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Chapter 0

Introduction

Modular forms and elliptic curves are firmly rooted in the fertil grounds of number theory.
As a proof of the mentioned fact and as an introduction to the present text we mention
the followings: For p prime, the Fermat last theorem ask for a non-trivial integer solution
for the Diophantine equation

ap + bp + cp = 0

For a hypothetical solution (A,B, C) = (ap, bp, cp) of the Fermat equation, Gerhart Frey
considered the elliptic curve

EA,B,C : y2 = x(x−A)(x + B)

From this one construct a modular form fA,B,C and a Galois representation with certain
properties and then one proves that such objects does not exist. During this passage
one encounters the Modularity conjecture which claims that every elliptic curve over Q
is modular. Roughly speaking this means that every elliptic curve over Q appears in the
Jacobian of of a modular curve of level N . Another formulation of modularity property is
by using L functions which generalizes the famous Riemann zeta function

ζ(s) :=
∞∑

n=1

1
ns

Riemann hypothesis claims that all the non-trivial zeros of ζ lies on <(s) = 1
2 and it has

strong consequences on the growth of prime number. For the L functions associated to
elliptic curves one has the Birch-Swinnerton Dyer conjecture which predicts the rank of
an elliptic curve to be the order of vanishing of the corresponding L-function at s = 1.

It is assumed that the reader has a basic knowledge in algebraic geometry of curves
and complex analysis in one variable.
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Chapter 1

Elliptic curves in Weierstrass form

Throughout the present text we work with a field k of arbitrary characteristic and not
necessarily algebraically closed. By k̄ we mean the algebraic closure of k. The main
examples that we have in mind are

k = Q, R, C, Fp :=
Z

Z/pZ

a number field and function field. A number field k is a field that contains Q and has finite
dimension, when considered as a vector space over Q. A function field k(t1, t2, . . . , ts) over
a field k is the field of rational functions a(t1,t2,··· ,ts)

b(t1,t2,...,ts)
, where a and b are polynomials in

indeterminates t1, t2, . . . , ts and with coefficients in t1, t2, . . . , ts. Later, we will also use
the field of p-adic numbers.

1.1 Curves

Let k be a field and k[x, y] be the space of polynomial in two variables x, y and with
coefficients in k. The n dimensional affine space over k is by definition

An(k) = k× k× · · · × k, n times

and the projective n dimensional space is

Pn(k) := An+1(k)− {(0, 0, · · · , 0)}/ ∼

a ∼ b if and only if ∃λ ∈ k, a = λb

We will consider the following inclusion

An(k) → Pn(k), (x1, x2, · · · , xn) 7→ [x1;x2; · · · ;xn; 1]

and call Pn the compactification of An. The projective space at infinity is defined to be

Pn−1
∞ (k) = Pn(k)− An(k) = {[x1;x2; · · · ;xn;xn+1] | xn+1 = 0}.

For simplicity, in the case n = 1, 2 and 3 we use x, (x, y) and (x, y, z) instead of x1, x2, . . ..
Any polynomial f ∈ k[x, y] defines an affine curve

C(k) := {(x, y) ∈ k2 | f(x, y) = 0}.

The most famous Diophantine curve is give by f = xn + yn − 1. We denote it by Fn.

3



4 CHAPTER 1. ELLIPTIC CURVES IN WEIERSTRASS FORM

Remark 1.1. The set C(k) may be empty, for instance take k = Q, f = x2 + y2 + 1.
This means that the identification of a curve with its points in some field is not a good
treatment of curves. One of the starting points of the theory of schemes is this simple
observation.

For f ∈ k[x, y] we define the homogenization of f

F (x, y, z) = zdf(
x

z
,
y

z
), d := deg(f).

F defines a projective plane curve in P2(k):

C̄(k) := {[x; y; z] ∈ P2(k) | F (x, y, z) = 0}.

Note that
∀c ∈ k, (x, y, z) ∈ k3, F (cx, cy, cz) = cdF (x, y, z).

One has the injection
C(k) → C̄(k), (x, y) 7→ [x; y; 1]

and for this reason one sometimes says that C̄(k) is the compactification of C(k). Let
g be the las homogeneous piece of the polynomial f . By definition it is a homogeneous
polynomial of degree d. The points in

C̄(k)− C(k) = {[x; y] ∈ P1
∞ | g(x, y) = 0}

are called the points at infinity of C(k). The set of points at infinity of F̄n is empty if n
is even and it is {[1;−1]} if n is odd.

Remark 1.2. From now on we use the notation C or {f = 0} instead of C(k). We are also
going to use the notion of an arbitrary curve over k form algebraic geometry of schemes.
Roughly speaking, a curve C over k means C over k̄ and the ingredient polynomials of C
are defined over k. The reader who is not familiar with those general objects may follow
the text for affine and projective curves as above. The set C(k) is now the set of k-rational
points of C.

Definition 1.1. We say that an affine curve C is singular if there is a point (a, b) ∈ k̄2

such that
f(a, b) = fx(a, b) = fy(a, b) = 0.

where fx is the derivation of f with respect to x and so on. Using other charts of P2 one
can define a singular point of a projective curve.

Exercise 1.1. Give an algorithm with the input f ∈ k[x, y] and the output ∆ which is a
polynomial in the coefficients of f such that

{f = 0} is singular ⇔ ∆ = 0.

Let C be a smooth projective curve of degree d in P2, i.e. its defining polynomial is of
degree d. Its genus is by definition

g(C) :=
(d− 1)(d− 2)

2



1.2. ELLIPTIC CURVES 5

The main objective of the Diophantine theory is to describe the set C(Q) for the curves
defined over Q. The most famous example is the Fermat curve given by the polynomial
f = xn+yn−1. The machinery of algebraic geometry is very useful to distinguish between
various types of Diophantine equations. For instance, one can describe the rational points
of genus zero curves. Genus one curves are called elliptic curves and the study of their
rational points is the objective of the present text. For higher genus we have a conjecture
of Mordell around 1922 which is proved by Faltings in 1982:

A non-singular projective curve of genus> 1 and defined over Q has only finitely many
Q-rational points.

In fact, the above theorem is true even for number fields. For instance the above theorem
says that the Fermat curve Fn has a finite number of Q-rational points. However, it does
not say something about the nature of Fn(Q). Mordell’s conjecture for function fields was
proved by Y. Manin in 1963, see [12] .

Exercise 1.2. Collect information on rational points of quadratic polynomials of degree
two and in two variables.

1.2 Elliptic curves

We are ready to give the definition of an elliptic curve:

Definition 1.2. An elliptic curve over k is a pair (E, p), where E is a genus one complete
smooth curve and p is p is a k-rational point of E.

Therefore, by definition an elliptic curve over k has at least a k-rational point. A
smooth projective curve of degree 3 is therefore an elliptic curve if it has a k-rational
point. For instance, the Fermat curve

F3 : x3 + y3 = z3

is an elliptic curve over Q. It has Q-rational points [0, 1, 1] and [1, 0, 1]. However

E : 3x3 + 4y3 + 5z3 = 0

has not Q-rational points and so it is not an elliptic curve defined over Q. It is an interesting
fact to mention that E(Qp) for all prime p and E(R) are not empty. This example is due
to Selmer (see [3, 20]).

1.3 Elliptic curves in Weierstrass form

An elliptic curve in the Weierstrass form E is the affine curve given by the polynomial

Et2,t3 : y2 − 4x3 + t2x + t3, t2, t3 ∈ k,

∆ := t32 − 27t23 6= 0, char(k) 6= 2, 3

In homogeneous coordinates it is written in the form

zy2 − 4x3 + t2xz2 + t3z
3 = 0.

It has only one point at infinity, namely [0; 1; 0], which is considered as the marked point
in the definition of an elliptic curve. It is in fact a smooth point of Ē which is tangent to
the projective line at infinity of order 3 and [0; 1; 0] is the only intersection point of the
line at infinity with Ē. If char(k) = 2, 3 then the curve Et2,t3 is always singular and it can
be easily shown that ∆ = 0 if and only if the corresponding curve is singular.
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Figure 1.1: Elliptic curves: y2 − 4x3 + t2x + t3 = 0

1.4 Real geometry of elliptic curves

For a projective smooth curve C defined over R the set C(R) has many connected com-
ponents, all of them topologically isomorphic to a circle. We call each of them an oval.

For an elliptic curve E defined over R we want to analyze the topology of E(R). For
simplicity (in fact because of Proposition 1.2 which will be presented later) we assume
that E = Et2,t3 is in the Weierstrass form. For (t2, t3) ∈ R2 let ∆ = t32 − 27t23 be the
discriminant of the elliptic curve E. We have:

1. If ∆ > 0 then E(R) has two connected components, one is a closed path in R2, which
we call it an affine oval, and the other a closed path in P2(R). We call it a projective
oval.

2. If ∆ < 0 then E(R) has only one component which is a projective oval.

3. If ∆ = 0 and t3 < 0 then E(R) is an α-shaped path in R2 (∞-shaped path in P2(R)).
In this case, we say that E has a real nodal singularity.

4. If ∆ = 0 and t3 > 0 then E(R) is a union of a point and a projective oval. In this
case, we say that E has a complex nodal singularity.

5. If t2 = t3 = 0 then E(R) look likes a broken line in R2. In this case, we say that E
has a cuspidal singularity.

Note that E(R) intersects the line at infinity only at [0; 1; 0]. To see/prove all the topo-
logical statements above, it is enough to take an example in each class and draw the
corresponding E(R). Note that in the (t2, t3)-space each set defined by the above items
is connected and the topology of E(R) does not change in each item (see Figure 1.1 and
1.7, the correspondence between the values of t2, t3 and Et2,t3(R) are done by colours).

1.5 Complex geometry of elliptic curves

Let C be a smooth projective curve of genus g over a subfield k of C. It can be shown
that C(C) is a compact (Riemann) surface with g(C) wholes (a sphere with g handles).
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Figure 1.2: The curve t32 − 27t23 = 0 and points (t2, t3) = (±4, 0), (4,± 8
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Exercise 1.3. Give a proof of the above statement using the followings. 2. Any compact
Riemann surface is diffeomorphic to a sphere with some handles. 2. Riemann-Hurwitz
formula.

In genus one case, therefore, the set C(C) is torus.

Exercise 1.4. For a smooth elliptic curve E over R and in the Weierstrass form describe
the real curves E(R) inside the torus (Hint: Use the Riemann-Hurwitz formula).

1.6 Congruent numbers

A natural number n is said to be congruent if it is the area of a right triangle whose sides
have rational length. In other words we are looking for the Diophantine equation:

Cn : x2 + y2 = z2, n =
1
2
xy

in Q, where x, y and z are the sides of the triangle. Consider the affine curve Cn/Q in A3

defined by the above equations. It intersects the projective space at infinity in 4 points:

[x; y; z;w] = [0;±1; 1; 0], [±1; 0; 1; 0].

Let
C : y2 = x4 − n2, En : y2 = x3 − n2x.

We have morphisms

Cn → C, (x, y, z) 7→ (
z

2
,
x2 − y2

4
)

and
C → En, (x, y) 7→ (x2, xy)

defined over Q.

Proposition 1.1. A necessary and sufficient condition for the point (x, y) ∈ En(Q) be in
the image of Cn(Q) → En(Q) is that

1. x to be a square and that
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2. its denominator be divisible by two

3. and its numerator has no common factor with n.

The proof is simple and is left to the reader (see [9]).

Exercise 1.5. Let C̄n be the projectivization of Cn in P3. Is C̄n smooth? If yes determine
its genus.

Exercise 1.6. Ex. 1,2,3,4 of Koblitz, page 5.

1.7 The group law in elliptic curves

Let C be a smooth cubic curve in P2. Let also P,Q ∈ C(k) and L be the line in P2

connecting two points P and Q. If P = Q then L is the tangent line to C at P . The line L
is defined over k and it is easy to verify that the third intersection R := PQ of C(k̄) with
L(k̄) is also in C(k). Fix a point O ∈ C(k) and call it the zero element of C(k). Define

P + Q = O(PQ)

For instance, for an elliptic curve in the weierstrass form take O = [0; 1; 0] the point at
infinity. By definition O + O = O.

Theorem 1.1. The above construction turns C(k) into a commutative group.

Proof. The only non-trivial piece of the proof is the associativity property of +:

(P + Q) + R = P + (Q + R)

The proof constitute of three pieces:
1. Let Pi = [xi; yi; zi] be 8 points in P2(k̄) such that the vectors (x3

i , · · · , z3
i ) ∈ k̄10of

monomials of degree 3 in xi, yi, zi are linearly independent. A cubic polynomial F passing
through all Pi’s corresponds to a vector a ∈ k̄10 such that Pi · a = 0 and so the space of
such cubic polynomials is two dimensional. This means that there is two cubic polynomial
F and G such that any other cubic polynomial passing through Pi’s is of the form λF +µG
and so it crosses a ninth point too.

2. We apply the first part to the eight points O,P,Q,R, PQ, QR, P + Q,Q + R and
conclude that (P + Q)R = P (Q + R). Note that from these 8 points it crosses there cubic
polynomials: C, the product of lines through (0, PQ, P +Q), (R,Q,QR), (P (Q+R), P, Q+
R) and the product of the lines (0, QR,Q + R), (PQ, Q, P ), (P + Q,R, (P + Q)R): P + Q PQ O

R Q QR
(P + Q)R,P (Q + R) P Q + R


(each column or row corresponds to aline).

3. The morphisms C × C × C → C, (P,Q,R) 7→ (P + Q) + R,P + (Q + R) coincides
in a Zariski open subset and so they are equal.
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Exercise 1.7. ([22] p. 60) On the elliptic curve

E : y2 = x3 + 17

over Q. We have points

P1 = (−2, 3), P2 = (−1, 4), P3 = (2, 5), P4 = (4, 9), P5 = (8, 23)P6 = (43, 282)

P7 = (52, 375), P8 = (5234, 378661)

verify:
P5 = 2P1, P4 = P1 − P3, 3P1 − P3 = P7,

Prove that E(Q) is freely generated by P1 and P3 and there are only 16 integral points
±Pi, i = 1, 2, . . . , 8 (see [19]).

Exercise 1.8. [9], p. 35, Problem 4b: For the elliptic curve En : y2 = x3 − n2x find an
explicit formula for the x coordinates of inflection points.

Exercise 1.9. [9], p. 36, Problem 7: How many elements of En(R) or of order 2, 3 and
4? Describe geometrically where these points are located.

Exercise 1.10. [9], p. 36, Problem 9: For an elliptic curve over R prove that E(R) (as a
group) is isomorphic to R/Z or R/Z× Z/2Z.

Exercise 1.11. [9], p. 36, Problem 11:

1.8 Weierstrass form revised

In this section we prove that any elliptic curve can be realized as a certain curve in P2.
The following proposition is proved in [22], III, Proposition 3.1.

Proposition 1.2. Let E be an elliptic curve over a field k. There exist functions x, y ∈
k(E) such that the map

E → P2, a 7→ [x(a); y(a); 1]

give an isomorphism of E/k onto a curve given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, a1, · · · , . . . , a6 ∈ k

sending O to [0; 1; 0]. If further char(k) 6= 2, 3 we can assume that the image curve is given
by

y2 = 4x3 − t2x− t3, t2, t3 ∈ k, t32 − 27t23 6= 0.

We call x and y the weierstrass coordinates of of E.

Proof. For a divisor D on a curve C/k̄ define the linear system

L(D) = {f ∈ k̄(C), f 6= 0 | div(f) + D ≥ 0} ∪ {0}

and
l(D) = dimk̄(L(D)).
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We know by Riemann-Roch theorem that

l(D)− l(K −D) = deg(D)− g + 1,

where K is the canonical divisor of C. We have deg(K) = 2g−2 and so for deg(D) > 2g−2,
equivalently deg(K −D) < 0, we have

l(D) = deg(D)− g + 1.

For g = 1 and D = nO we get l(D) = n. For n = 2 we can choose x, y ∈ k(E) such that
1, x form a basis of L(2O) and 1, x, y form a basis of L(3O) (discuss the fact that we can
choose x and y with coefficients in k). The function x (resp. y) has a pole of order 2 (resp.
3) at O. Now L(6O) has dimension 6 and 1, x, y, x2, xy, y2, x3 ∈ L(6O). It follows that
there is a relation

ay2 + a1xy + a3y = bx3 + a2x
2 + a4x + a6, a1, · · · , . . . , a6, a, b ∈ k.

(discuss the fact that the coefficients are in k). Note that ab 6= 0, otherwise every term
would have a different pole order at O and so all the coefficients would vanish. Multiplying
x, y with some constants and dividing the whole equation with another constant, we get
the desired equation. The map induced by x and y is the desired map (check the details).

If char(k) 6= 2, 3 we make the change of variables x′ = x, y′ = y− a3x
2 and we eliminate

xy term. A change of variables x′ = x− a2
3 , y′ = y− a3

2 will eliminate x2 and y terms. In
order to obtain the coefficient 4 of x3 we replace y with 1

2y.

Now we can state what is the moduli of elliptic curves.

Proposition 1.3. Assume that char(k) 6= 2, 3. Two elliptic curves Et2,t3 and Et′2,t′3
are

isomorphic if and only if there exists λ ∈ k, λ 6= 0 such that

t′2 = λ2t2, t′3 = λ6t3

The isomorphism is given by
(x, y) 7→ (λ4x, λ3y).

Proof. Let (x, y) and (x′, y′) be two sets of Weierstrass coordinate functions on an elliptic
curve Et2,t3 . It follows that {1, x} and {1, x′} are both bases of L(2O), and similarly
{1, x, y} and {1, x′, y′} are both bases for L(3O). Writing x′, y′ in terms of x, y and
substituting in the equation of Et′2,t′3

we get the first affirmation of the proposition. The
second affirmation is easy to check.

Combining Proposition 1.2 and Proposition 1.3 we conclude that the moduli space of
elliptic curves over a field of characteristic 6= 2, 3 is

M1(k) :=
(
A2(k)− {(t2, t3) | t32 − 27t23 = 0}

)
/ ∼

where
(t2, t3) ∼ (t′2, t

′
3) if and only if ∃λ ∈ k, λ 6= 0, (t′2, t

′
3) = (λ4t2, λ

6t6).
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If k is algebraically closed then this is the set of k-rational points of the weighted projective
space P2,3(k) mines a point induced in P2,3 by ∆ = 0. In this case the j-invariant of elliptic
curves

j : M1(k) → A(k), j[t2; t3] =
1728t32

t32 − 27t23

is an isomorphism and so the moduli of elliptic curves over k is A1(k). However, note that
if k is not algebraically closed then j has non-trivial fibers. For instance, all the elliptic
curves

y2 = x3 − t3, t3 ∈ Q

are isomorphic over Q̄ but not over Q.
If j0 6= 0, 1728 consider the elliptic curve:

Ej0 : y2 + xy = x3 − 36
j0 − 1728

x− 1
j0 − 1728

.

It satisfies j(E) = j0.

Exercise 1.12. Write the following elliptic curves in the Weierstrass form:

y2 = x4 − 1, O = [0; 1; 0]

x3 + y3 = 1, O = [0; 1; 1]

1.9 Finite fields

A finite field, as its name indicates, is a field with finite cardinality. By definition of a
field and finiteness property, the characteristic of a finite field is a prime number p > 1.
Finite fields are completely classified as follows:

1. The order of a finite field of characteristic p is pn for some n ∈ N.

2. There is a unique (up to isomorphism of fields) finite field with pn, n ∈ N elements.

3. For a prime number the finite field with cardinality p is simply the quotient

Fp :=
Z
pZ

.

4. For q = pn, n ∈ N the finite field with cardinality pn is denoted by Fq. It is the
spliting field of the polynomial xq − x over Fp.

5. Every finite integral domain is a field and in particular

6. Let f(T ) be a monic irreducible polynomial of degree n in Fp[T ]. Then the quotient
Fq[T ]/〈f〉 is a finite field with pn elements.

7. Let f(x, y) ∈ Fp[x, y] be a polynomial and I be a non zero prime ideal of R :=
Fp[x, y]/〈f〉. Then the quotient R/I is a finite field.

For more on finite fields the reader is referred to [6].
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1.10 Elliptic curves over finite fields

In this section we want to analyze the torsion points of

En : y2 = x3 − n2x

By definition of the group structure of En we know that

O, (0, 0), (0,±n)

are 2-torsions of En. Following the lines of [9] p. 44 Proposition 4, we want to prove:

Proposition 1.4. We have

En(Q)tors = {O, (0, 0), (0,±n)}

and so #En(Q)tors = 4.

Proof. Let us first give the strategy of the proof. Let E/Q be an a elliptic curve in the
Weierstrass form and let p > 2 be a prime number which does not divide the discriminant
of E. By a linear change of variable (x, y) 7→ (a2x, a3y) we can assume that the ingredient
coefficients of E are in Z. Let Ē/Fp be the elliptic curve obtained from E by considering
the coefficients of E modulo p. The main ingredient of the proof is the reduction map

E(Q) → Ē(Fp),

which is a group homomorphism. Note that by our assumption on p, Ē/Fp is not singular.
This is an injection of E(Q)tors inside E(Fp) for all but finitely many p and so for such
primes m := #E(Q)tors divides #E(Fp). In fact, we have not yet proved that E(Q)tors

is finite (a corollary of Mordell-Weil theorem). Therefore, we take a finite subgroup G
of #E(Q)tors and prove that the reduction map restricted to G is an injection and so
m := #G divides #E(Fp). From another side, we prove that for E = En:

(1.1) #En(Fp) = p + 1, ∀p prime p ≡ −1 mod 4

Therefore, for all but finitely many primes p ≡ −1 mod 4 we have p ≡ −1 mod m. This
implies that m = 4. Therefore, every finite subgroup of E(Q)tors is of order 4. Since all
the elements of E(Q)tors are torsion, we conclude that #En(Q)tors = 4.

Now let us prove that the reduction map induces an injection in a finite subgroup G
of E(Q)tors . Two points P = [x; y; z], Q = [x′; y′; z′] ∈ E(Q) are the same after reduction
if and only if

(1.2) xy′ − x′y, xz′ − x′z, yz′ − y′z

are zero modulo p. For all pairs P,Q in G, the number of numbers (1.2) is finite and so
there are finitely many primes dividing at least one of them. For all other primes p, we
have the injection of G in E(Fp) by the reduction map. The proof of (1.1) is done in the
next proposition.

Proposition 1.5. Let q = pf , p 6 |2n. Suppose that q ≡ −1 mod 4. Then there are q + 1
Fq points on the elliptic curve En : y2 = x3 − n2x.
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Proof. Consider the map
f : Fq → Fq, f(x) = x3 − n2x

f is an odd function, i.e. f(−x) = −f(x), and −1 is not in its image (this follows from
the hypothesis on p). It follows that the index of the multiplicative group F2

q − {0} in
Fq − {0} is two and so for all x ∈ Fq − {0} exactly one of x or −x is square and so
for all x ∈ Fq − {0, n,−n} exactly one of f(x) or f(−x) is square. Each such a pair
(x, y), y = f(x) gives us two points (x, y), (x,−y) ∈ En(Fq) and so in total we have
3 + 2 q−1

2 points in En(Fq).

Proposition 1.6. The natural number n is congruent if and only if En(Q) has non-zero
rank.

Proof. If n is a congruent number then by Proposition 1.1, En has Q-rational point with
x-coordinate in (Q+)2. The x coordinates of 2-torsion points in the affine chart x, y are
0,±n. The fact that n is square free and Proposition 1.4 implies that such a rational point
is of infinite order.

Conversely, suppose that P is a rational point of infinite order in En. Then by Exercise
1.13, the One can

Exercise 1.13. ([9], p. 35, Ex. 2c) If P is a point not of order 2 in En(Q), then
the x-coordinate of 2P is a square of rational number having an even denominator. By
Proposition 1.1, 2P comes from a point in Cn(Q) and hence n is a congruent number.

Exercise 1.14. ([9], p. 49-50) Ex. 4,5,6, 7,9.

1.11 Mordell-Weil Theorem

We have seen that for an elliptic curve over Q the set E(Q) is an abelian group and so

E(Q)/E(Q)tors

where
E(Q)tors := {x ∈ E(Q) | nx = 0, for some n ∈ N},

is a freely generated Z-module.

Theorem 1.2. For an elliptic curve E over a number field k the group E(k) of k-rational
points is finitely generated abelian group.

The above theorem for k = Q was proved by Mordell. Its generalization for an arbitrary
number field was proved by André Weil and it is known as the Mordell-Weil theorem. For
the proof see [10, 5].

Let us take k = Q. The above theorem implies that the set of torsion points E(Q)tors

of E(Q) is finite and there is a number r ∈ N such that

E(Q) ∼= Zr ⊕ E(Q)tors.

The non-negative integer r is called the rank of E(Q).
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1.12 Zeta functions of elliptic curves over finite fields

Let V be an affine or projective variety defined over Fq. The zeta function of V is defined
to be the formal power series in T :

Z(V, T ) = exp(
∞∑

r=1

#V (Fqr)
r

T r)

Theorem 1.3. Let E be an elliptic curve defined over Fp. Then

(1.3) Z(E, T ) =
1 + 2aET + pT 2

(1− T )(1− pT )
.

where aE is an integer depending only on E. Moreover, the Riemann hypothesis holds for
E, i.e. the only zeros of

ζ(C, s) := Z(E, q−s)

are in the line <(s) = 1
2 .

Let
1− 2aET + qT 2 = (1− αT )(1− βT )

and so

(1.4) α + β = 2aE , αβ = q

Note that α and β are algebraic integers:

α, β = aE ±
√

a2
E − q.

We take the logarithmic derivative of both sides of (1.3) and one easily finds the equalities

#E(Fpr) = pr + 1− αr − βr, r = 1, 2, 3, . . .

For r = 1 we obtain
#E(Fp) = p + 1− 2aE

We conclude that for elliptic curves over a finite field Fq the number of Fq-rational points
determine the number of Fqr -rational points.

Concerning the Riemann hypothesis, we note that it is equivalent to the inequality:

(1.5) |#E(Fp)− p− 1| < 2
√

p.

The Riemann hypothesis holds if and only if |α| = |β| = p
1
2 . If these equalities happen

then
|#E(Fp)− p− 1| = |2aE | = |α + β| < 2

√
p.

(the equality cannot occur because p is prime). Conversely, if (1.5) happens then a2
E−p < 0

and so the roots of the polynomial 1− 2aET + qT 2 are complex conjugate, β = ᾱ and so
|α| = |β| = p

1
2 .

The general reuslt as in (1.3) was conjectured by André Weil [25] and was proved by
P. Deligne (see for instance [8] for an exposition of Deligne results).

Let us now state the result for the elliptic curve En related to the congruent numbers.
The Legendre symbol is defined for integers a and positive odd primes p by(

a

p

)
=


0 if p divides a
1 for some x ∈ Z, a ≡ x2 mod p
−1 otherwise



1.13. NAGELL-LUTZ THEOREM 15

Proposition 1.7. In the zeta function of En : y2 = x3 − n2x defined over Fp, p a prime
p 6 |2n, we have:

α =

{
i
√

p if p ≡ 3( mod 4) in this case aEn = 0
2k +

(
n
p

)
+ 2ki if p ≡ 1( mod 4) in this case aEn = 2k +

(
n
p

)
In the second case k is determined by the fact that αᾱ = p

Exercise 1.15. ([16], Ex. 19.12) Let E be the elliptic curve

E : y2 = x3 − 4x2 + 16

Consider also the formal power series given by

F (q) = q

∞∏
n=1

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + 2q4 + · · ·

1. Compute Np = #E(Fp) for all primes 3 ≤ p ≤ 13.

2. Calculate the coefficient of Mn of qn in F (q) for n ≤ 13.

3. Compute the sum Mp + Np for p prime p ≤ 13.

4. Formulate a conjecture on the sum Mp + np. Can you prove it?.

1.13 Nagell-Lutz Theorem

In this section we state Nagell-Lutz theorem which gives a finite set of of possibilities for
a torsion point of an elliptic curve.

Theorem 1.4. (Nagell-Lutz Theorem) Let E be an elliptic curve with the Weierstrass
equation:

y2 = x3 + t2x + t3, t2, t3 ∈ Z,∆ := 4t32 + 27t23 6= 0.

Then for all non-zero torsion points P = (a, b) ∈ E(Q) we have:

1. The coordinates of P are in Z, i.e. a, b ∈ Z.

2. If P is of order greater than 2, then b2 divides ∆.

3. If P is of order 2 then b = 0 and a3 + t2a + t3 = 0.

A proof can be found in [22], p. 221 or in [23] p.56.

Exercise 1.16. [16], Exercise 8.11. For four of the following elliptic curves compute the
torsion subgroup.

y2 = x3 + 2, · · ·

See the reference above for the list of elliptic curves.
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1.14 Mazur theorem

Theorem 1.5. (Mazur, [13, 14]) Let E be an elliptic curve over Q. Then the torsion
subgroup E(Q)tors is one of the following fifteen groups:

Z/NZ, 1 ≤ N ≤ 10, or N = 12

Z/2Z× Z/2NZ, 1 ≤ N ≤ 4

Note that the above theorem implies that for an elliptic curve over Q we have always:

#(E(Q)tors) ≤ 16.

It is natural to conjecture that: If E is an elliptic curve over a number field k, the order of
the torsion subgroup of E(k) is bounded by a constant which depends only on the degree
of k over Q. This is known uniform boundedness conjecture (UBC). It is proved by S.
Kamienny in [7] for all quadratic fields and by L. Merel in [15] for all number fields.

For the proof of all the statements above one needs the notion of modular curves X0(N)
and modular forms which will be introduced in the forthcoming chapters.

1.15 Riemann zeta function

In this section we are going to study the first of all Zeta function, namely Riemann zeta
function:

ζ(s) :=
∞∑

n=1

1
ns

Proposition 1.8. The series ζ(s) converges for all s ∈ C with <(s) > 1 and

ζ(s) =
∏
p

1
(1− p−s)

.

where p runs over all primes.

Proof. We have |n−s| = n<s and so it is enough to prove the proposition for s ∈ R, s > 1.
We have

∞∑
n=2

1
ns

≤
∫ ∞

1
x−s =

x−s+1

−s + 1
|+∞1 =

1
s− 1

if s > 1

Again we assume that s is a real number bigger than 1. We have p−s < 1 and so

(1− p−s) =
∞∑

m=0

p−ms.

By unique factorization theorem∏
p≤N

(1− p−s)−1 =
∑
n≤N

n−s + RN (s).

Clearly

RN (s) ≤
∞∑

n=N+1

n−s.

Since ζ(s) converges we have RN (s) → 0 as N →∞ and the result follows.
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There are many generalizations of the Riemann Zeta function. One of them is already
used in §1.12. Bellow we explain how the zeta functions of a curve over a finite field is a
generalization of the Riemann zeta function.

Consider a plane affine curve C : f(x, y) = 0, f ∈ Fp(x, y) defined over the field Fp.
In analogy with the Riemann zeta function we define

(1.6) ζ(C, s) =
∏
p

1
(1− (Np)−s)

.

where p runs over all non-zero prime ideals of Fp[C] := Fp[x, y]/〈f(x, y)〉. Here Np is the
order of the quotient Fp[C]/p. Since such a quotient is a finite integral domain it is a field
and hence it has pn elements. We define deg(p) := n. This allows us to redefine the zeta
function as follows:

Z(C, T ) =
∏
p

1
(1− T deg(p))

.

with ζ(C, s) = Z(C, p−s).

Proposition 1.9. Let C be a curve ove the finite field Fp. We have

Z(C, T ) = exp(
∞∑

r=1

#C(Fpr)
r

T r)

For a proof see [16] p. 90.

Exercise 1.17. Calculate the zeta functions of A1 and P1.

Exercise 1.18. Calculate the zeta function of degenerated elliptic curves:

y2 = x3 + ax + b, 4a3 + 27b2 = 0.

1.16 Dedekind Zeta function

In this section we give a summary of Dedekind Zeta functions. Let k be anumber field
and Ok be its ring of integers.

Theorem 1.6. The integer ring of a number field is a Dedekind domain, i.e every ideal
a ⊂ Ok in a unique way can be written

a = pα1
1 pα2

2 · · · pαs
s ,

where α1, . . . , αs ∈ N0 and p1, . . . , ps are prime ideals.

A character χ on Ok is a map from the set of non-zero ideals of Ok to C such that it
is multiplicative:

χ(a1a2) = χ(a1)χ(a2).

We mainly use the Character χ ≡ 1. Formally, the Dedekind Zeta function is defined in
the following way:

ζk(s) =
∑

a

χ(a)
N(a)s

=
∏
p

1
1− χ(p)N(p)−s

, N(a) = #(Ok/a),

where the sum is running in non-zero ideals of Ok and the product is running in the prime
ideals of Ok.
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Exercise 1.19. Discuss the convergence of the Dedekind Zeta function (put χ ≡ 1).

Exercise 1.20. Discuss the fact that the integer ring of a number field is not necessarily
a unique factorization domain/principal ideal domain. Give examples of irreducible but
not prime elements. Hint Q(

√
−5)

2.3 = (1 +
√
−5)(1−

√
−5)

〈6〉 = 〈2, 1 +
√
−5〉〈2, 1−

√
−5〉〈3, 1 +

√
−5〉〈3, 1−

√
−5〉

Exercise 1.21. The ring of Gaussian integers is Z[i]. Prove that the prime ideals of Z[i]
are of two types:

p = 〈p〉, ifp ≡ 3(4), = 〈a + ib〉, if a2 = b2 = p ≡ 1(4).

In the second case we say that p splits in Z[i]. Show that the only units of Z[i] are ±1,±i.
Show also that the only ideal which ramifies is p = 〈1 + i〉, i.e. p2 = 〈p〉.

1.17 Discriminant revised

Definition 1.3. Let us be given a polynomial f ∈ Z[t][x, y, . . .], where t = (t1, t2, . . . , ts)
is a multi parameter and (x, y, . . .) a multi variable. The discriminant of f is an element
∆ ∈ Z[t] such that

∆ = fa1 + fxa2 + fya3 + · · · , for some a1, a2, . . . ∈ Z[t][x, y, . . .]

and no factor of ∆ satisfy the mentioned property.

Exercise 1.22. The discriminant exists and is unique up to multiplication by ±.

We have calculated the discriminant of

(1.7) f = y2 − x3 − t4x− t6 − t2x
2 + t1xy + t3y.

∆ = (t
6
1t6 − t

5
1t3t4 + t

4
1t2t

2
3 + 12t

4
1t2t6 − t

4
1t

2
4 − 8t

3
1t2t3t4 − t

3
1t

3
3 − 36t

3
1t3t6 + 8t

2
1t

2
2t

2
3 + 48t

2
1t

2
2t6 − 8t

2
1t2t

2
4

+30t
2
1t

2
3t4 − 72t

2
1t4t6 − 16t1t

2
2t3t4 − 36t1t2t

3
3 − 144t1t2t3t6 + 96t1t3t

2
4 + 16t

3
2t

2
3 + 64t

3
2t6 − 16t

2
2t

2
4

−72t2t
2
3t4 − 288t2t4t6 + 27t

4
3 + 216t

2
3t6 + 64t

3
4 + 432t

2
6).

a1 = 432x
3 − 432y

2
+ (−432t1)xy + (432t2)x

2
+ (−432t3)y + (432t4)x + (−t

6
1 − 12t

4
1t2 + 36t

3
1t3 − 48t

2
1t

2
2

+72t
2
1t4 + 144t1t2t3 − 64t

3
2 + 288t2t4 − 216t

2
3 − 432t6)

a2 = −144x
4

+ (−48t
2
1 − 192t2)x

3
+ (−t

4
1 − 8t

2
1t2 − 120t1t3 − 16t

2
2 − 240t4)x

2
+ (−t

5
1)y + (6t

4
1t2 − 20t

3
1t3+

24t
2
1t

2
2 − 40t

2
1t4 − 80t1t2t3 + 32t

3
2 − 160t2t4)x + (t

4
1t4 + 4t

3
1t2t3 + 8t

2
1t2t4 − 16t

2
1t

2
3

+8t1t
2
2t3 − 64t1t3t4 + 16t

2
2t4 − 64t

2
4).

a3 = −432x
3
y + 216y

3
+ (−144t1)x

4
+ (324t1)xy

2
+ (54t

2
1 − 432t2)x

2
y + (−3t

3
1 − 120t1t2 − 216t3)x

3
+

(324t3)y
2

+ (108t1t3 − 432t4)xy + (−t
5
1 + 4t

3
1t2 − 21t

2
1t3 + 8t1t

2
2 − 96t1t4 − 216t2t3)x

2
+ (t

6
1 + 6t

4
1t2 − 18t

3
1t3 + 24t

2
1t

2
2

−36t
2
1t4 − 72t1t2t3 + 32t

3
2 − 144t2t4 + 162t

2
3)y + (−t

5
1t2 + t

4
1t3 + 2t

3
1t4 + 4t

2
1t2t3 + 8t1t2t4 − 27t1t

2
3 − 216t3t4)x

+(−t
5
1t4 + t

4
1t2t3 − 4t

3
1t2t4 − t

3
1t

2
3 + 8t

2
1t

2
2t3 + 14t

2
1t3t4 − 8t1t

2
2t4 − 36t1t2t

2
3 + 32t1t

2
4 + 16t

3
2t3 − 72t2t3t4 + 27t

3
3);

This modulo 2 is:
∆ = t41t2t

2
3 + t51t3t4 + t61t6 + t31t

3
3 + t41t

2
4 + t43

a1 = t61, a2 = t41x
2 + t51y + t41t4
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a3 = t51x
2 + t31x

3 + t61y + t51t2x + t41t3x + t21t3x
2 + t41t2t3 + t51t4 + t31t

2
3 + t1t

2
3x + t33

For the case

(1.8) f = y2 − x3 − t4x− t6 − t2x
2.

we have
∆ = 2(4t32t6 − t22t

2
4 − 18t2t4t6 + 4t34 + 27t26);

a1 = 2(27x3 − 27y2 + (27t2)x2 + (27t4)x + (−4t32 + 18t2t4 − 27t6));

a2 = 2(−9x4 + (−12t2)x3 + (−t22 − 15t4)x2 + (2t32 − 10t2t4)x + (t22t4 − 4t24));

a3 = −54x3y + 27y3 + (−54t2)x2y + (−54t4)xy + (4t32 − 18t2t4)y;

Modulo 3 this is:
∆ = t22t

2
4 − t32t6 − t34

a1 = t32, a2 = t22x
2 + t32x + t2t4x− t22t4 + t24, a3 = t32y.

For

(1.9) f = y2 − x3 − t4x− t6;

we have
∆ = 2(4t34 + 27t26), a1 = 2(27x3 − 27y2 + (27t4)x + (−27t6)),

a2 = 2(−9x4 + (−15t4)x2 + (−4t24)), a3 = −54x3y + 27y3 + (−54t4)xy.

Remark 1.3. The reader may has noticed that by this slight modification of the definition
of discriminant if we take an elliptic curve (1.9) with all ti in Z, it is singular reduced mode
p if and only if p | ∆.

1.18 One dimensional algebraic groups

We follow [16] p. 23. When elliptic curves degenerate we find the following algebraic
groups:

1. The additive group Ga := (A1(k),+).

2. The multiplicative group Gm := (A(k), ·).

3. Twisted multiplicative group Gm[a].

Exercise 1.23.
Gm[a] ∼= Gm[ac2], a, c ∈ k− 0,

Exercise 1.24.
Gm[a](Fq) = q + 1.

By Bezout theorem a cubic curve E in P2 has a unique singular point (if there are two
singularities then the line connecting that points meets the curve in 4 points counted with
multiplicities). The singular point is defined over k because it is fixed under the action of
the Galois group Gal(k̄/k). Let S be the singular point of of E and

Ens(k) := E(k)\{S}.

The same definition of group law for elliptic curves applies for Ens and it turns out that
Ens as a group and:
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Exercise 1.25. If the elliptic curve E is given by the Weierstrass form

y2 = x3 + t4x + t6, t2, t3 ∈ k,∆ = 2(4t34 + 27t26) = 0.

then Ens is isomorphic to the three one dimensional group described above:

Ens(k) ∼= Gm(k) or Gm[c](k), or Ga(k)

mentioned in the lectures. Does we need char(k) 6= 2, 3?

Exercise 1.26. For char(k) = 3 (resp. char(k) = 2) we have to consider the case (1.8)
(resp. (1.9)). Discuss the reduction modulo 2 and 3 in such cases.

1.19 Reduction of elliptic curves

We take an elliptic curve in the Weierstrass form

y2 = x3 + t4x + t6, t2, t3 ∈ Q,∆ := 2(4t34 + 27t26) 6= 0.

and by change of coordinates (x, y) 7→ (c2x, c3y), c ∈ Q we assume that |∆| is minimal.
For p prime different from 2 and 3 we have the curve E/Fp and the reduction map

E(Q) → E(Fp).

1. Good reduction. If p does not divide ∆ then E/Fp is an elliptic curve.

2. Cuspidal reduction/additive reduction. The reduced curve E/Fp has a cusp as a
singularity and so its non-singular part is an additive group. If char(k) 6= 2, 3 this
case happens if and only if p | ∆, and p | 2t4t6.

3. Nodal reduction/split multiplicative. The reduced curve Ens/Fp is a multiplicative
group.

4. Nodal reduction/nonsplit multiplicative. The reduced curve Ens/Fp is a twisted
multiplicative group.

Exercise 1.27. Reduction moulo 3 of the above elliptic curve in Weierstrass form is
singular if and only if t4 = 0. In the singular case it is always a cusp. In reduction modulo
2 the elliptic curve E/F2 is always singular and its singular point is S = (t4, t6). Find the
four groups Ens(F2) corresponding to the four choice of (t4, t6).

Exercise 1.28. Let E/Q : y2 + y = x3 − x2 + 2x − 2. Show that 1. the primes of bad
reduction for E are p = 5 and 7. 2. The reduction at p = 5 is additive, while the reduction
at p = 7 is multiplicative. 3. NE/Q = 175.

1.20 Zeta functions of curves over Q

We follow [16] p. 102. The non-complete zeta function of a smooth curve E : f(x, y) =
0, f ∈ Z[x, y] is defined to be

ζS(E, s) =
∏
p6∈S

ζ(E/Fp, s).

where S is a finite number of prime numbers such that E/Fp is singular.
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Exercise 1.29. Can you justify the definition of the zeta function of a variety over Q by
interpreting it as a Euler product, the one similar to (1.6).

In the case of elliptic curves it is natural to define

LS(E, s) :=
∏
p6∈S

1
1 + (#(E(Fp))− p− 1)ps + p1−2s

and so we have
ζS(E, s) =

ζS(s)ζS(s− 1)
LS(E, s)

Proposition 1.10. The product ζS(E, s) and hence LS(E, s) converges for <(s) > 3
2

Proof. It is direct consequence of the Riemann hypothesis for elliptic curves over finite
fields and the convergence of the Riemann zeta function(see [16] p.102).

We we want to define the complete L function by adding bad prime numbers p ∈ S.
We define

Lp(T ) =


1 + (#(E(Fp))− p− 1)T + pT 2 p good
1− T modulo p we have split multiplicative reduction
1 + T modulo p we have non-split multiplicative reduction
1 modulo p we have additive reduction

We have defined this in such a way that

Lp(p−1) =
#Ens(Fp)

p

Now we define the L-function of an elliptic curve E over Q:

L(E, s) =
∏
p

1
Lp(p−s)

.

1.21 Hasse-Weil conjecture

The conductor of an elliptic curve over Q is defined to be

NE/Q =
∏

p bad

pfp

where fp = 1 if E has multiplicative reduction at p, fp = 2 if p 6 |2, 3 and E has additive
reduction at p. For the case in which we have additive reduction modulo p = 2, 3 we have
fp ≥ 2, fp ∈ N and fp depends on wild ramification in the action of the inertia group at
of Gal(Q̄/Q) on the Tate module of E.

Exercise 1.30. Discuss the case p = 2, 3 in the above definition. [16] is also talking
about a formula of Ogg fp = ordp∆ + 1−mp using Néron models. Can you obtain some
information on this.

Define
Λ(E, s) := N

s
2

E/Q(2π)−sΓ(s)L(E, s)
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Theorem 1.7. (Hasse-Weil conjecture for elliptic curves) The function Λ(E, s) can be
analytically continued to a meromorphic function on the whole C and it satisfies the func-
tional equation

Λ(E, s) = ±Λ(E, 2− s).

This theorem was first proved for CM elliptic curves by Deuring 1951/1952. It is
proved in its generality by the works of Eichler and Shimura, Wiles, Taylor, Diamond and
others.

1.22 Birch Swinnerton-Dyer conjecture

For the functional equation of L the value s = 1 is in the middle, i.e. it is the fixed point
of s 7→ 2− s.

Conjecture 1.1. (BSD conjecture) For an elliptic curve E over Q, the function L(E, s)
is holomorphic at s = 1 and its order of vanishing at s = 1 is the rank of the elliptic curve
E.

A weak form of this conjecture is not also proved:

Conjecture 1.2. (weak BSD conjecture) L(E, 1) = 0 if and only if E has infinitely many
rational points.

For papers on BSD conjecture see [4, 1, 2, 24, 11] [21], [17].

1.23 Congruent numbers

The bad prime numbers for the elliptic curve En : y2 = x3 − nx are those which divide
2n. For p | 2n, p 6= 2 or p = 2, 2|n we have an additive reduction. For p = 2 and p 6 |n
we have apparently a multiplicative reduction: y2 = x3 + x. The singular point in this
case is S = (1, 0) and Ens(F2) = {O, (0, 0)} which is isomorphic to (A(F2),+) and so it is
additive.

The conductor of En is:

NEn/Q =
{

24n2 if n is even
25n2 if n is odd

In Theorem 1.7 the root number ± is determined in the following way:{
+1 if n ≡ 1, 2, 3 (8)
−1 if n ≡ 5, 6, 7 (8)

Reformulating Proposition 1.7 and using Exercise 1.21 we have:

(1− T )(1− pT )Z(En/Fp, T ) =
∏
p|〈p〉

(1− (αpT )deg(p))

where

αp =


i
√

p if p = 〈p〉
a + ib if p splits, where a + ib is the unique generator of p

which is congruent to (n
p ) mod 2 + 2i.

0 p | 2n
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The L function of En is

L(En, s) =
∏

p⊂Z[i] prime

(1− (αp)deg(p)(Np)−s)−1

Now Z[i] is a Dedekind domain and so we can define a unique map χ from the ideals of
Z[i] to C such that χn(p) = α

deg(p)
p . Therefore

L(En, s) =
∏

p⊂Z[i] prime

(1− χ(p)(Np)−s)−1 =
∑

a⊂Z[i]

χn(a)(Na)−s

where the sum is taken over all non-zero ideals.

1.24 p-adic numbers

By definition a p-adic integer is an element in the inverse limit of

· · · → Z/p3Z → Z/p2Z → Z/pZ.

One can show that a p-adic integer is identified with a formal series

a1p + a2p
2 + a3p

3 + · · · , ai ∈ {0, 1, 2, . . . , p− 1}.

The set of p-adic integers is denoted by Zp:

Zp := lim
∞←n

Z/Zpn.

Zp is a ring without zero divisor, i.e. if ab = 0, a, b ∈ Zp then either a = 0 or b = 0. The
field Qp of p-adic numbers is the quotient field of Zp. The ring Z of integers is a subring
of Zp in a natural way and so Qp is a field extension of Q, Q ⊂ Qp.

Exercise 1.31. Show that the Diphantine equation x3 + y3 − 3 = 0 has not a solution in
Q3 and hence it has not a solution in Q.

There is another way to define p-adic numbers. Any non-zero rational number a can
be expressed in the form a = pr m

n with m,n ∈ Z and not divisable by p. We define

ordp(a) := r, |a|p :=
1
pr

, |0|p := 0

We have

1.
|a|p = 0 if and only if a = 0

2.
|ab|p = |a|p|b|p, a, b ∈ Q.

3.
|a + b|p ≤ max{|a|p, |b|p} and so ≤ |a|p + |b|p
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Therefore,
dp(a, b) := |a− b|p

is a metric on Q. The field Qp of p-adic numbers is the completion of Q with respect to
dp. We have a cononical matric, call it again dp, on Qp which extends the previous one
on Q ⊂ Qp (this inclusion is given by sending a ∈ Q to the constant Cauchy sequence
a, a, . . .). The same construction with the usual norm of Q, i.e. d(a, b) = |a− b| yields to
the field of real numbers R.

Exercise 1.32. Prove that the two definitions of Qp presented above are equivalent. Prove
also

Zp = {a ∈ Qp | |a|p ≤ 1} = the closure of Z in Qp



Chapter 2

Modular forms

The objective of this chapter is to introduce modular forms and their relations with elliptic
curves.

2.1 Elliptic integrals

We follow partially [22] Chapter VI §1.
Let us take t2, t3 ∈ C in such a way that the polynomial f(x) := 4x3 − t2x − t3 has

three distinct roots. In other words 27t32− t23 6= 0. During the history the mathematicians
understood that the elliptic integral∫

I

dx√
4x3 − t2x− t3

,

where I is a path connecting two roots of f , for generic numbers t2, t3 is a new integral
and cannot be calculated by previusly known numbers. For simplicity one can take t2 and
t3 real numbers in such a way that f has three real roots. Then one can take I the interval
between two roots of f . One can write them, up to ±1, in a modern way as∫

δ

dx

y
, δ ∈ H1(Et, Z)

where Et : y2 = 4x3 − t2x− t3 is an elliptic curve (see the introduction of [18]).

Exercise 2.1. Justify the topological cycle δ ∈ H1(Et, Z) described in the course.

Exercise 2.2. By algebraic geometric methods show that dx
y restricted to Et has no poles

even at infinity.

2.2 Weierstrass uniformization theorem

We follow partially [22] Chapter VI §3. A lattice Λ in C is a Z-submodule of Z generated
by two R-linear independent elements ω1 and ω2 in C. Without loss of generality we can
assume that =(ω1

ω2
) > 0. For a lattice Λ ⊂ C the Weierstrass ℘-function is

℘(z,Λ) =
1
z2

+
∑

ω∈Λ, ω 6=0

(
1

(z − ω)2
− 1

ω2
)

25
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and the Eisenstein series of weight 2k are

G2k(Λ) =
∑

ω∈Λ, ω 6=0

1
ω2k

Proposition 2.1. Let Λ ⊂ C be a lattice. The Eenstein series G2k is absolutely convergent
for all k > 1. The Weierstrass ℘-function converges absolutely and uniformely on every
compact subset of C− Λ.

Proof. See Theorem 3.1 of [22].

Exercise 2.3. Show that
∑

ω∈Λ, ω 6=0
1

(z−ω)2
does not converge.

Let L be the space of lattices Λ = Zω1 + Zω2 ⊂ C.

Exercise 2.4. Show that L has a natural structure of a complex manifold. More precisely,
show that L can be obtained by a quotient of a complex manifold by SL(2, Z).

Theorem 2.1. (Weierstrass uniformization theorem) Let

Et : y2 = 4x3 − t2x− t3, t32 − 27t23 6= 0.

The map given by
p : C2\{t32 − 27t23 = 0} → L

(t2, t3) 7→
∫

H1(Et,Z)

dx

y

is well-defined and it is a biholomorphism which satisfies

p(t2λ−4, t3λ
−6) = λp(t2, t3).

Its inverse is given by the Eisenstein series:

Λ → (g2(Λ), g3(Λ))

where
g2 := 60G4, g3 = −140G6

Moreover, for a fixed t2, t3 the Abel map given by

Et → C/Λ, a 7→
∫ ∞

a

dx

y

is a biholomorphism and homomorphism of groups and its inverse is given by

z 7→ [℘(z,Λ); ℘′(z,Λ); 1],

where Λ = p(t).

Exercise 2.5. Ex. 6.2, 6.4,6.6,6.7,6.14 of [22].
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2.3 Picard-Lefschetz theory

We consider again the familly of elliptic curves

Et : y2 = 4x3 − t2x− t3, t32 − 27t23 6= 0.

Let us put
T := C2 − {(t2, t3) ∈ C2 | t32 − 27t23 = 0}

By Ehresmann’s theorem the fibration Et, t ∈ T is a C∞ bundle over T , i.e. it is locally
trivial. This is the basic stone for the Picard-Lefschetz theory (see for instance [?] and
the references there). It gives us the following linear action:

π1(T, b)×H1(Eb, Z) → H1(Eb, Z)

where b ∈ T is a fixed point In order to calculate it we proceed as follows: First we choose
two cycles δ1, δ2 ∈ H1(Eb, Z). For the fixed parameter t2 6= 0, define the function f in the
following way:

f : C2 → C, (x, y) 7→ −y2 + 4x3 − t2x.

The function f has two critical values given by t̃3, ť3 = ±
√

t32
27 . In a regular fiber Et =

f−1(t3) of f one can take two cycles δ1 and δ2 such that 〈δ1, δ2〉 = 1 and δ1 (resp. δ2)
vanishes along a straight line connecting t3 to t̃3 (resp. ť3). The corresponding anti-
clockwise monodromy around the critical value t̃3 (resp ť3) can be computed using the
Picard-Lefschetz formula:

δ1 7→ δ1, δ2 7→ δ2 + δ1 ( resp. δ1 7→ δ1 − δ2, δ2 7→ δ2).

It is not hard to see that the canonical map π1(C\{t̃3, ť3}, b) → π1(T, t) induced by inclu-
sion is an isomorphism of groups and so the image of the monodromy group written in
the basis δ1 and δ2 is:

〈A1, A2〉 = SL(2, Z), where A1 :=
(

1 0
1 1

)
, A2 :=

(
1 −1
0 1

)
.

Note that g1 := A−1
2 A−1

1 A−1
2 =

(
0 1
−1 0

)
, g2 := A−1

1 A−1
2 =

(
1 1
−1 0

)
and SL(2, Z) =

〈g1, g2 | g2
1 = g3

2 = −I〉, where I is the identity 2× 2 matrix.

Exercise 2.6. Discuss the Picard-Lefschetz theory as above for the Legendre family of
elliptic curves:

y2 = x(x− 1)(x− λ)

2.4 Schwarz function

Let us take the Legendre family of elliptic curves and consider the Schwarz function

λ 7→
∫
δ1

dx
y∫

δ2
dx
y

∈ H

It is multivalued beacuse of the choice of δ1, δ2. In order to get a one valued function we
restrict λ to H and choose cycles δi, i = 1, 2 such that the projection of δ1 (resp. δ2)
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Figure 2.1: Fundamental domain

to the x-palne is a cycle around 0 (resp. 1 )and λ. In this way the Shwarz function is a
biholomorphisim. Its analytic continuations around λ = 0, 1 corresponds to the Picard-
Lefschetz transformation of δ1 and δ2.

Exercise 2.7. Show that the image of the Schwarz function is the region depicted in 2.11.
The analytic continuations of the Schwarz map gives us the trianglization of H.

2.5 CM elliptic curves

Recall that L is a complex manifold whose points are lattices Λ = Zω1 + Zω2. In fact one
can reinterpret it as follows:

Exercise 2.8. L is the moduli of triples (E,ω, p), where E is a Riemann surface of genus
one, p ∈ E, and ω is a holomorphic differential form on E. The canonical action of a ∈ C∗
on L corresponds to the multiplication of ω with a−1.

Definition 2.1. The endomorphisim group of an elliptic curve E = EΛ is the set of all
holomorphic maps EΛ → EΛ which are in addition homomorphisims of groups. It is in
one to one correspondance with

End(E) = {α ∈ C | αΛ ⊂ Λ}

We have Z ⊂ End(E) and we say that E is CM if the inclusion is strict.

Later, we will encounter two spcial CM elliptic curves as follows:

Exercise 2.9. Classify all elliptic curves E with α ∈ End(E) which is not multiplication
by ±1 and is an isomorphism. More precisely show that we have only two such elliptic
curve

E = E〈z,1〉, z = i,
−1 + i

√
3

2
.

Exercise 2.10. Ex. 8,9,10,12 of Koblitz.

1Reproduced from Wikipedia



2.6. FULL MODULAR FORMS 29

2.6 Full modular forms

Let us consider a point z ∈ H and the lattice 〈1, z〉 ⊂ C. The Eisenstein series restricted
to such a lattice gives us the following series

G2k(z) :=
∑

(n,m)∈Z2−{(0,0)}

1
(nz + m)2k

, k = 2, 3, . . .

which we call them again Eisenstein series. It is easy to show that G2k is a modular form
of weight 2k for the group SL(2, Z):

Definition 2.2. A holomorphic function f : H → C is called a modular form of weight k
for the group SL(2, Z) (full modular form of weight k) if

1. f has a finite growth at infinity, i.e.

(2.1) lim
=z→∞

f(z) = a∞ ∈ C

2. f satisfies

(cz + d)−kf(
az + b

cz + d
) = f(z), ∀,

(
a b
c d

)
∈ SL(2, Z), z ∈ H.

The group SL(2, R) acts on H in a canonical way:(
a b
c d

)
z :=

az + b

cz + d
,

(
a b
c d

)
∈ SL(2, R), z ∈ H

The fundamental domain of the action of SL(2, Z) is depicted in Figure 2.1. It is useful to
define the slash operator on holomorphic functions f in H:

f |k(z) := (cz + d)−kf(
az + b

cz + d
),

(
a b
c d

)
∈ SL(2, R), z ∈ H.

Exercise 2.11. Modular forms of weight k are in one to one correspondance with holo-
morphic functions f on L such that

1. For all Λ ∈ L and a ∈ C∗, f(aΛ) = a−kf(Λ).

2. f(〈z, 1〉) has finite growth at infinity as in (2.1).

2.7 Fourier series

Since for a full modular form we have f(z + 1) = f(z) we can write the Laurant series of
f in e2πiz:

f(z) =
∞∑
i=0

aiq
i, q := e2πiz

This is called the Fourier series (q-expansion) of f .
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Proposition 2.2. Let k > 2 be an even integer. The q-expansion of Gk is as follows:

Gk = 2ζ(k)(1− 2k

Bk

∞∑
n=1

σk−1(n)qn), q := e2πiz

where the Bernoulli numbers Bk are defined by:

x

ex − 1
=
∞∑

k=1

Bk
xk

k!
= 1 +

−1
2

1!
x +

1
6

2!
x2 +

−1
30

4!
x4 +

1
42

6!
x6 +

1
32

8!
x8 +

5
66

10!
x10 + · · ·

and
σk−1(n) :=

∑
d|n

dk−1

Proof. [9], p. 110.

It is sometimes usefull to define the normalized Eisenstein series:

Ek =
1
2

∑
n,m∈Z, (n,m)=1

1
(nz + m)k

= 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

2.8 The algebra of modular forms

Let us denote by Mk := Mk(SL(2, Z)) the vector space of full modular forms of weight k.
The set

M = ⊕k∈ZMk

form a graded C-algebra.

Proposition 2.3. The C-algebra M is freely generated by the Eisenstein series Gk, k =
4, 6.

Proof. The proposition follows from the Weierstrass uniformization theorem as follows:
Let us consider the map

H → C2, z 7→ p−1(〈z, 1〉)

It factores through H → D − {0}, z 7→ e2πiz and so using Proposition 2.2 we obtain the
holomorphic map

α : D → C2, α(q) = (60G4(q),−140G6(q)).

Moreover, we can check that α(0) is a regular point of ∆ = 0 and the image of α at α(0)
is transeverse to ∆ = 0.

We consider a modular form as a holomorphic function on L as it is asked in Exercise
2.11. Pulling back f by the period map p we get a holomorphic function g in T :=
C2 − {∆ = 0} which satisfies

g(λ−4t2, λ
−6t3) = λg(t2, t3)

and g restricted to the image of α is holomorphic in α(0). Conversely, a holomorphic
function g in T with these properties corresponds to a modular form f . It follows that g
is holomorphic in all points of ∆ = 0 and so it extends to a holomorphic function in C2.
Writting the taylor series of f with homoheneous pieces in C[t2, t3], deg(t2) = 4, deg(t6) =
6 we conclude that g is homogeneous polynomial of degree k in the mentioned ring.
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2.9 The discriminant

Recall that

ζ(4) =
π4

90
, ζ(6) =

π6

945
,

We define

∆ := t32 − 27t23 = g3
2 − 27g2

3 = (2ζ(4)60E4)3 − 27(2ζ(6)140)2E2
6 =

(2π)12

1728
(E3

4 − E2
6)

and we have

(2π)−12∆ =
1

1728
(E3

4−E2
6) = (

∞∑
n=1

τ(n)qn = q−24q2+252q3−1472q4+4830q5+· · · = q

∞∏
n=1

(1−qn)24

τ(n) is called the Ramanujan function of n.

Exercise 2.12. Exercise 4, p. 123 of Koblitz. The third part of the exercise says that

τ(n) ≡ σ11(n)( mod 691)

Also Ex. 3

2.10 The j function

We have

j = 1728
t32

t32 − 27t23
= 1728

E3
4

E3
4 − E2

6

=
1
q

+744+196884q +21493760q2 +864299970q3 + · · ·

There is so called Monstrous Moonshine conjecture, proved by Brocherd, relating the co-
efficients of the q-expansion of j with the minimal dimensions needed to represent monster
groups.

2.11 Hecke operators

So far, we have interpreted modular forms as functions in theree spaces: the Poicaré upper
half plan H, the space L of lattices and the affine space A2

C representing the parameters
t2 and t3. In this section for each natural number n we want to define the Hecke operator

Tn : Mk → Mk

which is a linear map. It is given by one of the following equivalent definitions:

1. For f : H → C a modular form of weight k we have

Tn(f) =
s∑

i=1

f |kAi,

where {[A1], [A2], · · · [As]} = SL(2, Z)/Matn(2, Z).
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2. For f : L → C a modular form of weight k we have

Tn(f)(Λ) =
∑
Λ′

f(Λ′),

where Λ′ runs through all sublattices Λ′ ⊂ Λ of index n. This means that #(Λ/Λ′) =
n.

3. For f a homogeneous polynomial of degree k in C[tt, t3], deg(t2) = 4, deg(t3) = 6
we have

Tn(f)(t2, t3) =
∑
t′

f(t′),

where t′ = (t′2, t
′
3) runs through all parameters for which there is an isogeny α :

Et′ → Et such that α∗(dx
y ) = dx

y and deg(α) = n.

Exercise 2.13. Prove the equivalence of the above definitions.

Exercise 2.14. Prove that each equivalence class in SL(2, Z)/Matn(2, Z) is represented
exactly by one of the matrices (

d b
0 n

d

)
, d|n, 0 ≤ b <

n

d
.

Exercise 2.15. Can you show by algebraic geometric methods that for fixed t ∈ C2\{∆ =
0} the set of parameters t′ with

α : Et′ → Et, α
∗dx

y
=

dx

y
, deg(α) = n

is finite.

Let A be an element in the group generated by GL+(2, R) and {
(

λ 0
0 λ

)
| λ ∈ C∗} ∼= C∗.

Let also ω =
(

ω1

ω2

)
∈ P. Then

Aω ∈ P.

Using the map p in Weierstrass uniformization theorem, we can translate the above process
to the (t2, t3)-space. Namely, for each t ∈ C2 − {∆ = 0} and a basis of the homology
δ1, δ2 ∈ H1(Et, Z) with 〈δ1, δ2〉 = 1 and A as above we have a local holomorphic map
t 7→ α(t). If we choose another basis of H1(Et, Z) obtained by the previous one by an
element B ∈ SL(2, Z), then we have a new period matrix ABω. This is equal to Aω in L
if and only if

ABA−1 ∈ SL(2, Z).

We conclude that if we choose representatives for the quotient

(A · SL(2, Z) ·A−1 ∩ SL(2, Z))\(A · SL(2, Z) ·A−1) = {[Ai] | i = 1, 2, . . . , s}

then to each Ai we have associated a local map αi(t).

Exercise 2.16. Let Ai = ASiA
−1, Si ∈ SL(2, Z). Show that

SL(2, Z)/Matn(2, Z) = {[ASi] | i = 1, 2, . . . , s}

and vice-versa.
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Exercise 2.17. For two natural numbers n.m and Hecke operators Tn, Tm ∈ Mk → Mk

prove that
Tn ◦ Tm =

∑
d|(n,m)

dk−1Tnm
d2

.

The above formula is summarized in the following formal equality:

∞∑
n=1

Tnn−s =
∏
p

(1− Tpp
−s + pk−1−2s)−1

Let f be a modular form with the Fourier expansion:

f(z) =
∞∑

n=0

anqn, q = e2iπz.

For m ∈ N, we have Tmf(z) =
∞∑

n=0
bnqn, where

bn =
∑

d| gcd(m,n)

dk−1amn/d2 .

Exercise 2.18. Let n ∈ N. Are there polynomials pn,i(t2, t3), i = 2, 3 such that pn :=
(pn,2, pn,3) leaves ∆ = 0 invariant and

Tn(f)(t) = f(p−1
n (t)), f ∈ Mk,

where f(X) =
∑

x∈X f(x).

2.12 Groups

We have seen that SL(2, Z) appears as the monodromy group of the Weierstrass familly
of elliptic curves. In this section we work with subgroups of SL(2, Z). Let N be a positive
integer number. Define

Γ(N) := {A ∈ SL(2, Z) | A ≡
(

1 0
0 1

)
( mod N)}

It is the kernel of the canonical homomorphism of groups SL(2, Z) → SL(2, Z/NZ). A
subgroup Γ ⊂ SL(2, Z) is called a congruence subgroup of level N if it contains Γ(N). Our
main examples are

Γ1(N) := {A ∈ SL(2, Z) | A ≡
(
∗ ∗
0 ∗

)
( mod N)}

Γ1(N) := {A ∈ SL(2, Z) | A ≡
(

1 ∗
0 1

)
( mod N)}

Let Λ ⊂ C be a lattice. The N -torsion subgroup of the complex elliptic curve E = C/Λ is

E[N ] := {p ∈ E | np = 0} = (
1
N

Λ)/Λ.
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and
µN := {e

2πik
N | k ∈ Z}.

The Weil pairing
eN : E[N ]× E(N) → µN

is defined as follows: let Λ = Zω1 + Zω2, =(ω1
ω2

) > 0. For p, q ∈ E[N ] write(
p
q

)
= A

(
ω1
N
ω2
N

)
, A ∈ SL(2, Z).

Define
eN (p, q) = e

2πi det(A)
N

Exercise 2.19. Prove that the above definition is well-defined.

Proposition 2.4. Let

Y0(N) := Γ0(N)\H, Y1(N) := Γ1(N)\H, Y (N) := Γ(N)\H.

1. The set Y0(N) is the moduli space of pairs (E,C), where E is a complex elliptic
curve and C is a cyclic subgroup of E of order N .

2. The set Y1(N) is the moduli space of pairs (E, p), where E is a complex elliptic curve
and p is a point of E of order N .

3. The set Y (N) is the moduli space of pairs (E, (p, q)), where E is a complex elliptic
curve and (p, q) is a pair of points of E that generates the N -torsion subgroup of E

with Weil pairing eN (p, q) = e
2πi
N .

The item 2 is proved in the lectures.

Exercise 2.20. Prove 1 and 3 above.
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