
On Some Properties of Positive Definite 
Toeplitz Matrices and Their Possible Applications 

Bishwa Nath Mukhexjee 

Computer Science Unit 
lndian Statistical Institute 
Calcutta 700 035, Zndia 

and 

Sadhan Samar Maiti 

Department of Statistics 
Kalyani University 
Kalyani, Nadia, lndia 

Submitted by Miroslav Fiedler 

ABSTRACT 

Various properties of a real symmetric Toeplitz matrix Z,,, with elements u+ = 
u,~_~,, 1 Q j, k c m, are reviewed here. Matrices of this kind often arise in applica- 
tions in statistics, econometrics, psychometrics, structural engineering, multichannel 
filtering, reflection seismology, etc., and it is desirable to have techniques which 
exploit their special structure. Possible applications of the results related to their 
inverse, determinant, and eigenvalue problem are suggested. 

1. INTRODUCTION 

Most matrix forms that arise in the analysis of stationary stochastic 
processes, as in time series data, are of the so-called Toeplitz structure. The 

Toeplitz matrix, T, is important due to its distinctive property that the entries 
in the matrix depend only on the differences of the indices, and as a result, 
the elements on its principal diagonal as well as those lying within each of its 
subdiagonals are identical. 

In 1910, 0. Toeplitz studied various forms of the matrices ((t,_,)) in 
relation to Laurent power series and called them Lforms, without assuming 
that they are symmetric. A sufficiently well-structured theory on T-matrix 
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also existed in the memoirs of Frobenius [21, 221. Although this matrix had its 
beginnings in pure mathematics, it has increasingly appeared in algebra, 
functional analysis, harmonic analysis, moment problems, probability theory, 
etc. The eigenvalue problems for the family {T, } of Toeplitz matrices 
generated by a formal Laurent series of a rational function R(Z) have 
engaged the attention of many mathematicians e.g., Day [ 141, Dickinson [ 161, 
Gorodeckii [29], Trench [68,69]. The Toeplitz matrix has been also employed 
in a wide variety of applications, especially in the fields of numerical analysis, 
signal processing, system theory, etc. (Grenander and Szego [32], Basilevsky 
[6, pp. 219-2231). Citations of a large number of recent results have been 
made in the books of Iohvidov [42] and of Heining and Rost [39]. 

1.1. The Model Generating the Symmetric Toeplitz Matrix 

For the purpose of understanding the properties of a symmetric Toeplitz 
matrix, consider a set of p measurements X,, Xi,. . . , X,_ i, made at discrete 
equally spaced time points t, t + 1,. . . , t + (p - 1) (possibly by sampling a 
continuous record). The correlation between X, and any future value X,, k is 
denoted as p(X,, Xt+k) = p(k). When the stochastic process is stationary, we 
have p(X,, Xt+k) = p(X,, Xt_k), or p(k) = p( -k) = pk for all k = 1,2 ,..., 
(p - 1). Therefore the intercorrelation matrix p for the p variables will 
have a symmetric Toeplitz pattern when these variables follow a stationary 
(Gaussian) sequence. 

It is to be noted here that the correlation function p(k) does not depend 
on time t, but only on the time difference k. Correlations of the type p(k) 

are also known as autocorrelation functions (Parzen [60]), since they reflect in 
a sense correlations on the same variable but between different time points, 
such as the height of an individual at different periods of his childhood. Such 
autocorrelation functions are generally observed in growth studies and in 
longitudinal studies of various psychological processes such as learning, 
forgetting, and development of abilities. In such processes, we frequently 
note a “growth” phenomenon which is invariant to a change in the time or 
space origin, and this is reflected in the autocorrelations of Toeplitz matrices. 

1.2. Main Purpose of the Paper 

In the field of statistical analysis, when the data are based on psychomet- 
ric/biometric observations or time series in nature, statisticians very often 
face covariance matrices of the Toeplitz structure (Mukherjee and Maiti 
[56]). This is a particular case of the general Toeplitz matrix, viz. a positive 
definite (real) Toeplitz matrix with scalar elements. Such a square matrix has 
properties useful for deriving important inequalities and propositions. An 
attempt will be made in this paper to present some of these results with the 
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expectation that they might be useful in the theory of estimation and testing 
of statistical hypotheses related to Toeplitz structure of the population 
covariance matrix. 

For the reasons mentioned above, we consider here the case of a 
symmetric positive definite Toeplitz matrix which can be regarded as the 
covariance operator for certain stationary processes occurring in discrete 
time. The symmetric Toeplitz operator endows it with a special structure 
which has been exploited in calculations such as solving linear equations and 
inversion of the matrix itself, in addition to fast matrix factorization and 
bounds on the spectral radius. Recent developments, together with some new 
results on these aspects, are briefly reviewed in this paper. Although the 
Toeplitz operator in continuous time processes is quite well known in 
astrophysics and other applied branches of mathematics, we will deal here 
with the discrete case. 

Our main focus is on the statistical applications of the results. This is so 
because it is now well known that the growth curve can be estimated more 
efficiently and statistical tests of significance will be more powerful if the 
covariance or correlation structures arising in different repeated measurement 
designs (Winer [72]) are taken into account. The symmetric Toeplitz struc- 
ture is a special case in this context. The results reported here are therefore 
expected to be useful in the estimation and testing of hypotheses in the area 
of stationary time series analysis of at least second order. Other possible 
applications of the results presented here are also discussed in the concluding 
section of this paper. 

2. PRELIMINARY CONSIDERATIONS 

We shall define here some specific types of matrices along with some of 
their important properties which will be helpful in the discussion of the 
symmetric Toeplitz matrices. We refer to Aitken [l] for this purpose. 

2.1. The Flip Matrix 

The flip matrix K, is an m X m matrix with l’s on the diagonal running 
southwest to northeast (which is at right angle to the principal diagonal, and 
is called the secondary diagonal) and O’s elsewhere. For example, 0 0 1 

K,=o I 0. 
[ 1 1 0 0 

The matrix K, reverses the order of the rows and columns of any matrix 
on pre or postmultiplication. The flip operator K,, has the following proper- 
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(1) K, = K:, = K,‘. 

(2) If IL,,, = K,A,,,, then [ ith row of B] = [(m - i + 1)th row of A]. 
Similarly, if C,,, = A mxnK,, then [jth column of C] = [(m - j +l)th 
column of A]. And if D,,, = K,A ,x,K,, then [(i, j) element of D] = [(m 
- i + 1, n - j + 1) element of A]. 

2.2. Centrosymmetric Matrix 

Any square matrix A (m X m) is called centrosymmetric if K,,AK,, = A. 
Thus if A is centrosymmetric of order m x m, we must have aij = a,,,_, + I, 

m _ j + 1. A square matrix A (m X m) is centrosymmetric if and only if K “,A is 
symmetric, or alternatively if and only if AK, is symmetric. Although many 
mathematicians (e.g., Huang and Cline [41]) treat persymmetry and 
centrosymmetry as identical, we will maintain a distinction following Aitken 
[ 11. A square matrix A is called persymmetric if ai j = a i+ j_ 1. Thus, in a 
persymmetric matrix, the elements within each of the secondary diagonals 
running southwest to northeast must be identical (Aitken [l, p. 1301). 
Obviously, the inverse of a nonsingular centrosymmetric matrix is also 
centrosymmetric (i.e., symmetric about the center of its array of elements on 
both the diagonals), but not necessarily persymmetric. 

2.3. Symmetric Toe-p&z Matrix 

A matrix Z,, (m X m) is called (real) symmetric Toeplitz matrix if its 
elements ui j obey the rule ui j = a ,i j, for all i, j = 1,. . . , m. The matrix Z ,,) is 
a function of m parameters, i.e., Z,,, = Z R, (a O, a 1,. . . , a ,)I L ), and is actually 
centrosymmetric in form. A symmetric Toeplitz matrix can be written in 
explicit form as 

an a1 a2 

a1 a0 a1 

z,= a2 a, 1: f t 
. . a n, -- 1 
. . . a 

a, ... a:::_: . 
(2.1) 

a . . rn 1 a ?I-~2 a,,,-3 ! I a,, 

In its most general form, the m X m Toeplitz matrix has the following 
structure: 

a1 a2 

an 
. “’ 

L’ a ,r, + 1 a -m+2 a -,,,+3 ..’ a0 1 



POSITIVE DEFINITE TOEPLJTZ MATRICES 215 

where the elements of T, are such that a i j = u i j. The nonsingular matrix 
T,,, as defined in (2.2) can be always factored as 

T, = ADB, (2.3) 

where D is a suitable diagonal matrix, and A and B are two Vandermonde 
matrices, the rows of A being (1, 1, . . . , l), (Y;‘, Yap’, . . . , Y,; ‘), 
(Y;2, YL29. *. , yi2), and so on. The columns of B are (1, 1, . . . , l)‘, 

(Y19YZ3...> Y,)‘, (Y12,Y&., vi)‘, and so on, where yi, y2,. . . , y,, are suitable 
nonzero numbers. 

It can be seen from (2.1) that Z, allows the representation 

Z,,=a,1,+a,(U+U’)+a2(U2+U’2)+ . . . +.m_I(U’n-l+U’nl~l), 

(2.4) 

where U = ((zL~~))*~~ (usually called the shift matrix) with uij = 1 for 
i=j+l, j=l,..., m - 1, and = 0 elsewhere. Equation (2.4) is a finite 
“power series expansion” of the matrix Z, (Whittle [70, p. 331). 

Another useful way of writing (2.1) is in terms of the m X m Toeplitz 
autocorrelation matrix p haying the linear structure 

m-l 

&=a, c P,&=wL~ 
k=O 

(2.5) 

where a, f 0, pk = a,/~,, and each of the design matrices H, has compo- 
nents hi:) = 1 when Ii - jl = k, and = 0 elsewhere. 

The m X m symmetric Toeplitz correlation matrix p, of (2.5) can also be 
written as the difference between the products of two sets of m X m 

triangular Toeplitz matrices of the form 

p, = GG’- (G - I,)(G - I,)‘, (2.6) 

where G is a lower triangular matrix with unity in the principal diagonal and 
the other elements exactly the same as in the lower triangular part of the 
matrix p,. 

2.4. Hankel Matrix 

Any matrix F = ((~j)),x, satisfying Aj = f;+i, i, j = O,l,..., m - 1, for 
some arbitrary numbers f,, fi, . . . , fimp2 is called a Hankel matrix (Gant- 
macher [24]). 
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A Hankel matrix is always persymmetric, but this is not true of a 
symmetric Toeplitz matrix. However, if F (m X m) is Hankel, K,F is 
nonsymmetric Toeplitz. Similarly, if FK, is Hankel, F is nonsymmetric 
Toeplitz. The converse is also true. Thus, T is a nonsymmetric Toeplitz iff 
K,T is Hankel. 

2.5. Schur Complement 
The matrix D - CA-‘B or A - BD-‘C, appearing in the calculation 

the determinant of the supermatrix E by a partition method such as 

= det(D) det(A - BD- ‘C) 

= det(A) det(D - CA-‘B) 

of 

V\ 
(2.1) 

when A (or D) is nonsingular, is called the Schur complement of A (or D) in 
E. The reader is referred to Haynsworth [38] for the definition and to Ouellet 
[58] for a general discussion of Schur complements in statistics. 

Huang and Cline [41] proved the theorem that the nonsingular E of (2.7) 
is Toeplitz iff 

(1) E - ’ is centrosymmetric and 
(2) the Schur complement of A (or D) in E is also centrosymmetric. 

It can be also shown, following Haynsworth [38], that the inertia of a 
partitioned Toeplitz matrix as shown in (2.7) can be expressed as 

In(E) = In(A) + In(S) (2.8) 

where S is the Schur complement of A in E, and the symbol In refers to the 
inertia. 

3. SOME PROPOSITIONS ON TOEPLITZ MATRICES 

Unless otherwise specified, we shall consider in this section Toeplitz 
matrices which are real and symmetric with the expression (2.1). 

PROPOSITION 3.1. Any principal submatrix of order r x r of a Toeplitz 
matrix of order m x m, say Z, (r < m), is a Toeplitz matrix. 
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Proof. This is so because omission of any rows and corresponding 
columns from a Toeplitz matrix preserves the Toeplitz property. n 

PROPOSITION 3.2. A symmetric Toeplitz matrix 2, is always centrosym- 
metric, but the converse is not necessarily true. 

Proof. By definition of centrosymmetry, the (i, j) element of Z,, must 
satisfy 

uij=“*~i+l,m-j+l (3.1) 

for all i, j = l,..., m. The Toeplitz condition is a particular case of (3.1), 

since ‘ij=a,i_j,=a~m_i+l~m+j-l~=O;n-,+l, m_j+l’ The converse is not 
necessarily true. n 

We now note that premultiplication by the matrix K,, as defined in 
Section 2.1 merely reverses the order of the rows or columns of a symmetric 
matrix but keeps the symmetry invariant. Therefore, we have 

&,A = L&n, (3.2) 

which leads to the result 

Km&K, = 2,. (3.3) 

Using the lower shift matrix U, as defined in (2.4), Kailath, Kung, and 
Morf [50] defined the two displacement ranks of any m X m matrix S as 

]S=S-usu (3.4) 

and 

[S = s - U’SU. (3.5) 

It has been proved by them that the difference of the ranks of ]S and IS does 
not exceed two. Moreover, for a nonsingular S, rank(]S) = rank(]S-‘) and 
rank([S) = rank(]S-l). 
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In the case of Z,,, all these ranks would be equal to two due to the fact 
that 

W$J’= diag(0, Znl-l), (3.6) 

U’Z,,U= diag(Z,_,,O), (3.7) 

(3.8) 

Defining a pair of kdisplacement matrices of any m X m matrix S by 

J /+s = s - UWk’ (3.10) 

and 

[ $ = s - Uk’SUk, (3.11) 

the corresponding pair of ranks may be called the k-displacement ranks of S. 
Since UkZ,,,Uk’= diag(O,...,O,Z,_,) and Uk’ZJJk = diag(Z,_k,O,...,O), 
the kdisplacement ranks of Z, are equal to k + 1 for k = 0,1,2,. . . , m - 1. 

We may now characterize a Toeplitz matrix by a pair of centrosymmetric 
matrices in the following proposition. 

PROPOSITION 3.3. Let A,_, [(m - 1) X (m - l)] be the leading pin- 
cipal submutrix obtained by deleting the last (or first) row and last (or first) 
column of a matrix A, (m X m). Then A,,, is a Toeplitz matrix if and only if 
both A,_, and A,,, are centrosymmetric. 

Proof. The proof for sufficiency of the condition is obvious via Proposi- 
tion 3.2. To prove the necessity of the condition, we proceed as follows: 
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As A,_ r and A,, are centrosymmetric, 

aii = a ntpi, m-j’ i, j=l ,...,m-1, 

and 

aij = a nl-i+l, m-j+lt i,j=l ,*..a m. 

(3.12) 

(3.13) 

Putting j = i + k, we obtain 

ai,i+k= ‘m-i+l, m-i+l-k=an-i, m-i-k 

and 

a m-k.m = ak+l,l (3.14) 

for all i = 1 2 3 ,*.., m-l-k, k=0,1,2 ,..., m - 1. From (3.14) we have, in 
addition to the symmetry of A,,,, 

al,k+l=a2,k+2= ‘I’ =‘rn-k,mT k=0,1,2 ,..., m-l. (3.15) 

This ensures that A,,, is an m X m array of m distinct elements as in (2.1). n 

A characterization of a Toephtz matrix similar to Proposition 3.3 has been 
obtained by Huang and Cline [41] in an alternative manner. They also 
obtained a simple criterion for recognizing an inverse of a matrix to be 
Toeplitz matrix. 

Using the lower shift U matrix of order m X m as defined in (2.4) we can 
give still another representation of the symmetric Toeplitz matrix as a sequel 
to Proposition 3.1. Let U* be the matrix U after its last k columns have been 
deleted. It can be checked now that 

z,_, = U*‘Iz”,U*, (3.16) 

where 2,_, is the resultant symmetric Toeplitz matrix of dimension m - k 

(k=0,1,2 ,..., m - 1). We shall give a general representation of the Toeplitz 
matrix (2.1) in the light of centrosymmetric matrix expressed in partitioned 
form (A&ken [l]). For even order, 

(3.17) 
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where Z, =Z, (a,,a,,...,a,_,) and 

For odd order, 

I = K,h:,K,. (3.18) 

where&=(a,,a,,...,a,_,a,) and 

A*,= 

(3.19) 

a,+l a m+2 ... a2m 
I 

a, a m+l ‘.’ a2m-1 

I 

= K,A*,/K,. (3.20) 

.as a3 ... a,+, 

4. DETERMINANT OF A SYMMETRIC TOEPLITZ MATRIX 

Although Whittle [70, p. 391 gave a good approximation of the determi- 
nant of the matrix Z, as defined in (2.1), this cannot be used in the absence 
of raw data when we have to work with only the m X m symmetric Toeplitz 
correlation matrix pm of (2.5). Daniels [ 131 has shown that det( p,) can be 
expressed exactly in terms of partial correlations. If we use pi. to denote the 
partial correlation coefficient between X, and Xt+j conditional on fixed 
X t+i>“‘> 't+j-l> which may be called the jth leading partial serial correla- 
tion coefficient, then it can be shown that 

m-l 

= n (l-p;.)m-j. 
j = 1 

(4.1) 

If the determinant of pm-1 and its inverse are already known, then it can be 
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checked that 

det(p,) = (1 -_prb;!,_p2)det(p,-i)Y (4.2) 

where p’=(pr,pa,..., p,,_r)‘. The result follows from the direct use of the 
Schur <omplement. 

In order to calculate the det(Z,), we may apply the following three 
different approaches, each of which can be easily extended to block symmet- 
ric Toeplitz matrices. 

4.1. Reduction by Splitting into Halves 
Using a suitable matrix (Aitken [l]), we may split the determinant into a 

product of two determinants. Using the same notation as in (3.17), we can 
have the determinant for even order: 

det(Z,,) = det(Z, + A,K,)det(Z, - A,K,,). (4.3) 

For odd order [vide (3.19)] we obtain 

det( Zsm+ i) = det 
8, + A,,$, d%,&, 

&&Km aa I 

det(2, - A,,K,,). (4.4) 

Caflisch [ll] also proved essentially the same result but in a different manner. 
For example, his result for even .order can be written as 

det(X,,) = det(Z, + h’,K,~,)det(A’,,K, -Z,,,). (4.5) 

4.2. Simple Reduction by Partitioning 
For any order m, 

[ 

x-1 
det(Z*) = det F;_IK,_, 

K,-&l-l 
a, 1 

=det(&,-,)(a, -&L ,X’&- I) provided 2,;’ L exists 

i 
provided a, f 0. (4.6) 

These are obtained by direct use of the Schur complement. 
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4.3. Reduction us a Function of det(Z,_ 1) and det(Z,_,) 
Using the Sylvester identity for border determinants (Iohvidov [42, p. 7]), 

we may express det(Z,) as 

det(Z,)det(Z,_,) = [det(Z,_,)]2- [det(Q+,)]“, (4.7) 

where 

so that 

am-2 

anI-1 I 
a0 al a2 ... a,,,-, 
a1 a0 a1 

. . . a “1 - 4 

a m_3 urn-4 ... an 

a m-2 a 1 . . . m-3 m 4 a1 _ 

det(iP,_,) = (- 1)“-2 det(L-,)[a,,-, -_P,L2XL2Kn, ~&L2! (4.8) 

provided Z;! s exists. 
Computationally, the method of Section 4.1 seems to be the most 

efficient, as it requires considerably less time and labor than the methods 
discussed above. Once det(Z,_,), Xi!,, det(Z,,P2), etc. are known, the 
methods of Sections 4.2 and 4.3 may be used accordingly. 

The procedure suggested in Section 4.3 has an additional utilization in the 
“nonsingular extension” of zlm_i to Z,,,. To make this possible, we require 
only one more element, e.g. an,_ I. Z,, will be 

of 2 T,, 

a ,r,_I# [det(Z,,-2)] ~'[+detO:,,~,)+det((p,,,~,(O))I, (4.9) 

where ‘P, _ ,(O) is the matrix in (4.4) with a,,,_ 1 replaced by zero. The 
expression (4.5) is simplified consequently to 
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The notion of nonsingular extension (Iohvidov [42]) leads to the following 
obvious proposition: 

PROPOSITION 4.1. It is possible to write out a sequence of n nonsingular 
Xi’s, i=1,2,3 ,..., provided a sequence of elements a i_ 1, i = 1,2,3,. , . , 
exists satisfying the inequalities 

a, f 0, a,+ *a,, 

det(Zi) 

oi # ’ det(x:,_r) 
+( - l)iSi’IZ,-_‘IKi~,Pi~,, i = 2,3,4 ,... . (4.11) - 

4.4. Determinant as the Product of Determinants of Two Triangular Matrices 
The symmetric Toeplitz matrix (2.1) can always be written in the form of 

the product of a lower and an upper triangular matrix using a Cholesky 
decomposition of the form 

x 
m 

= L*L*’ = LDL’ (4.12) 

where D is a diagonal matrix and the principal diagonal of L consists of 
elements equal to unity. Then det(Z,) is the product of all the diagonal 
elements of D (see, for example, Nehorai and Morf [57]). The Levinson-Durbin 
recursive algorithm provides a way of computing the successive rows of the 
Cholesky factor L and the diagonal elements of D. 

We also note here that for any 1, = aopm, as defined in (2.5), we can 
always find, following Grunbaum [37], a unique tridiagonal matrix B of the 
same order having a simple spectrum which commutes with 2,. The 
determinant and the eigenvalues as well as eigenvectors of the tridiagonal 
matrix B are each equal to the corresponding quantities of 2,. Hence, once 
the problem of finding this matrix B is solved, the evaluation of the 
determinant is done routinely and the solution of the eigenproblem corre- 
sponding to Z, is easily achieved. 

5. INVERSION OF A NONSINGULAR TOEPLITZ MATRIX 

The inversion of Toeplitz matrices has been approached in the literature 
(Trench [66, 671; Justice [47]; Calderon, Spitzer, and Widom [12]; Widom 
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[71]; Gohberg and Feldman [25]; Heining and Rost [39]; Biittcher and 
Silbermann [9]) as a problem of finding an explicit form of the inverse and 
also for evaluating the computational merit of the algorithm used in the 
inversion. Levinson [52] showed in 1947 that a nonsingular m X m Toeplitz 
matrix with nonzero leading minors can be inverted with of the order of m2 
multiplication operations as compared to the order of m3 multiplications 
generally required for a non-Toeplitz matrix. Gohberg and Semencul [27] 
have reviewed and established various methods of finding the inverse of a 
general Toeplitz matrix. Kailath, Vieira, and Morf [51] have also reviewed this 
field. Mentz [54] developed a procedure to find the components of the 
inverse matrix in closed form when the m x m matrix has only 2p + 1 
nonvanishing (central) diagonals (1~ p < m). The procedure consists in 
posing difference equations for the components of the inverse and solving 
them explicitly. 

Trench [66] gave a recursive formula for a nonsingular scalar entried 
symmetric correlation matrix of Toeplitz form (2.5) which has since been 
redexived, elaborated, and extended by several workers, particularly Akaike 
[3] and Zohar [75, 761. The formula for computing the inverse of the 
correlation matrix pm is 

where the coefficients K,, {hi,,}, { c~,~} are found from certain simple 
equations, such as the Yule-Walker equations (Pagan0 [59]), which can be 
efficiently solved by the Levinson-Durbin algorithm (Levinson [52]; Durbin 
[19]). Wise [73] has given a method of finding p;’ of (2.5) based on the 
spectral density function. Exploiting the symmetry, Siddiqui [65] proposed an 
alternative procedure of computing the inverse of a variancecovariance 
matrix for an autoregressive scheme of a given order. 

We shall develop here a few additional procedures which might be helpful 
due to their being less complicated. 

5.1. Inverse as the Dij$rence of Two Matrices 
Analogous to (2.6), the inverse matrix can be written as 

(5.1) 



POSITIVE DEFINITE TOEPLITZ MATRICES 225 

where 

a0 

a1 a0 

Bmxm= a2 al a0 

0 

a m-l am-2 a m-3 

0 

am-1 0 

Cmxm= ame amp1 0 

a0J 

0 

and 

a1 a2 a3 

WLl) 

ao = det(X,) ’ 

a 0 m-l 

S -m-l = ( alaze . . a,_1)'= - aoZ~YIPm_, - 

provided det(Z,) f 0 and det(Z,_ r) # 0. Essentially the same result has 
been reported by Kailath, Buckstein, and Morgan [48]. Kailath, Vieira, and 
Morf [51] credited this formula to Gohberg and Semencul [27]. 

PROPOSITION 5.1. The inverse of a nonsingular Toeplitz matrix is a 
centrosymmetric matrix. 

Proof. Owing to centrosymmetric property of Z,, the cofactor of the 
(i, j) element of Z, equals the cofactor of its (m - i + 1, m - j + 1) element. 
This means Z,‘=K,Z,‘K,, as the (i,j) element of 2,’ equals the 
cofactor of the (j, i) element of Z, divided by det(Z,). n 

5.2. Inversion by Splitting into Halves 
For even order Z,, [vide (3.17)], consider an orthogonal matrix 

(5.2) 
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(5.3) 

Taking the inverse, we obtain 

P,,z;;P,',= (Tn+An,K,)-' 
0 

I (% - AmKm) -' . 
(5.4) 

0 

Writing 2;: = B, we may express B in partitioned form utilizing Proposition 
5.1 to give its general representation as 

B 

K,,,B::K,,, ’ I 

Then using (5.2) we find 

B,, + B&n 0 
P,,BP& = 

0 1 B,, - BUK, . 

(5.5) 

(5.6) 

Comparing (5.6) and (5.4), we solve for B,, and B,, as 

B,,=$[(Z,+h,K,)-'+(Z,-A,K,)-'1, (5.7) 

B,,=+[(Z,+A,K,)-'-(Z,-A,K,,)-']K,. (5.8) 

Thus, for even order Earn, Z;d may be expressed as (5.5) with the aid of 
(5.7) and (5.8). 

Similarly, for odd order Zam+ 1 [vide (3.19)], we use the orthogonal matrix 
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to get X&t + 1 expressed as 

(5.10) 

in which B,,, B,,, g, and b,+l, n,+l are to be found from 

B,, +B,,K,, v% 
@g’ 

and 

$1 - b.K,, = (L - WL) ‘. (5.12) 

6. BOUND ON THE DETERMINANT OF A POSITIVE DEFINITE 
TOEPLITZ MATRIX 

We shall give here, in the form of lemmas, various results related to 
bounds on det(Z,) when Z,, is a positive definite (p.d.) symmetric Toeplitz 
matrix of order m X m. 

LEMMA 6.1. The sequence {det(Zi)/det(ZZi_,), i = 2,3,...} is a de- 
creasing sequence of pdsitive numbers less than a, ( > 0). 

Proof. From the Sylvester identity (4.7), we get 

det(&,)det(Z,,_,) G [det(Z,,_,)12. 

As Z, is p.d., Z’m_l,Z1m_2 are also p.d., so that 

deG,) det(%,- 1> 
‘< det(Z,_,) ’ det(Z,,,_,) ’ 

(6.1) 

n 
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LEMMA 6.2. 

det(Z,) < (1- af/ai)“-‘a:. (6.2) 

Proof. From Lemma 6.1, 

LEMMA 6.3. 

= 

i 

a: - a: 

(10 

j=O 

and 

“2 - 1 

det(Z2,+,) G uo n (d-d, 
j=O 

Proof. To prove these results, it is sufficient 
inequality from Bellman [7, p. 1291: 

(6.3) 

2i 1. (6.4) 

to note a well-known 

If W (m X m) is a p-d. matrix, det(W) < II~zIwii. The equality holds 
when W is a diagonal matrix. 

This may be applied to p.d. matrices Z, + A,K,; vide (4.3) and (4.4). n 

LEMMA 6.4. 

sup det(Z,) =a: 
p.d. E, 

(6.5) 
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Proof. Applying the condition of equality (from the abovementioned 
inequality in the proof of Lemma 6.3) to Z, + A,K,, we get the offdiago- 
nal elements zero, so that 

a,_ta,,_,=a,+a,,_,= ... =u,_,fu,=O. 

Therefore, ur = us = . . . = u2m_2 = 0. Consequently, the uppermost bound 
on det(Z,,) in (6.3) is 

(uyj - &_,)ufy). 

Similarly, for odd order Zsm+ i, the upper most bound on the determinant 
is (ug - u~m)u~m-l. H 

LEMMA 6.5. 

det( Z,) < det( 2,) (6.6) 

where g”, is an m x m matrix with a, as diagonal elements and [(m - I)u, 
+(m-_)a,+ ... +a,_, ]/[m(m - 1)/2] ( = b, say) as offdiagonal ele- 
ments, so that 

det( zm) = (u, - b)“[u,+(m-l)b]. (6.7) 

Proof. The reader is referred to Aitkin et al. [2] for a proof. H 

LEMMA 6.6. lf p,,, is the m x m symmetric correlation mutrix of Toeplitz 
form us defined in (2.5) and det( pz) is the determinant of the cofactor of the 
element in the first column and mth row of p,,, then the sequence 
{ [det( pi*)] 2/[det( pi _ r )] 2, i = 2,3,. . . } is an increasing sequence, and the 
index 

WC) 
n lpl= det( p,- r) 

lies between - 1 and + 1. 

(6.8) 

Proof. This is a clear application of the Sylvester identity to p,,, as shown 
in (4.7) and Lemma 6.1. n 
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7. BOUNDS ON EIGENVALUES 

The problem of obtaining an explicit solution for the eigenvalues of 
general Toeplitz matrices has been considered by various researchers. Whittle 
[70] made an attempt to evaluate those of Z,, but he obtained only an 
approximate result. Gnmbaum [36, 371 has also considered the eigenvalue 
problem for general Toeplitz matrices. There is an extensive literature on 
Toeplitz matrices generated by rational functions, devoted mainly to studying 
the asymptotic distributions of the eigenvalues of the matrix as m + cc (e.g. 
Dickinson [ 161). 

We shall present here some bounds on the eigenvalues (X, > 0, i = 
1 ,..‘> m) of a positive definite matrix 2,. These results can be derived 
without much difficulty. For proofs, we shall only refer to original sources. 
Some of the general results are to be found in the article by Brauer [8], who 
has investigated the regions in which the eigenvalues of an arbitrary square 
matrix must lie. We also refer to the Perron-Frobenius theorem (Gantmacher 
[24, p. 65]), which guaranteed that any nonnegative matrix has an eigenvalue 
of maximum magnitude that is real and positive. In general, we define the 
maximum magnitude of eigenvalue of a square matrix as its spectral radius. 
We also keep in view Gerschgorin’s theorem (see Pullman [62]) that for A 
m X m = ((a jk)) every eigenvalue lies in the union of the m closed intervals 

'jj- C lajkl'ajj+ C lajkl 1 I j=l ,...> m. (7.1) 
j#k j#k 

Hoffman [40] also proved the theorem that every eigenvalue of A lies in the 
union of the m closed intervals 

where CL, = la1 if u > 0 and = 0 otherwise; similarly, u = - ((11 if u -C 0 and 
= 0 otherwise. These results can be simplified for the Toeplitz matrix Z,,,. In 
addition, we present below the following results in the form of propositions. 

PROPOSITION 7.1. 

0<Xmin$U,,+2”‘~l(nl-i)u,$hrrlax. 
711 ,=l 

(7.3) 
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Proof. The reader is referred to Pullman [62, p. 2321 or Graybill [31, p. 
3121 for the proof. n 

PROPOSITION 7.2. 

0 < Xmin < u0 d hmax i ma,. (7.4) 

Proof. See Bellman [7, p. 411 for the proof. n 

PROPOSITION 7.3. 

mb,,, d Xmax d rnuO, (7.5) 

where b,=minO.i.,_,ai. 

Proof. Apply (7.3) and (7.4) to obtain (7.5). H 

PROPOSITION 7.4. 

0 < hmin d a0 - male,], (7.6) 

where the maximum is taken over i = 1,3,5,...,2m - 1 for even order Z,, 
undi=2,4,6 ,..., 2m for odd order Z2m+l. 

Proof. As eigenvalues are similarity invariant, consider the eigenvalues 

of %n%n~2m [vide (5.3)] and apply the theorem that the minimum 

eigenvalue is less than the minimum diagonal element. n 

PROPOSITION 7.5. 

(a) We have 

(b) Zf R, = (range of eigenvalues) = Xmax - hmin, 

(7.7) 

O<?<rn. (7.8) 
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Proof. The statements in (7.7) are obvious. The inequality (7.4) may be 
used to show (7.8). H 

PROPOSITION 7.6. 

a,E(Amin,Xmax) and ajE(-jR,,jR,)j=1,2 ,..., m-l. (7.9) 

Proof. See GraybiU [31, p. 3141 for a proof. n 

PROPOSITION 7.7. Zf a, > [ai1 > la,1 > * . * > la,_,(, 

0 6 Ai < a, + (m - Wil (7.10) 

for all i = 1,2,. . . , m. 

Proof. Using Gerschgorin’s theorem [vide (7.1)] and (7.4), we can prove 
(7.10). n 

Following are some additional inequalities related to the monotone behav- 
ior of the eigenvahres of Z, of different orders. These are mainly based on 
the Sturmian separation theorem (Bellman [7, p. 1171). 

7.1 Sturmian Separation Theorem 

Let X,(A,), k = 1,. . . , r, r = 1,2,. . . , be the eigenvulues of symmetric 
matrices A, (r x r), and h,(A,) > &(A,) > . . . a A,(A,). Then 

L+I(A,+I) G &(A,) G h(Ar+~) foruny k<r. (7.11) 

The inequalities in (7.11) naturally hold for Z, also. Furthermore, we get 
other inequalities as an immediate consequence: 

a, = Amax < Amax < . . . G Amax < ma,, (7.12) 

a, = Amin > Amin > . *. > Amin >, 0, (7.13) 

0 = R,(Z,) < R&) < . . . < R,(&J G ma,, (7.14) 

where RA(Zi) = Amax - Amin( Using (7.3) and (7.13), we establish 
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further that 

233 

0 d Amax - h max(Z,_,) d (m - I)E,(Z,-,), 

where R,(Z,_,) = max(a,, a, ,..., urn-s) - min(aO ,..., urn-s). 

(7.15) 

8. POSSIBLE APPLICATIONS 

It is well known that statistical tests of significance can be seriously 
affected by serial correlation, i.e., the correlation which is usually present 
when data are collected in time. When testing for change in data observed at 
equally spaced time points, it is usually necessary to assume a time series 
model to represent and explain the serial correlations. One of the finite 
parameter models for stationary time series process which can give rise to the 
symmetric Toeplitz covariance matrix of the form (2.1) is the one in which 
the covariance between any two measurements X, and X,, j depends only 
on the time interval j. Hence there is justification for studying the properties 
of a symmetric Toeplitz matrix. It has been shown by Wise [73] that the 
eigenvalues X i, X s, . . . , A, of the autocovariance matrix Z, as defined in 
(2.1) will trace out the so-called spectral curve (density) of the time process 
that has generated the observed time series X,. Wise [73] also showed that 
each hi of Z, can be expanded in a finite Fourier series. 

The mathematical properties of Z,, as discussed in this paper, have 
interesting applications not only in the area of spectral analysis of time series, 
but also for various statistical applications. The symmetric Toeplitz matrix 
arises frequently in statistical work connected with stationary stochastic 
process, nonparametric theory, and repeated measurements of autoregressive 
processes. Granander and Szego [32, p. 2311 have given a simple example 
illustrating how Toeplitz matrices appear in the theory of homogeneous 
crystal structures, specifically their motion. Knowing the elements of the 
symmetric Toeplitz matrix, it is possible to find the central mass sequence 

(Yi.Y2*.**9 y,) for Z,definedas yk = sup{ y:(ZZk - yJk)is p.d.}, k = l,..., m, 
in which Jk is the k X k matrix with all elements unity. Caflisch [ 111 has 
shown how this knowledge helps in solving direct and inverse problems of 
transmission lines which consist of piecewise constant components. Using the 
Schur algorithm, Caflisch [ll] has shown an alternative method of computing 
the reflection coefficient from the Toeplitz matrix. This method has also 
interesting network-theoretic and stochastic interpretations. Using the ele- 
ments of the Cholesky decomposition factor L as shown in (4.12), Dickinson 
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[ 171 has suggested another method of computing the reflection-coefficient 
sequence. For a discussion, see Dewilde, Vieira, and Kailath [15]. 

Specific forms of the Toeplitz matrix lead to particularly simple expres- 
sions for eigenvalues and eigenvectors, many of which are conventionally 
applied in the analysis of time series data as well as in structural engineering. 

A symmetric Toeplitz matrix of the form (2.1) cannot be reduced to a 
diagonal (canonical) form by pre and postmultiplication of a transformation 
matrix the elements of which are independent of 2,. However, some of the 
results reported here are expected to help in checking whether an empirical 
time series can be fitted by an autoregressive process of a given order and 
also in the estimation and testing of the autocovariance structure (2.1), as 
evident from the recent work of the authors [56]. 

Most of the previous efforts in the area of estimation of time series 
analysis were devoted to the estimation of the parameters of autoregressive 
models. However, following Anderson [4] and Parzen [61], we can take as our 
parameters the autocovariance matrices of the observable random variables. 
The results are also useful in the analysis of covariance structures (Mukherjee 
[SS], Jijreskog [46]) and structural spectral density matrices (LiUestol [53]) of 
the Toeplitz form, which in econometrics are frequently referred to as 
Laurent matrices (Whittle [70]). A special case that arises in exponential 
smoothing applications as used in business forecasting, for example, is the one 
in which 2, = p,; aa = 1, uj = pi, j = 1,2 ,..., m - 1; and 0 -C ]p] < 1. 
Grenander and Szego [32] have given an extended discussion of the proper- 
ties and application of such matrices. 

Since Toephtz matrices of order m can be easily obtained from Hankel 
matrices by post- or premultiphcation by a constant K, matrix as shown in 
Section 2.4, all results about quasidirect decomposition of Hankel matrices 
correspond to results about quasidirect decomposition of Toeplitz matrices 
and conversely (Fiedler [ZO]). This result, together with the fact that a 
symmetric positive definite Toeplitz matrix of the form (2.1) can be uniquely 
factored with 0(m2) element operations (Bareiss [S]; Ftissanen [63]), may 
have important implications for any new computational algorithm relating to 
Toeplitz matrices. Zellini [74] has furthermore shown that the matrix product 
A_b over a real field when A is an m X m symmetric Toeplitz matrix of the 
form (2.5) requires at least 2(m - 1) multiplications, since the matrix A has 
tensor rank 2(m - 1) in the reaI field. This has important implications for the 
computation of a finite set of bilinear forms formulated as a matrix product. 

The Toeplitz covariance structure has been generalized to the block form 
also (Akaike [3]), and recently Kailath and Kolitracht [49] have obtained 
conditions for a nonsingular matrix to have a block Toeplitz inverse. Greville 
and Trench [35] found conditions for a nonsingular band matrix to have an 
inverse with the Toeplitz structure. The results of Kailath and Kolitracht (491 
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have however generalized those of Huang and Cline [41] for Toeplitz 
matrices with scalar entries, and also relate to some results of Gohberg and 
Feldman [25] and Gohberg and Heining [26] as well as Greville [34]. Some of 
the known results for Toeplitz matrices have been generalized to conjugate- 
Toeplitz matrices (Cover and Bamett [30]). 

As is well known, the evaluation of the determinant, the eigenvalues, and 
the inverse of the population covariance matrix finds wide application in 
statistics, both in multivariate analysis and in deriving theoretical properties 
of estimation and constructing new statistical tests of significance (Basilevsky 
[6]). For example, the asymptotic properties of Z;’ as m tends to infinity 
have been considered and exploited by Grenander and Rosenblatt [33]. Such 
problems of linear algebra have also found wide application in structure 
mechanics and electrical engineering. The results concerning inversion of a 
symmetric Toeplitz matrix are useful, for example, not only in solving the 
Yule-Walker equation for estimating the parameters of the autocorrelation 
model (see Durbin [18], p. 312) but also for obtaining the solution of the 
central mass equations in electrical engineering (see Caflisch [ll]), statistical 
signal processing, system theory, and discrete inverse scattering (Gohberg, 
Kailath, and Kolitracht [28]). In the problem of discretization of the 
Gopinath-Sondhi integral equation, the inversion of the symmetric Toeplitz 
matrix is required for solving the systems given by 

GP” = I> l<v<m, (8.1) - 

where Z, is the v x v principal submatrix of Z,, defined in (2.1) y” is 
v-component column vector of unknowns, and 1, is the v-component column 
vector of unity. This is one of the important aspects of the one-dimensional 
inverse problem of reflection seismology (Bube and Burridge [lo]). The 
results concerning the inverse as the difference of products of Toeplitz 
matrices as shown in (5.1) has furthermore some implications for interpreting 
and computing bilinear forms such as y’R -‘x where y and 3 are given 
vectors. Kailath, Vieira, and Morf [51] have shown that when R is a Toeplitz 
matrix, then 

Y’R-‘x = (L;_y)‘(U,x) - (~‘,y)‘(u,r) (8.2) _ 

where {Lj}, {Vi} are lower and upper triangular Toeplitz matrices, and L;_y 
and Ujx can be regarded as convolutions. The Levinson-Durbin algorithm for 
inverting a Toeplitz matrix has been generalized to accommodate arbitrary 
nonsingular matrices via the introduction of a Toeplitz distance concept (e.g. 
Friedlander, Morf, Kailath, and Ljung [21]; Kailath, Kung, and Morf [50]). 
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The Toeplitz distance d of a matrix reflects the complexity of the algebraic 
structure of the matrix considered in relation to the Toeplitz structure. It has 
been found that the computational efficiency for inverting a given matrix 
decreases linearly with increase in its Toeplitz distance d. More precisely, 
with the help of the generalized Levinson algorithm the inversion can be 
performed at the cost of (d + 2)m2 operations, where m is the matrix order. 

The results concerning the evaluation of determinant of a symmetric 
Toeplitz matrix are useful not only for the simplified calculation of the 
lambda statistics required for the asymptotic likelihood ratio test of a Toeplitz 
covariance structure, but also in the field of structural engineering for 
obtaining the m-dimensional volume V of the parallelograms with 
Xi, X2,‘.., X, as edges, since the determinant of the Gramian matrix X’ X 
equals V2. 

Using the determinant of Z, and that of Z,,_ r, it can be further shown, 
following Whittle [70, p, 741, that the statistics 

(8.3) 

where e’=(a,,a,,..., a,_,) are the m.1. estimates of the offdiagonal 
elements of Z, and 8, is the m.1. estimate of the common element of the 

principal diagonal of 2, and X,,,_r, can be used for testing the fit of an 
autoregressive scheme of order m - 1 against some other order, say m. 

It is to be noted further that matrices like Z, and their block extensions 
are members of an m-dimensional quadratic subspace B of real symmetric 
matrices as defined by Seely [64]. The subspace B is quadratic if and only if 
A2 E lE8 whenever A E lEB, i.e., B is closed under the multiplication A 0 C 
= +(AC + CA). J ensen [44, 451 observes that the latter property makes B an 

m-dimensional special Jordan algebra. By Seely’s Lemma 2(a), it can be 
proved that the inverses of these matrices are also members of a quadratic 
subspace. Thus all of resulting matrices form part of the special Jordan 
algebra (Jacobson [43]). Hence, the useful properties of Jordan algebra can be 
fruitfully applied in solving various mathematical and statistical problems 
connected with the nonsingular symmetric Toeplitz matrix, such as variance 
components analysis using MINQUE. Work in this line is currently in progress. 
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