Rev. Real Academia de Ciencias. Zaragoza. 57: 143-146, (2002).

An Extension of Bilateral Generating Function of Certain Special Function-II

M. C. Mukherjee
Netaji Nagar Vidyamandir
Calcuta-700092. INDIA

Abstract

In this paper an extension of the bilateral generating function involving Jacobi polynomial derived by Chongdar [2] is well presented by group-theoretic method [6]. A nice application of our theorem is also pointed out.

A.M.S. subject classification: 33A65

Key words: Generating functions, Jacobi polynomials, Group theoretic method.

1. Introduction

While extending the general theorem on bilateral generating function for Jacobi polynomial we use the term "Quasi Bilinear Generating Function" [6] for Jacobi polynomial by means of the relation

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(n, \beta)}(u) w^{n} \tag{1}
\end{equation*}
$$

and we prove the existence of a quasi bilinear generating function implies the existence of a more general generating function. In [2], A. K. Chongar proved the following theorem on bilateral generating function involving Jacobi polynomial as inroduced by G.K. Goyal [5].

Theorem 1 If

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x) w^{n} \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sigma_{n}(x, y) w^{n}=(1-w)^{k}(1-\omega)^{-(1+\alpha+k)} P\left(\frac{x-\omega}{1-\omega}, \frac{w y}{1-\omega}\right) \tag{3}
\end{equation*}
$$

where

$$
\sigma_{n}(x, y)=\sum_{p=0}^{n} a_{p} \frac{(p+1)_{n-p}}{(n-p)!} P_{n}^{(\alpha, k-n+p)}(x) y^{p} \quad \text { and } \quad \omega=\frac{w}{2}(1+x)
$$

Now we can state from the above discussion that the "Theorem-1" of [2] can be extended in the following way:

Theorem 2 If there exists a generating relation of the form

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(n, \beta)}(u) w^{n} \tag{4}
\end{equation*}
$$

then

$$
\begin{align*}
& (1-w t)^{-(1+\beta+m)}(y+2 w z)^{\beta}(y+2 \omega z)^{-(1+\alpha+\beta)} y^{\alpha+1} G\left(\frac{x y+2 \omega z}{y+2 \omega z}, \frac{u+w t}{1-w t}, \frac{w z t v}{(1-w t)(y+2 \omega z)}\right) \\
& =\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{p+q}}{p!q!}(n+1)_{q}(w z v t)^{n}\left(-2 y^{-1} z\right)^{q} t^{p}(1+n+\beta+m)_{p} P_{n+q}^{(\alpha, \beta-q)}(x) P_{m}^{(n+p, \beta)}(u) \tag{5}
\end{align*}
$$

The importance of our theorem is that one can get a large number of bilinear generating relations from (5) by attributing different suitable values to a_{n} in (4).

Proof of the theorem
Let us consider now the following two linear partial differential operators [3, 4],

$$
\begin{equation*}
R_{1}=\left(1-x^{2}\right) y^{-1} z \frac{\partial}{\partial x}-z(x-1) \frac{\partial}{\partial y}-(1+x) y^{-1} z^{2} \frac{\partial}{\partial z}-(1+\alpha)(1+x) y^{-1} z \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}=(1+u) t \frac{\partial}{\partial u}+t^{2} \frac{\partial}{\partial t}+(1+\beta+m) t \tag{7}
\end{equation*}
$$

such that

$$
\begin{equation*}
R_{1}\left(P_{n}^{(\alpha, \beta)}(x) y^{\beta} z^{n}\right)=-2(n+1) P_{n+1}^{(\alpha, \beta-1)}(x) y^{\beta-1} z^{n+1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2}\left(P_{n}^{(n, \beta)}(u) t^{n}\right)=(1+n+\beta+m) P_{m}^{(n+1, \beta)}(u) t^{n+1} \tag{9}
\end{equation*}
$$

and also

$$
\begin{equation*}
e^{w R_{1}} f(x, y, z)=\left(\frac{y}{y+2 \omega z}\right)^{\alpha+1} f\left(\frac{x y+2 \omega z}{y+2 \omega z}, \frac{y(y+2 w z)}{y+2 \omega z}, \frac{y z}{y+2 \omega z}\right) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{w R_{2}} f(u, t)=(1-w t)^{-(1+\beta+m)} f\left(\frac{u+w t}{1-w t}, \frac{t}{1-w t}\right) . \tag{11}
\end{equation*}
$$

Now we consider the following generating relation

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} P_{n}^{(\alpha, \beta)}(x) P_{m}^{(n, \beta)}(u) w^{n} . \tag{12}
\end{equation*}
$$

Replacing w by $w z t v$ and then multiplying both sides by y^{β} from we get

$$
\begin{equation*}
y^{\beta}(G(x, u, w z t v))=\sum_{n=0}^{\infty} a_{n}\left(P_{n}^{(\alpha, \beta)}(x) y^{\beta} z^{n}\right)\left(P_{m}^{(n, \beta)}(u) t^{n}\right)(w v)^{n} . \tag{13}
\end{equation*}
$$

Operating $e^{w R_{1}}, e^{w R_{2}}$ on both sides of (13), we have

$$
\begin{equation*}
e^{w R_{1}} e^{w R_{2}}\left[y^{\beta}(G(x, u, w z t v)]=e^{w R_{1}} e^{w R_{2}}\left[\sum_{n=0}^{\infty} a_{n}\left(P_{n}^{(\alpha, \beta)}(x) y^{\beta} z^{n}\right)\left(P_{m}^{(n, \beta)}(u) t^{n}\right)(w v)^{n}\right] .\right. \tag{14}
\end{equation*}
$$

Now the left member of (14) becomes

$$
\begin{gather*}
e^{w R_{1}} e^{w R_{2}}\left[y^{\beta}(G(x, u, w z t v)]\right. \\
=e^{w R_{1}}\left[(-w t)^{-(1+\beta+m)} y^{\beta} G\left(x, \frac{u+w t}{1-w t}, \frac{w z t v}{1-w t}\right)\right] \\
y^{\alpha+\beta+1}(1-w t)^{-(1+\beta+m)}(y+2 w t)^{\beta}(y+2 \omega z)^{-(\alpha+\beta+1)} \tag{15}\\
G\left(\frac{x y+2 \omega z}{y+2 \omega z}, \frac{u+w t}{1-w t}, \frac{w y z t v}{(1-w t)(y+2 \omega z)}\right)
\end{gather*}
$$

On the other hand the right member of (14) becomes

$$
\begin{align*}
& e^{w R_{1}} e^{w R_{2}}\left[\sum_{n=0}^{\infty} a_{n}\left(P_{n}^{(\alpha, \beta)}(x) y^{\beta} z^{n}\right)\left(P_{m}^{(n, \beta)}(u) t^{n}\right)(w v)^{n}\right] \\
= & \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{(p+q+n)}}{p!q!} v^{n}(-2)^{q}(n+1)_{q} P_{n+q}^{(\alpha, \beta,-q)}(x) y^{\beta-q} z^{n+q} \tag{16}\\
& (1+n+\beta+m)_{p} P_{m}^{(n+p+\beta)}(u) t^{n+p} .
\end{align*}
$$

Equating (15) and (16) we get the following

$$
\begin{align*}
(1- & w t)^{-(1+\beta+m)}(y+2 w z)^{\beta}(y+2 \omega z)^{-(1+\alpha+\beta)} y^{\alpha+1} G\left(\frac{x y+2 \omega z}{y+2 \omega z}, \frac{u+w t}{1-w t}, \frac{w z t v}{(1-w t)(y+2 \omega z)}\right) \\
& =\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{p+q}}{p!q!}(n+1)_{q}(w z v t)^{n}\left(-2 y^{-1} z\right)^{q} t^{p}(1+n+\beta+m)_{p} P_{n+q}^{(\alpha, \beta-q)}(x) P_{m}^{(n+p, \beta)}(u) \tag{17}
\end{align*}
$$

which is our desired result.

2. Application

Putting $m=0, y=z=t=1$ in the above stated result (17), we obtain

$$
\begin{align*}
& (1-w)^{-(1+\beta)}(1+2 w)^{\beta}(1+2 \omega)^{-(1+\alpha+\beta)} G\left(\frac{x+2 \omega}{1+2 \omega}, \frac{w v}{(1-w)(1+2 \omega)}\right) \\
= & \sum_{n=0}^{\infty} \sum_{q=0}^{\infty} a_{n} \frac{w^{q}}{q!}(n+1)_{q}(w v)^{n}(-2)^{q} P_{n+q}^{(\alpha, \beta-q)}(x) \sum_{n=0}^{\infty} \frac{w^{p}}{p!}(1+n+\beta)_{p} . \tag{18}
\end{align*}
$$

Now, replacing $2 w$ by $(-r), s$ by $-v /(2+r)$ and then simplifying we get

$$
(1-r)^{\beta}[1-r(1+x) / 2]^{-(1+\alpha+\beta)} G\left(\frac{x-r(1+x) / 2}{1-r(1+x) / 2}, \frac{s r}{1-r(1+x) / 2}\right)=\sum_{n=0}^{\infty} r^{n} \sigma_{n}(x, s)
$$

where

$$
\sigma_{n}(x, s)=\sum_{q=0}^{n}\binom{n}{q} P_{n}^{(\alpha, \beta-n+q)}(x) s^{q}
$$

which is found derived in [2].

References

[1] Chakravorty, S. P. and Chatterjea, S. K., 1989: "On extension of a bilateral generating function of Al-Salam-1". Pure Math. Manuscript 8, 117.
[2] Chongdar, A. K.: "On bilateral generating functions". To appear in Bull. Cal. Math Soc.
[3] Guta Thakurta, B. K., 1986: "Some generating functions of Jacobi polynomial." Proc. Indian Acad. Sc. (Math. Sc.) 95(1), 531.
[4] Rainville, E.D., 1960: Special funstions. Chelsia Publishing Co., N.Y..
[5] Goyal, G. K., 1983: Vijnana Parisad Anusandhan Patrika. 26, 263.
[6] Weisner, L., 1995: "Group-theoretic origin of certain generating function." Pacific J. Math. 5, 1033.

