (N+1)x(N+1) matrix Sy is exactly Toeplitz and its elements

S; J=s (i—j) form the inverse Z-transform of a rational polynomial:

S(z) = g«s(n)z"" = —GTS%)(;—)— (18.2)

We will assume that G(z) and H(z) are causal monic polynomials with all their
roots inside the unit circle:
G(z)=go+g,z2” 1+ -+ tg,z7P s go=1

H(z)=hg+hz71+ .- + hgz™? i ho=1 (18.3)

F(z)=f_2z%+ -+ +f. 277 ;71,020
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Dickinson!® has treated this problem and shown that the rational polynomial
structure can be exploited to linearly transform the set of linear equations into
a form involving an almost Toeplitz band diagonal matrix with displacement
rank «=2. He then showed that a fast Levinson-style almost Toeplitz algorithm
could be used to solve for z) with a number of operations proportional to the
length of the data N times the degree of the rational polynomial. His approach,
however, had two faults - it used a slow version of the Levinson-style algorithm,
and the final step involved a recursion similar to (12.1) which is usually numeri-
cally unstable. We will present a much superior approach in which we apply our
fast Choleski algorithm to this problem, and thereby derive an algorithm which

is at least 337 faster and uses less storage than Dickinson's.

Our presentation of the problem initially follows Dickinson quite closely.

First find a partial fraction expansion of the rational polynomial S(z) as follows:

V(z) | W(z7h
G(z) H(z™1)

where V(z) and W(z) are causal polynomials with degrees T=max{Tpp) and

S(z) =

(18.4)

o=max(0.g) respectively. (A very fast method for calculating V(z) and W(z) is

the Euclidean algorithm developed by Musicus.) The first term in (18.4),

z)= ., has an inverse Z-transform s*(n) which is causal, while the
S“()Mh Z f ")hh 1, while th

T G(z)
second term, S“(z):—gl(-z—___%. has an inverse Z-transform s~(n) which is anti-
causal. Then

s(n)=s*(n) +s(n) (18.5)

where s*(n)=0 and s~(—n)=0 for n<0

In an analogous fashion, we can decompose the matrix Sy into a sum of a lower
triangular Toeplitz matrix S and an upper triangular Toeplitz matrix Sy with

entries S};=s*(i—j) and S;7;=s (i -j):




-72 -

Sy =Sy + Sy (18.8)
Define:
go ho Vo wo
= ’ h. = : = ; = :
9n 9p ny kg Yn I Wn wy (18.7)
0 g 0 [}

where the (n+1) long vectors are suitably truncated if n is smaller than the
degree of the polynomial. Because of the isomorphism between multiplication
of lower (upper) triangular Toeplitz matrices and causal (anti-causal) polynomi-
als, it is easy to see that:

L{gn)Sy = L{vy) (18.8)

SyUhg) = U(wg)
Combining (18.8) and (18.6), the matrix Ry defined by:

Ry = L{gx)SpyUkg)

= Luy)U(h) + Lgn)U(wy) : (18.9)

will be band diagonal and almost Toeplitz with displacement rank «=2. This sug-

gests the following three phase procedure for calculating z:
a) Calculate Fy=Gyyy
b) Solve RyZy=8y
c) Calculate EZN=H1'I\|IZN

Steps a) and ¢) only involve multiplying a band diagonal Toeplitz matrix and a
vector; they thus consume only Np and Ng operations respectively. Step b) can

be most efficiently solved using a band diagonal fast Choleski algorithm.

The matrix Ry will have the shape shown below:




all

1"
—t
T
Except for the upper left 7X@ corner, Ry will actually be a banded exactly Toe-

plitz matrix with entries equal to the numerator polynomial coefficients:

R;i=1]o else for i>T , j>@ (18.10)

(Beware that the width of the band of non-zero diagonals, T+0+1, may be
smaller than the width of the upper left 7X@ corner if 7<p or 0<q.) To apply

our fast Choleski method to this problem, let us assume that vghy#1, and take:

C=Vn i TRy ef=gdn g =uwn (18.11)
(If voh#0, we can try swapping the roles of ¢,}, d,} and c;2, d2.) Because Ry is
only band diagonal, only the following coefficients of the vectors a,. 8,. ¢? and

¥2 will be non-zero:

Ban " Bnax(tninin

Con  Cmramso)m (18.12)
PR ¢§1&x(’?.n+"')~"

vr%ﬂ.n e ¢§mx(§.n+ﬂ).n

This fact can be used to significantly reduce the necessary computational
effort. To simplify the notation, we will drop the "~" from 'ﬁ,‘; and ,’/1," omit the
superscript “2", and take g, =0 for n>p and h, =0 for n>g. The forward phase

of the fast Choleski algorithm is then:
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Forward Phase:

Initialization: 7 = max{7,p)

¢ = max(o,q)

E_; = ”oho
ﬁj-l.—l = h.o'UJ for j=1, e T
$i—1=—9;
aj-l,-l = 'Uohj for j=1. -
¢j|—1 = —wj
MZl=-1
For n=0,... N
€y = — Pn.n-1
Pn <= “%n,n—l
Un = M;llpn
- -1
Hp = —lén
Mot =ML - fnln
) En—1
En T Ep-y —Vné,
If n<7—7
Br+jn = Bnij-1n-1t Un¥n+jn-1 for j=1,....7-n
- €n _ _
Prn+in = Prn+jn-1 + E_—Bn-&-j.u for j=1,...,Tn
n
Else:
ﬁn"'j"l.n“l + Vn¢n+j.n_1 for j=1, ... .1"-'1
Prsjm = Bnir-1.n-1 for j=7
¢, 3
Pn+in-1 1 E_ﬁnﬂ‘.n for j=1,...,7-1
n
¢n+j,n = £
s—n_ﬁn-l-‘r,n for j=T
n
If n<oc-0
Cntjn = Cnajoin-1 ¥ Un¥nsjn-1 for j=1,...,-n
P . _
Yntjn = V¥nejna + ——OGpijn for j=1,...,5-n

En

(18.13)




-75-

Else:
' Qn +j-1,n—1 +lu'n¢n+j,n—1 for j=1,...,0-1
Cn+jm = | Fn+o-1,n-1 for j=o
.
Pn ,
Yn+jn-1+ T Cn+im for j=1,...,0-1
n
¢"+j"" = Pn
;_.an-i-a—l.n—l for j=o
n
\
Tn
M = :,
Insi “ Inej ~Mbnsjm  for j=1,... max(7-n,7)

As before, the structure of the backward phase depends on how much extra

storage is available to save values from the forward phase. If we had stored all
[ S :
the values _ﬁsih"_ for j=0,... ,max{e-n,0) and n=0,...,N then we could
n

immediately solve for 2 by back substitution:

Backward Phase: (extra No storage)

For n=N,...,0 (18.14)
min(max(v,ni-c) .N]
_ 1
2= A - ;—' 2 aj.n‘?j
n J=n+l

Total computation will be about [3(7+0)+6]N operations.

If only 2N extra storage locations were available, then we could save the
values of p, and u, from the forward phase and recalculate the values of

Gy +jn In descending order of n for use in calculating Zy:

Backward Phase:
En =y (18.15)
For n=N,...,1
~Pn for j=0
Ynejn-1 = Pr .
Ynejn — ;;"aﬂ.,.j_n for j=1,...,max(G-n,0-1)
%ntjm —;u»nw“,-m,, for j=1,...,max(¢-n,0~1)
An+j~1,n—-1 = | Cn+on for j=o if o>0—

0 for j=-—n+1 if g<c—m
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Epoy TEp t UppPp

min[ max(¥-n+1,0) . N-n+1 ]

1

€n—1 j=n

A R %5 n-1%j

Total computation is now about [37+50+6]N operations.

Finally, if no extra storage is available, so that we only want to use about
2(7+0) locations for the recursions plus about N locations for #y, then it is still
possible to recalculate the values of a,,;, in descending order of n starting
only from the knowledge of the various vectors at stage N. We do this by

exploiting the fact that:

€n =
Prn+rn = E_ﬁni-'r.n for n>7-1
n
Bn-l-'r,n = f‘r #0 . (18~16)
P —
Yn+on = s_n—‘xn-!—a.n for n>5-0c
n

aﬂ"’d,ﬂ = f—ﬂ #0
Given 8, . &, . 9, ¥, we can thus derive {,, p,. These can then be used to gen-

erate v, and y, . and then the (n—1)** order vectors o, _y. B, 1. €5y 2and ¥, _;.
The only difficulty will be for values of n<T—7 and n<6—-0. To cover these cases,
the values of ¢, and p, will have to be saved for m=1,...,7-7 and
n=1,...,0—0 respectively. This can actually be done on the forward phase
without using up any extra storage. After the n** step in the forward phase for

n>T—7 and n>F—0 we should organize storage as follows:

0---0 Brnirn " Bn+in (length 7)
£y &pr Prirn T Pn4in (length 7)
0---0 Qp+on ' Op+1n  (length @) (18.17)

: pl T pu—q ¢n+a,n o wn-i-l,n (length E)
:XO "')\.n g‘n-i-l "'gN (length N)

S
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Backward Phase: (no extra storage)

2y =vy
For n=N,....,1
Pn+rn
ﬂn-l-’r,n
€n =
Yn +o,n
{ Qn+o,n
Pn =
£Enp.
M, =M, - 2 Z
n
v = Pr.
™ Mn-l
€n
bn = Mn—]

¢n+j,n—l =

7’7& +j,n-1 =

ﬁn +j=1,n~1

Crij-1n-1~] Cn+an

€, for n>7T-1
(value saved for n<T-7)
for n>o—0

(value saved for n<g-o )

—HnVn +j,n-1

(18.18)

for j=0

for j=1,... max(F-n,7-1)

for 7=0

for j=1,...,max{(¢-n,0-1)
for j=1,...,max(T—n,7-1)

for j=7 if n>F-1
for j=F7m+1 if n<T—-7

for j=1,...,max(d-n,0-1)
for j=¢ it n>c—-0

for j=-n+1 if n<t—o
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mln[mu(ﬂ'—nﬂ.u) JN-n+1 ]

aj s —IE‘j

1

En—-1 j=n

‘P“n-—l =hpy —

Total computation time will be about [5(7+0)+10]N operations (at least 33% fas-
ter than Dickinson's algorithm) and about 2(7+7)+N storage locations are
needed (less than Dickinson's algorithm.) Unfortunately, as in the case of
exactly Toeplitz matrices, this minimal storage algorithm is not always stable.
One partial solution to this difficulty is to save the values of a,(2) and g8,(2z)
after every m*" step of the forward recursion, then periodically reset the back-
ward recursion to the correct values of o, (2) and g, (z). A simpler solution, of
course, would be to add 2N extra storage locations, and use our previous back-
ward phase algorithm since it appears to be numerically stable.

If the rational polynomial S(z) is also symmetric with T=0, p=q, G(z)=H(z)
and F(z)=F(z~1!) then the computation and storage requirements can be
reduced considerably. We will be able to choose a symmetric partial fraction
decomposition (18.4) with V(2)=W(z). Also Ry will be symmetric, Ry=Rf. We

can choose a symmetric lower X upper decomposition of Ry by setting:

&l =¥, +g,) (18.19)
&2 = B, —g,)

so that:
Ry = KehU(ed) - Lef)UEF) (18.20)

Then by symmetry:

2n =85 fn == pPn Va = —Hqp $n =~ (18.21)
This cuts the computation and storage requirements of the minimal storage
algorithm to about (67+11)N operations and about N+({7+5) storage locations.
(If an extra N locations are available for saving the values £,. then the algo-

rithm would be stable and (67+9)N operations would be needed.)



-79 -

19. Example - Smoothing Filter for Noisy ARMA System

It is possible to apply our almost Toeplitz algorithms even to certain prob-
lems which don't quite fit the model we have assumed for Ry. A good example of
this is Maximum Likelihood estimation of a noisy Autoregressive Moving Average

(ARMA) signal like that in figure 19.1

win) J X(ry B(2) ° y (ny
Alz) |

: ;

‘L ----- | . - T - - - -‘ °

)

|

i

Xy vin)

" Figure 19.1 - Noisy ARMA Model

Unit variance white gaussian noise w{n) drives a known p** order autoregres-

sive filter —I-qu—) to generate an autoregressive signal z(n). This signal is

further processed by a known g®* order all-zero filter F(z) to form s(n). (We
will assume that g<p to simplify the following.) Independent unit variance

white gaussian noise v (n) is added with gain o to form the observations ¥ (n):

z(n)=hz(n-1)+ --- + hpz(n—p) + gw(n)

y(n) =foz(n)+ -+ + foz(n—g) + ov(n) (19.1)
where: p(v(n)) = p{w(n)) = N(0,1)
for n=0,....,N

Values of h,, for n>p and f, for n>g will be taken to be 0. We will assume that
the a priori distribution of the initial condition z;=(z(-1) - -- z(—p))T is also

gaussian:

plzp = N(Z;. Tp (19.2)
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Let:

z(N) y(N)
: Yy = ; (19.3)
z(—p) y (0)

(Note that the order of the coefficients in these vectors has been reversed from

ZN+p &

our previous examples.) It is easy to show that the joint probability density of

Zyyp and yy is:

z + ot?—(g—F_:g)T(y—F_g) + constant

[ 00
1) ;17
lo zy)=—-=—z'| —H'H+ _
g p(z.y) g{_ [92 [0 5!
Jo [z O hg = hy O
where: F = and H=

0 o fo 0 hy - hy

and F and H are Nx(N+p) band diagonal Toeplitz matrices. Given the observa-

(19.4)

tions y(n) for n=0,...,N, the Maximum Likelihood (ML) estimate of QN.,,p is
found by maximizing this log likelihood function over all z. Since the log likeli-
hood function is quadratic in z, the ML estimate £y,, can be calculated by

solving the linear equations:

0
oz

[ 00
1 .7 1 .7

._HH+..__F‘F'+ -
g? o® [0 211]

The matrix on the left, which we will call Ry, is close to being almost Toeplitz

1.7

£N+p =

with displacement rank x=2. Unfortunately, because of the addition of the ini-
tial covariance matrix 21'1 and because H and F are not square, the lower right
pXp corner does not fit this pattern. The first N minors R, of Ry,,, however,
are not only almost Toeplitz with displacement rank «=2, but are also sym-
metric and band diagonal. One approach for solving {19.5), therefore, would be
to use our fast Choleski algorithm to calculate the LDU decomposition of the
first N rows and columns of Ry,,. The remaining p rows and columns of the

decomposition can be computed by standard gaussian elimination. Let us set:

ho So
el=gl=L]’ c2=g2= 1| (19.6)
—=n =n g hp ~n —-n g fq

(4] 0
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Because of the symmetry, a,=8,. _gg,’,,‘—jlg,",, 'ﬁ,‘;=‘,‘;. and f,;zp};, Because R, is
band diagonal, only (p +1) elements of 8, and p elements of g} will be non-zero.
The resulting Choleski algorithm will therefore only require about 2pN opera-
tions to calculate the following LDU factorization of the first N rows and

columns of Ry, ,:

( )

Fo.o 0 £g Boo ~ Bpo
: 0 . 0 . .0
RN = ﬁp,o BN.N En O ﬁNN . ﬁN...p N (19.7)
. : 0 : .
{ O ﬁN*—p.N Ip‘ Rp 0 IP

where 1, is an nxn identity matrix and T—ép is a pxp matrix of the form:

Rysi,n+1  Ryervep

'E,, = ; . . (19.8)

RN+p N+l 7 RN+p N+p

BNeiN-p+1 = BN+ N |[BN+1,N—p +1 0

O ﬁN"P}J,N ﬂN-’-I,N " ﬂN'l-p,IV
~ ~ ~T
Let us call the matrices on the right hand ¢ of (19.8) ﬁN+p- Ayyp. and Buip-

To solve for the ML estimate zy,, thus requ os the following 3 step procedure:

a) Solve E A = ° ]-!- -—l—FTy_N
N2 ~ iz * o2
b) Solve Ayis¥nip =ANep
NT _

c) Solve ﬁN+p£N+p =VYN+p
Step a) requires the usual forward substitution and is easily integrated into the
forward fast Choleski algorithm. Step b) requires solving a set of p simultane-
ous equations involving the matrix ﬁp. Step c) is the usual back substitution
fast Choleski phase, and will require regenerating the coefficients g; , in des-
cending order of m. Putting all of this together, with some algebraic

simplification, yields the following algorithm for solving this finite interval
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smoothing filter problem: (we delete the "~" and the superscripts "2" to sim-

plify the notation)

Forward Phase:
Initialization: e_, = '1—24‘ 2
g
1 .
Bj-1,-1 = Fhohn for j=1,....p
- _ 1
¢jv-1 == ;fj
M:ll = -1
0 1
= 2 pT
QN‘Fp [z[_lzl] + 02 F "ILN
For n=0,...,N
b = =P
UTL = M;-:l-lén
- - 1
Mot =Ml - : v2
n-1
Ep = Ep-1 — Vnsn
8 _ Brtj-1n-1* Vn®n+jn-1 for j=1,...,p-1
ek ﬂn“'}’-l.n—l for j=p
n _
Pn+jm-1 * E——ﬂni-j,n for j=1,....p—1
n
¢n+j,n = sn
a'ﬁm-p m tor j=p
Tn
An = —
zﬂv

gnﬂ' « gru-j —xnﬂn-f-j,n for j=1,....p

(19.9)
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Middle Phase:

Compute ﬁp from (19.8) and (19.5)

ZN+1 AN+1
Solve ﬁp : = :
IN+p AN+p

Backward Phase: (Minimal Storage)
For n=N,...,1
. . .
Zpn = ’\n ey jgl ﬁnﬂ.nxnﬂ

¢, = Pn+p,n

= £
ﬁn+p N i

1
Mpoy =My - o2

n
I
T Mg
Ep-y = 8p + Vnén

el 2 for 7=0
¢n+j.n-l = £n

Pr+in ~ ;—ﬁn+j.n for j=1,...,p-1

n
Batin ~VaPnijn-1 for j=1,....p~1

ﬂn+j—1.ﬂ—l - ﬂn@’n for J:p

Total computation required will be about (6p +11)N+0(p3) operations and about
2
N+3p +22— storage locations will be needed. If an extra N storage locations are

available, we will be able to save the values of §, generated on the forward
phase, and thus avoid recalculating these on the backward recursion and also
avoid a potentially unstable recursion. Note that, unlike the Chandrasekhar
filter,18 the complexity of this algorithm is independent of the initial covariance
Z;. In fact, our method is faster than the Chandrasekhar algorithm. Its disad-
vantage is that it is strictly a “"batch” processing method, and a completely new

calculation is needed if more data becomes available.
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A somewhat different approach would be to recognize that Ry,, can be
expressed exactly in the form of a sum of products of lower X upper triangular
Toeplitz matrices, provided we allow up to p+2 terms in this sum. As in the
algorithm above, the first two terms will involve the pole and zero coefficients h;
and f;. The last p terms will only be non-zero in f.he lower right pxp corner.
Since these terms will not contribute to the first N minors R,,, they will only be
involved in the recursion on the final p steps. The first N steps will thus be
identical to the algorithm above. Adding these p extra terms thus only avoids
the need in the previous algorithm for a middle phase to solve the p simultane-

ous equations involving R, .

A special case in which this purely lower X upper approach is quite suc-
cessful is when the signal process z(n) is assumed to be stationary. The initial
signal mean Z; will be zero, and the initial signal covariance X will be Toeplitz

with entries equal to the ideal correlations of the autoregressive power spec-

2
trum ——Z——— Applying a variant of the Gohberg-Semencul formula (2.18):
H(z)H(z™")
ho 0 |[ro = hpa hy O [[hg = Ry
2"'1 -— i_ . . s v + _1_ . . . e
I = 21" ’ 2

A E R S | F Y A L S
Substituting this into our formula for Ry,,. it is straightforward to show that
Ry.p Wwill be an almost Toeplitz matrix with displacement rank «=4. Vectors <,

2}, ¢2, and d,2 will be the same as in (19.6), and:

9_N+1 .QN+1
hy fo

_f;,f’=*27f’=';' : 2:?=—.4:f'=(1,— : (19.11)
h’l fp—l

The first N+1 elements of these last two vectors are zero. Thus

,’;='D,‘; =';1,‘;=p,‘;=0 for i=3,4 and n=0, ...,N. This implies that these last two vec-
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tors need only be considered in the last p steps; the first N steps will be identi-
cal to our fast Choleski algorithm above. Because of symmetry, _cg}ﬁ—ﬂ,ﬁ
‘D,i;:—}l,‘;. and ¢i=-p} for i=3,4. Also, because Ry4p is band diagonal, at most
the last p coefficients of g3 and g2 will be non-zero. Putting all this together,
the complete algorithm starts with the forward phase described above for

n=0,...,N. Stepsn=N+1,...,N+p have the following form:

Forward Phase (last p steps)

Init: gf.j N = ¢n+jn (from first N steps) for j=1,....p
1 .
¢5\3,+le = - g_hp’j“ for j=1,....p
4 -_1 .
$N+j N =" gfj-1 tor j=0.....p

Extend Mj! into a 3x3 matrix

My 0
Myl = -1
0 -1
For n=N+1,... ,N+p (19.12)
== ;a,‘;_’n_l for i=2,3,4
v ¢2
vR | =M | R
Va ~¢a
P
p2 3 -yt
Mv:l:M;ll- 1 V,? (vn n )
En-1 4
vﬂ
& i i
L 2 vnfn
=2
¢ 4 ; ) ‘
Brn+j-1n-1 +‘22 UnPr+jn-1  for j=1,...,p-1
ﬁn+j.n = L ﬁn+p-l,n—-1 for j:p
( i
i &n
Prn+jn-1t E—ﬁn-l-j,n for 0,....p-1
o n
Priin =] ¢i for i=2,3,4
' £ﬂ.
Tﬂn-l-p.n for p
n
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2
A = ;.
gn-i—j « gn+j ")\nﬂn‘pj'n for j=1,... ,N+p-n

It is convenient to save not only the usual vectors ay,,, gf;,ﬂ,. Ayep and gy,p
generated on the forward phase, but also the values of the reflection
coefficients 'D}; for i=N+1,...,N+p as well as the value of My!. The first p
steps of the storage efficient back substitution phase for regenerating the

values of §; ,, in descendirg order of n and calculating Zy+p then has the form:

Backward Phase: (first p steps)

For n=N+p,... ,N+1 ‘
1 N+
Zp = Ay — e . ZP BjnTj (19.13)
n j=n+l

3
gi=dnien,  por =234
ﬁn-kp.n

V% saved from forward phase

4 ..
— T 41
Ep_y = £, + ‘z_.}z DAY

; "fvis for j=0
. . '
¢;+jnn - ;—Bn-&-j,n for ’210 v .p -1
T
& i i .
ﬂn+j.n _iza vn?’rtwj.n—l for j=1,...,p-1

The remaining N steps of the backward substitution phase are then identical to
the previous fast Choleski algorithm. Note that the chief advantage of this sta-

tionary filtering algorithm is that it avoids the need for solving a set of p linear
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equations involving the matrix 'ﬁp. It thus replaces a symmetric gaussian elimi-
nation problem (O(p3) operations and ¥%p? extra storage) by p steps of a fast
Choleski algorithm with k=4 (about (7%p+22)p operations and (5p+7) extra

storage.)

20. Conclusion

In this massive tome, we have attempted to present a concise (unsuccess-
fully) and coherent development of the Levinson-style, fast Choleski and dou-
bling algorithms for solving exactly Toeplitz and almost Toeplitz linear equa-
tions. Levinson-style algorithms result when we recursively solve an almost-
Toeplitz problem by recursively solving the linear equations associated with the
upper left principal minors of the matrix. These algorithms can be viewed as
performing a UDL decomposition of Rj\'(l. Applying a simple linear transforma-
tion to the Levinson recursions results in the fast Choleski algorithms, which
effectively perform an LDU decomposition of Ry itself. Several variants of this
fast Choleski algorithm can be derived; the predictor values can be computed in
columnwise or rowwise order, and various backward recursions can be
employed to minimize the required storage. In general the fast Choleski algo-
rithms are somewhat slower than the Levinson-style algorithm for computing
.‘EN:REIHM When Ry is band diagonal, however, the fast Choleski algorithms
simplify dramatically and are quite attractive. Other élgorithms for band diago-
nal matrices which should alse be considered, however, are the matrix splitting
and imbedding techniques of Jain,11 Morf and Kailath,1? and Fisher, Golub, Hald,
Leiva, Widlund.?? It is also possible to view the Choleski algorithm as an "inside
out” Euclidian algorithm. This leads to O(Nlog2N) doubling algorithms for
inverting Ry which use a divide and conquer strategy combined with FFT's to
achieve their speed. Unfortunately, these algorithms are rather complex, and

are competitive only for N>2500 or more. Finally, the range of applications of
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these algorithms is enormous, since almost-Toeplitz equations often arise when-
ever stationary data is processed. We have discussed covariance methods of
linear prediction, rational Toeplitz matrices, and an ARMA filtering problem. In
addition, the basic concept behind these algorithms, splitting the matrix into a
sum of a more convenient matrix plus a correction term, is applicable to an

extremely wide range of applications and matrix structures.
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Appendix A - Proofs for Section 8

Proof of formula (8.3),(8.4)‘

The proof of equation (8.3) proceeds inductively. We start by proving it for

n=-1, We are given:

Ry = 3 Lck)U(di)

i=1

Applying lemma 1 in section 4 gives

dF

N

_JRN=316.4&'—[_0§ _C.A’?][—I] ;
drE
=N

Using the definitions in (7.15):

= cigi
Bj-1,-1 = c5dp

= gigi
&j-1,-1 = djch

¢l =-cfk
¥l = -dy
M—l - "‘I
£ .= 1
-1 =
cgdg

we immediately have:

Bo

ARN = ;-1 [5—1]_1 [“o,—l . “N,—J] -&_MI}vl

BN.-1
Applying lemma 1 gives the formula in (8.3) for n=~1.
Now suppose the formula is correct for n=-1, .
forn=m. Ffom lemma 1, we know that:

ARy = By (el )on g — B, ML 0]
m-1=Bm-1(tm-1)2m 1 = P aMp 1 ¥ma

0
_ Bo,m -1 o . [8m—1 0
= : fm-1"%m-1|]0 -M,,
BN-1,m -1

(A.1)

(A.2)

(A.3)

(A.4)

...m—=1. We now prove it

(A5)
4 b
0 2g,m-1 " AN-1,m—1
—- T
} ! YE
T

Ym 1
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The recursion on the vectors 8,,, p3 can be stated in the form:

[

0 1

Bo,m-1 L [V e £2 €5 00

[émse%se,’f;]= : @R 2 e | [m " m]+ 01
ﬁN—l.rr_z—l Ty

The inverse of the matrix on the right can be computed from the general parti-
tioning formula:

(23] =[5 5) [y e w

Multiplying equation (A.6) on the right by this inverse gives:

4 3\

€m -1 65; . &ﬁ
Emn  Em €m 0
vrzn 30 m-1
[Eﬂl .‘E:zn N .Q:l ] : 1 = s 251—1 " 2’5&—1 (AB)
‘ U ‘ BN-1,m~1
Similarly:
( 2 £ )
Em-1 Pm . Pm
Em Em Em 0
2
2 K ™ %0,m-1 2 K
(g.mllfm im] . 1 = . -1 ¥m—1 (A.9)
k jrAd AN-1,m -1

Substituting (A.8) and (A.9) into (A.5) and using the recursion formulas involv-

ing M,-! in (7.7), (7.8) and (7.13):

5

£, O -1
_Jﬁm—l=[ﬁm2:2n"5€:z][0 "Mm] . (A.10)

%

Applying lemma 1:

Rm-1 = LEn) D 200 — L&, DU )
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=it + b len) - s osofed
=ﬁ,n[-s-1—-g_,£ +R (A.11)

Substituting back into equation (B.4) proves the formula for n=m. Continuing

inductively for n=0, ..., N then proves equations (8.3),(8.4) for all n.

Proof of Formula (8.8)

The UDL decomposition Rﬁ1=B}}AﬁlAN derived in section 6 implies that:

Ryl, o]
=1 - + b Lot .
Ry 0 0)7 | ey a (A.12)
Define the matrix Ry by:
_ [oo .
Ry = +cydy = Ry — CyDA A.13
N {o RN—I} cydy =Ry —CyDy (A.13)

Applying the Woodbury inversion formula (7.11) gives:

= -1
Rﬁ’ = Rﬁl —R,\‘,lcN{D}}RA‘;’CN -1 D}\F,R,T,’ (A.14)
or since:
RNEN = CN
RNFN = DN (A.l5)
My = EfRyFy =1
then:
Ry! =Ry! —FyMFE] (A.16)

Applying the partitioning formula {(A.7) to Ry then gives:

=1 * *
Ry =], R71, (A.17)
and thus
U I 10T
Rﬁ = [ . Rﬁlx + FNMIV EN (A].B)
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Combining equations (A.12) and (A.18) for Ry', we get:

_1 -_N[_}_N FNVIIVIEN (A.lg)

Equating (A.18) with [TRy! as calculated from (A.12) gives:

- LT 5 -1%
MRyL, =_b_N[§]g}r - FNMNIE}\} (A.20)

Applying lemma 2 immediately gives our formulas (8.8) for Rﬁl_l and Rﬁl.
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