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Abstract

Big q-Jacobi polynomials {Pn(·; a, b, c; q)}∞n=0 are classically defined for 0 < a < q−1, 0 < b < q−1

and c < 0. For the family of little q-Jacobi polynomials {pn(·; a, b|q)}∞n=0, classical considerations restrict

the parameters imposing 0 < a < q−1 and b < q−1. In this work we extend both families in such a
way that wider sets of parameters are allowed, and we establish orthogonality conditions for those cases for
which Favard’s theorem does not work. As a by-product, we obtain similar results for the families of big
and little q-Laguerre polynomials.
c© 2009 Elsevier Inc. All rights reserved.
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The watchmaker had been examining the watch closely for over two minutes. This he had done with great
care and sense of purpose. Then, his features hardened somewhat; He inhaled in quite a conspicuous way and
suddenly blew the air over the watch. He immediately handed it over to its owner, who had been watching over
the whole process with apprehension. – Good God, the watch works! How puzzling, just a puff and the thing is
fixed...! – said the man hardly concealing his excitement. Then he came down to more earthly matters. - How
much do I owe you? And I must insist on payment...- said the man. – Twenty dollars – replied the watchmaker.
– Excuse me –, said the man; – Twenty dollars for just blowing on the watch...? – complained the owner. –
Of course not, – said the watchmaker – the blowing is for free; What costs twenty dollars is knowing where
to blow.
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our inspiration for further and ongoing investigations.
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1. Introduction

1.1. Preliminaries

We shall denote by N and N0, respectively, the set of positive integers and the set of
nonnegative integers. The set of real numbers will be denoted by R. All polynomials considered
will be real-valued in one real variable, and P will stand for the set of all such polynomials. For
each n ∈ N0, the subset of P of all polynomials of degree not greater than n will be denoted
by Pn . By a system of monic polynomials we will mean a sequence {Pn}

∞

n=0 of polynomials

fulfilling P(n)n = n! for each n ∈ N0. Observe that for a sequence of monic polynomials we have
P0 = 1. For notational convenience we will use P−1 to denote the null polynomial.

For n ∈ N, a square matrix of order n, with real entries ai j , will be denoted by A = (ai j )
n−1
i, j=0,

and (ai )
n−1
i=0 ∈ Rn will stand for (a0, a1, . . . , an−1). The transpose of a matrix will be denoted by

using the superscript t . As usual, we will identify the only element of a matrix of order 1 with
the matrix itself. We shall denote by δi j the Kronecker delta.

With respect to the q-calculus, the conventions adopted in this paper will be the usual ones
(see [12,15]). For our purpose, it will suffice to consider (and that is what we shall always assume)
0 < q < 1. Roughly speaking, the q-calculus is a scenery in which mathematical objects suffer
a distortion, and the parameter q is the measure of such deformation; in the limit as q tends to
one both objects, the classical one and its q-analogue, will coalesce.

The symbol (·; q)n will denote the so-called q-shifted factorial defined, for x ∈ R, by

(x; q)0 = 1, (x; q)n+1 =

n∏
k=0

(1− xqk), n ∈ N0, (x; q)∞ =
∞∏

k=0

(1− xqk).

For notational convenience we also define, for m ∈ N, x1, x2, . . . , xm ∈ R, and n ∈ N0 ∪ {∞},

(x1, x2, . . . , xm; q)n =
m∏

k=1

(xk; q)n .

The q-binomial coefficient, for real numbers a, b is[
a
b

]
q
=

0q(a + 1)

0q(b + 1)0q(a − b + 1)
, −a,−b,−(a − b) 6∈ N,

where the q-gamma function 0q is defined by 0q(x) = ((q; q)∞/(qx
; q)∞)(1−q)1−x for x ∈ R.

For m, n ∈ N0, the q-hypergeometric (also, basic hypergeometric) series mφn is defined by

mφn

(
a1, . . . , am
b1, . . . , bn

∣∣∣∣ q; x

)
=

∞∑
k=0

(a1; q)k · · · (am; q)k
(b1; q)k · · · (bn; q)k

(−1)(n−m+1)k

q(m−n−1)k(k−1)/2

xk

(q; q)k
, (1.1)

where b1, . . . , bn 6∈ {q−k
}k∈N0 . When m = 0 (n = 0), the numerator (denominator) of

the coefficient (a1; q)k · · · (am; q)k/(b1; q)k · · · (bn; q)k becomes 1. In the case that one of the
numerator parameters a j equals q−k for a nonnegative integer k, the q-hypergeometric series
is a polynomial. Basic hypergeometric series are used to define q-extensions of elementary and
special functions. For example, one of the q-analogues of the exponential function reads

eq(x)=1 φ0

(
0
−

∣∣∣∣ q; x

)
=

∞∑
k=0

xk

(q; q)k
,
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and clearly limq↑1 eq((1− q)x) = ex . As a consequence of the q-binomial theorem

1φ0

(
a
−

∣∣∣∣ q; x

)
=

∞∑
k=0

(a; q)k
(q; q)k

xk
=
(ax; q)∞
(x; q)∞

, |x | < 1,

it follows that eq(x) = 1/(x; q)∞ for |x | < 1. (In Section 5 we will use that eq(q) = 1/(q; q)∞.)
In concluding this preliminary part about notations, conventions and terminologies, let us

recall the definitions of the q-analogues of the derivative and the definite integral operators. As
well known, the q-derivative operator Dq : P→ P is defined, for each polynomial p, by

Dq p(x) =


p(x)− p(qx)

(1− q)x
, x 6= 0,

p′(0), x = 0.

Further, the nth iteration of the q-derivative operator is recursively defined by means of D0
q = I

(I is the identity operator) and Dn+1
q = Dq ◦ Dn

q for n ∈ N0. For real numbers a, b, and for each
polynomial p, the following standard definitions for the q-integrals will be used:∫ a

0
p(x) dq x = a(1− q)

∞∑
k=0

p(aqk) qk,

∫ b

a
p(x) dq x =

∫ b

0
p(x) dq x −

∫ a

0
p(x) dq x .

1.2. Non-standard orthogonality

By a non-standard orthogonality result we will mean an orthogonality statement for a system
of monic polynomials {P(λ1,...,λm )

n }
∞

n=0, fulfilling the three term recurrence relation

x P(λ1,...,λm )
n (x) = P(λ1,...,λm )

n+1 (x)+ an P(λ1,...,λm )
n (x)+ bn P(λ1,...,λm )

n−1 (x), n ∈ N0,

(where an = a(λ1,...,λm )
n ∈ R, bn = b(λ1,...,λm )

n ∈ R), for those values of the parameters λ1,

λ2, . . . , λm for which bn vanishes for some n ≥ 1; that is to say, non-standard orthogonality will
be understood as the orthogonality beyond Favard’s theorem. This topic has been the subject
of an increasing number of papers in the last decade. Moreover, all these papers reveal the
crucial role that a kind of Sobolev orthogonality plays when stating orthogonality conditions
for classical families of polynomials with non-classical parameters. We refer the reader to
[16,21], for the case of non-classical Laguerre families; [17,3,2,1] for non-standard orthogonality
concerning Jacobi polynomials; [4,10] for the case of Meixner polynomials with non-standard
parameters; [7,8], for the case of symmetric Meixner–Pollaczek polynomials with parameters out
of classical considerations; [11], for (not necessarily symmetric) generalized Meixner–Pollaczek
polynomials with null parameter λ. Recently, we have given in [19] non-standard orthogonality
results for another discrete extension of the Laguerre polynomials: Concretely, and after
extending the classical family of Meixner–Pollaczek polynomials {P(λ)n (·;φ)}∞n=0 to arbitrary
complex values of the parameter λ, we have introduced a non-standard discrete–continuous inner
product that fills up the “Favard’s gap” in the orthogonality scenery. Finally, we refer the reader
to [10] for the case of suitable extensions of the classical families of polynomials which satisfy
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a discrete orthogonality with a finite number of masses (i.e., the Hahn, Racah, Dual Hahn and
Krawtchouk polynomials).

As far as we know, there are no results concerning non-standard orthogonality results for q-
analogues of classical polynomials. For a kind of a standard orthogonality result (when Favard’s
characterization theorem is fulfilled), in a non-standard case (that is, for parameters out of
classical considerations), we refer to [9]. Our objective is to accomplish a kind of “q-Sobolev
orthogonality” for the (generalized) big and little q-Jacobi polynomials ({Pn(·; a, b, c; q)}∞n=0
and {pn(·; a, b|q)}∞n=0, respectively), when their first parameter a is an arbitrary real number,
and when the remainder parameters are much less restricted than in the classical setting. These
results will provide, as a by-product, analogous ones for the cases of big and little q-Laguerre
polynomials.

1.3. Structure of the paper

The structure of the paper is the following. In Section 2 we recall some basic facts of classical
monic q-Jacobi polynomials {Pn(·; a, b, c; q)}∞n=0, where 0 < a, b < q−1 and c < 0, and we
give an extension of this system by allowing the parameters a and c to be arbitrary real numbers,
and with the restriction on b in the form ab 6∈ {q−2, q−3, . . .}. In this section we will give some
preparatory results to state some of the main results. In Section 3, by means of a bilinear form
involving a discrete part and also a part with a q integral (both terms with the presence of the
Dq operator), we define a non-standard inner product which provides the orthogonality of the
generalized family of monic big q-Jacobi polynomials when its first parameter takes values for
which the hypothesis of Favard’s theorem does not hold. Section 4 is devoted to the same study
as in Section 2, but now on the monic little q-Jacobi polynomials {pn(·; a, b|q)}∞n=0, where the
classical values 0 < a, b < q−1 are now extended to a ∈ R and ab 6∈ {q−2, q−3, . . .}. Similarly
to Section 3, we introduce in Section 5 a discrete bilinear form involving q-derivatives with
respect to which the monic little q-Jacobi polynomials (with first parameter out of the range
of application of Favard’s theorem) become orthogonal. When the second parameter of big and
little monic q-Jacobi polynomials vanishes, we recover (respectively) big and little monic q-
Laguerre polynomials: The purpose of Section 6 is to distinguish these specific cases that led
us to particular results of those previously given in this paper, and that will concern the systems
of big and little monic q-Laguerre polynomials. In the Appendix, we include some interesting
results, closely related with those appeared in the previous sections, but that are not essential in
establishing the main results in Sections 3 and 5.

2. Generalized big q-Jacobi polynomials

There exist several q-analogues of Jacobi polynomials living in the q-world. One of them,
the so-called big q-Jacobi polynomials (which carries three free real parameters, other than
q), was hinted at by Hahn [13] and explicitly introduced and studied by Andrews and Askey
(see [6, pp. 166-167]). Monic big q-Jacobi polynomials can be defined in terms of the q-
hypergeometric series 3φ2 by means of [15, 3.5.1, 3.5.4]

Pn(x; a, b, c; q) =
(aq; q)n(cq; q)n
(abqn+1; q)n

3φ2

(
q−n, abqn+1, x

aq, cq

∣∣∣∣ q; q

)
, n ∈ N0, (2.2)

where a, c 6∈ {q−n
}n∈N and ab 6∈ {q−n−1

}n∈N, in order to be Pn(·; a, b, c; q) a well-defined
nth degree polynomial. Classical considerations (much more restrictive than the previous ones)
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assume that 0 < a, b < q−1 and c < 0. With such restrictions, monic big q-Jacobi polynomials
can be alternatively defined as the system of polynomials fulfilling the orthogonality relation
(see, for example, [15, 3.5.2, 3.5.4])∫ aq

cq

(a−1x, c−1x; q)∞
(x, bc−1x; q)∞

Pm(x; a, b, c; q)Pn(x; a, b, c; q) dq x

= a(1− q)
∞∑

k=0

(qk+1, (a/c)qk+1
; q)∞

(aqk+1, (ab/c)qk+1; q)∞

× Pm(aqk+1
; a, b, c; q)Pn(aqk+1

; a, b, c; q)qk+1

− c(1− q)
∞∑

k=0

((c/a)qk+1, qk+1
; q)∞

(cqk+1, bqk+1; q)∞

× Pm(cqk+1
; a, b, c; q)Pn(cqk+1

; a, b, c; q)qk+1

= an+1(−c)nq(n+2)(n+1)/2(1− q)
(q; q)n

(abqn+1; q)n

×
(q, c/a, (a/c)q, abq2n+2

; q)∞
(aqn+1, bqn+1, cqn+1, (ab/c)qn+1; q)∞

δmn, m, n ∈ N0. (2.3)

We can easily generalize the definition of monic big q-Jacobi polynomials in such a way
that all real values of the first and third parameters a and c are allowed, and maintaining the
restriction on the second parameter b in the form mentioned above, i.e., ab 6∈ {q−2, q−3, . . .}.
Using the basic hypergeometric representation (2.2), with the restrictions a, c 6∈ {q−n

}n∈N and
ab 6∈ {q−n−1

}n∈N, and taking into account that (q−n
; q)k vanishes for k > n, we have

Pn(x; a, b, c; q) =
(aq; q)n(cq; q)n
(abqn+1; q)n

∞∑
k=0

(q−n
; q)k(abqn+1

; q)k(x; q)k
(aq; q)k(cq; q)k

qk

(q; q)k

=

n∑
k=0

(q−n
; q)k

(q; q)k
qk (aqk+1

; q)n−k(cqk+1
; q)n−k

(abqn+k+1; q)n−k
(x; q)k .

Noting that the last representation is meaningful for all real values of a and c, and using that

(q−n
; q)k

(q; q)k
= (−1)k

[
n
k

]
q

q−k(2n−k+1)/2, 0 ≤ k ≤ n, (2.4)

(see [15, 0.3.3]), we obtain:

Definition 2.1. Let a, c be arbitrary real numbers and let b be a real number such that ab 6∈
{q−2, q−3, . . .}. For each n ∈ N0 we define the nth degree generalized monic big q-Jacobi
polynomial Pn(·; a, b, c; q) by

Pn(x; a, b, c; q) =
n∑

k=0

(−1)k
[

n
k

]
q

(aqk+1
; q)n−k(cqk+1

; q)n−k

(abqn+k+1; q)n−k

× qk(k+1−2n)/2(x; q)k . (2.5)
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By using the representation (2.5) it can be easily verified that generalized monic big q-Jacobi
polynomials satisfy the same three term recurrence relation as the classical monic big q-Jacobi
ones [15, 3.5.4, 3.5.3], namely:

Proposition 2.1. Let a, c be arbitrary real numbers and let b be a real number such that
ab 6∈ {q−2, q−3, . . .}. For each n ≥ 0, the generalized monic big q-Jacobi polynomials fulfill

Pn+1(x; a, b, c; q) =
(

x − A(a,b,c;q)n

)
Pn(x; a, b, c; q)− B(a,b,c;q)n Pn−1(x; a, b, c; q),

where

A(a,b,c;q)n = 1−
(1− aqn+1)(1− abqn+1)(1− cqn+1)

(1− abq2n+1)(1− abq2n+2)

+ aqn+1 (1− qn)(1− bqn)(c − abqn)

(1− abq2n)(1− abq2n+1)
,

B(a,b,c;q)n = −aqn+1 (1− qn)(1− aqn)(1− bqn)(1− cqn)(1− abqn)(c − abqn)

(1− abq2n−1)(1− abq2n)2(1− abq2n+1)
.

We remark that the restriction ab 6= q−1 is not necessary in the previous result, because in
the expression of B(a,b,c;q)1 the fifth factor in the numerator simplifies with the first factor in the
denominator.

When a = 0, B(0,b,c;q)n vanishes for all nonnegative integers n. In this case, generalized
monic big q-Jacobi polynomials are defined, when c 6= 0, by Pn(x; 0, b, c; q) = (−c)nqn(n+1)/2

(q−n x/c; q)n for n ≥ 0 (observe that there is no dependence with the parameter b). When
a = c = 0 we have Pn(x; 0, b, 0; q) = xn for n ≥ 0.

In the case that for some positive integer N , a = q−N and b 6∈ {q N−2, q N−3, . . .}, no
orthogonality results can be deduced from Favard’s theorem for the generalized monic big q-

Jacobi polynomials, due to the fact that B(q
−N ,b,c;q)

N = 0. One of the main results in this
paper consists precisely in an orthogonality statement for the generalized monic big q-Jacobi
polynomials with these outstanding values of the parameter a. To achieve this aim we will
need some results, some concerning the action of the q-derivative operator on the generalized
monic big q-Jacobi polynomials, and the other ones concerning a factorization property of these
polynomials.

Using (2.5), and noting that

Dq(x; q)k =

−
1− qk

1− q
(qx; q)k−1, k ≥ 1,

0, k = 0,
(2.6)

it is an easy matter to show that the q-derivative operator Dq acts on the generalized monic
big q-Jacobi polynomials in the same way that it acts on the classical monic big q-Jacobi ones
[15, 3.5.7, 3.5.4].

Proposition 2.2. For arbitrary real parameters a and c and for a real parameter b such that
ab 6∈ {q−n−1

}n∈N, the generalized monic big q-Jacobi polynomials verify the forward shift
relation

Dq Pn(x; a, b, c; q) =
(1− qn)

(1− q)
q1−n Pn−1(qx; aq, bq, cq; q), n ≥ 0. (2.7)
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Iterating (2.7) we readily obtain:

Corollary 2.1. Let a, c ∈ R and let b be a real number such that ab 6∈ {q−n−1
}n∈N. For each

nonnegative integer n, and for each k ∈ {0, 1, . . . , n + 1},

Dk
q Pn(x; a, b, c; q) =

(qn−k+1
; q)k

(1− q)k
qk(k−n)Pn−k(q

k x; aqk, bqk, cqk
; q).

We will show now that for 0 ≤ k ≤ N − 1, the points xk = q−k are roots of the polynomials
PN+n(·; q−N , b, c; q) (and also, as we will state in the Appendix, of PN+n(·; a, b, q−N

; q)).

Proposition 2.3. For a fixed N ∈ N we have, for each c ∈ R, each b ∈ R \ {q N−2, q N−3, . . .},
and each n ≥ N,

Pn(x; q
−N , b, c; q) = (−1)N q N (N+1−2n)/2(x; q)N Pn−N (q

N x; q N , b, cq N
; q).

Proof. For a fixed positive integer N , (2.5) yields, for each n ∈ N0,

Pn(x; q
−N , b, c; q) =

n∑
k=0

(−1)k
[

n
k

]
q

(qk+1−N
; q)n−k(cqk+1

; q)n−k

(bqn−N+k+1; q)n−k

× qk(k+1−2n)/2(x; q)k .

For a fixed n ≥ N , it is clear that (qk+1−N
; q)n−k = 0 for each k ≤ N−1. Therefore, for n ≥ N ,

Pn(x; q
−N , b, c; q) =

n∑
k=N

(−1)k
[

n
k

]
q

(qk+1−N
; q)n−k(cqk+1

; q)n−k

(bqn−N+k+1; q)n−k

× qk(k+1−2n)/2(x; q)k

=

n−N∑
k=0

(−1)N+k
[

n
N + k

]
q

(qk+1
; q)n−N−k(cq N+k+1

; q)n−N−k

(bqn+k+1; q)n−N−k

× q(N+k)(N+k+1−2n)/2(x; q)N+k .

Using that[
n

N + k

]
q
(qk+1

; q)n−N−k =

[
n − N

k

]
q
(qk+1+N

; q)n−N−k, (2.8)

and also that (x; q)N+k = (x; q)N (q N x; q)k , we simplify the above equation to

Pn(x; q
−N , b, c; q) = ((−1)N q N (N+1−2n)/2(x; q)N )

×

(
n−N∑
k=0

(−1)k
[

n − N
k

]
q

(q N qk+1
; q)n−N−k(cq N qk+1

; q)n−N−k

(q N bqn−N+k+1; q)n−N−k

× qk(k+1−2(n−N ))/2(q N x; q)k

)
= (−1)N q N (N+1−2n)/2(x; q)N Pn−N (q

N x; q N , b, cq N
; q). �

In the light of the above factorization, and using that for fixed N ∈ N the q-shifted factorial
(q− j
; q)N vanishes for 0 ≤ j ≤ N − 1, we deduce:
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Corollary 2.2. Let N be a fixed positive integer, let c ∈ R and let b ∈ R \ {q N−2, q N−3, . . .}.
For n ≥ N

Pn(q
− j
; q−N , b, c; q) = 0, 0 ≤ j ≤ N − 1. (2.9)

The previous result can be generalized in the form:

Corollary 2.3. Let N ∈ N, c ∈ R and b ∈ R \ {q N−2, q N−3, . . .}. We have, for n ≥ N,

Dk
q Pn(q

− j
; q−N , b, c; q) = 0, 0 ≤ k ≤ j ≤ N − 1. (2.10)

Proof. For a fixed N ∈ N, and after iterating expression (2.6), we get

Dk
q(x; q)N =


(−1)k(q N−k+1

; q)k
(1− q)k

qk(k−1)/2(qk x; q)N−k, 0 ≤ k ≤ N ,

0, k ≥ N + 1.
(2.11)

Therefore, we readily obtain that

(Dk
q(·; q)N )(q

− j ) = 0, 0 ≤ k ≤ N − 1, k ≤ j ≤ N − 1. (2.12)

Using the well-known q-analogue of the Leibniz rule

Dk
q( f (x)g(x)) =

k∑
j=0

[
k
j

]
q
(D j

q f )(x)(Dk− j
q g)(q j x), k ∈ N0,

on the factorizations in Proposition 2.3 (with the choice f (x) = (−1)N q N (N+1−2n)/2(x; q)N ),
and taking into account (2.12), we get the desired conclusion. �

3. q-Sobolev orthogonality of big q-Jacobi polynomials

As mentioned in the previous section, the hypothesis of Favard’s theorem does not hold for
the family of generalized monic big q-Jacobi polynomials {Pn(·; q−N , b, c; q)}∞n=0 when N is a
positive integer, b 6∈ {q N−2, q N−3, . . .} and c ∈ R (observe that we are focusing our attention on
the first parameter). We will use a suitable modification of our previous result [18, Theorem 3],
changing the derivative and integral operators by the q-derivative and q-integral operators, to
establish two (not essentially different) non-standard orthogonality results for the family of
generalized monic big q-Jacobi polynomials.

Theorem 3.1. For each positive integer N there exists a symmetric and positive definite
matrix A, of order N, such that the family of generalized monic big q-Jacobi polynomials
{Pn(·; q−N , b, c; q)}∞n=0, with 0 < b < q−N−1, b 6∈ {q N−k

}
2N
k=2 and c < 0, is orthogonal

with respect to the inner product (·, ·)(N ;A)
(b,c;q) defined by

(p1, p2)
(N ;A)
(b,c;q) =

((
p1(q

−k)
)N−1

k=0

)
A

((
p2(q

−k)
)N−1

k=0

)t

+

∫ q

cq N+1

(c−1q−N x; q)∞
(bc−1x; q)∞

(DN
q p1(q

−N x))(DN
q p2(q

−N x)) dq x, p1, p2 ∈ P. (3.13)
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Proof. Let {l j (·; q)}
N−1
j=0 ⊂ PN−1 be the set of Lagrange interpolating polynomials at the nodes

{q−k
}

N−1
k=0 , explicitly defined by

l j (x; q) =
N−1∏
i=0
i 6= j

x − q−i

q− j − q−i , 0 ≤ j ≤ N − 1.

Due to the fact that

Pj (x; q
−N , b, c; q) =

N−1∑
k=0

Pj (q
−k
; q−N , b, c; q)lk(x; q), 0 ≤ j ≤ N − 1,

and since both {l j (·; q)}
N−1
j=0 and {Pj (·; q−N , b, c; q)}N−1

j=0 are bases of PN−1, we can ensure that

the matrix C = (Pj (q−k
; q−N , b, c; q))N−1

j,k=0 is nonsingular. Also, if D = (κ jδ jk)
N−1
j,k=0 is a non-

singular diagonal matrix of order N (κ j ∈ R\{0}), then the symmetric matrix A = C−1 D2(C−1)t

= (C−1 D)(C−1 D)t is positive definite.
In order to state the orthogonality we will consider three cases:
(i) First suppose that 0 ≤ m, n ≤ N − 1. As a consequence that deg(Dq p) = deg(p)− 1 for

each p ∈ P \ P0, we have DN
q Pm(x; q−N , b, c; q) = DN

q Pn(x; q−N , b, c; q) = 0 for all reals x .
Therefore

(Pm(·; q
−N , b, c; q), Pn(·; q

−N , b, c; q))(N ;A)
(b,c;q)

=

((
Pm(q

−k
; q−N , b, c; q)

)N−1

k=0
C−1

)
D2
((

Pn(q
−k
; q−N , b, c; q)

)N−1

k=0
C−1

)t

= (δmk)
N−1
k=0 D2((δnk)

N−1
k=0 )

t
= κ2

n δmn .

(ii) If 0 ≤ m ≤ N − 1 and n ≥ N , then DN
q Pm(x; q−N , b, c; q) = 0 and also Pn(q−k

;

q−N , b, c; q) = 0 for 0 ≤ k ≤ N − 1 (see Corollary 2.2); so clearly we have

(Pm(·; q
−N , b, c; q), Pn(·; q

−N , b, c; q))(N ;A)
(b,c;q) = 0.

(iii) Now consider m, n ≥ N . In this case Pm(q−k
; q−N , b, c; q) = Pn(q−k

; q−N , b, c; q) =
0 for 0 ≤ k ≤ N − 1. Using Corollary 2.1 we get, for all n ≥ N ,

DN
q Pn(x; q

−N , b, c; q) =
(qn−N+1

; q)N

(1− q)N q N (N−n)Pn−N (q
N x; 1, bq N , cq N

; q).

Therefore, we deduce

(Pm(·; q
−N , b, c; q), Pn(·; q

−N , b, c; q))(N ;A)
(b,c;q)

=

∫ q

cq N+1

(c−1q−N x; q)∞
(bc−1x; q)∞

(
(DN

q Pm(·; q
−N , b, c; q))(q−N x)

)
×

(
(DN

q Pn(·; q
−N , b, c; q))(q−N x)

)
dq x

= hmhn

∫ q

(cq N )q

(x, (cq N )−1x; q)∞
(x, (bq N )(cq N )−1x; q)∞

× Pm−N (x; 1, bq N , cq N
; q)Pn−N (x; 1, bq N , cq N

; q) dq x,
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where we have defined, for n ≥ N ,

hn =
(qn−N+1

; q)N

(1− q)N q N (N−n).

With the aid of the classical orthogonality condition for the generalized monic big q-Jacobi
polynomials (2.3), replacing a by 1, b by bq N and c by cq N , we can finally state

(Pm(·; q
−N , b, c; q), Pn(·; q

−N , b, c; q))(N ;A)
(b,c;q)

= h2
n(−cq N )n−N q(n−N+2)(n−N+1)/2(1− q)

(q; q)n−N

(bqn+1; q)n−N

×
(q, cq N , (cq N )−1q, bq2n−N+2

; q)∞
(qn−N+1, bqn+1, cqn+1, (b/c)qn−N+1; q)∞

δmn

=
(q; q)n
(1− q)2N

(−c)n−N qdn (1− q)

×
(q, cq N , c−1q1−N , bq2n−N+2

; q)∞
(qn+1, bqn+1, cqn+1, (b/c)qn−N+1; q)∞(bqn+1; q)n−N

δmn

=

(
(q; q)n
(1− q)n

)2

(−c)n−N qdn (1− q)2(n−N )+1

×
(cq N , c−1q1−N , bq2n−N+2

; q)∞
(bqn+1, cqn+1, (b/c)qn−N+1; q)∞(bqn+1; q)n−N

δmn,

where

dn =
(n − N )2 + (n − N )(3− 2N )+ 2

2
. �

In the above theorem, the first part of the discrete inner product, namely, the term((
p1(q

−k)
)N−1

k=0

)
A

((
p2(q

−k)
)N−1

k=0

)t

,

is designed to exploit the fact that for n ≥ N we have Pn(q−k
; q−N , b, c; q) = 0 for

0 ≤ k ≤ N − 1. The matrix A is defined in terms of an arbitrary nonsingular diagonal matrix D
of order N , and in terms of a matrix C in which entries are the numbers Pj (q−k

; q−N , b, c; q),
with 0 ≤ j, k ≤ N − 1. By considering the condition Dk

q Pn(q−k
; q−N , b, c; q) = 0 for n ≥ N

and 0 ≤ k ≤ N − 1, obtained by choosing j = k in (2.10), we can reformulate Theorem 3.1
in such a way that both terms of the inner product defined explicitly depend on the q-derivative
operator. Using the same notation as in Theorem 3.1 to define the inner product, we have:

Theorem 3.2. For each positive integer N there exists a symmetric and positive definite
matrix A, of order N, such that the family of generalized monic big q-Jacobi polynomials
{Pn(·; q−N , b, c; q)}∞n=0, with 0 < b < q−N−1, b 6∈ {q N−k

}
2N
k=2 and c < 0, is orthogonal

with respect to the inner product (·, ·)(N ;A)
(b,c;q) defined by

(p1, p2)
(N ;A)
(b,c;q) =

((
Dk

q p1(q
−k)

)N−1

k=0

)
A

((
Dk

q p2(q
−k)

)N−1

k=0

)t
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+

∫ q

cq N+1

(c−1q−N x; q)∞
(bc−1x; q)∞

(DN
q p1(q

−N x))(DN
q p2(q

−N x)) dq x, p1, p2 ∈ P. (3.14)

Proof. It is easily seen (see (2.11)) that the polynomials l j (·; q) defined by

l j (x; q) = (−1) j (1− q) j

(q; q) j

1

q j ( j−1)/2
(x; q) j , j = 0, 1, . . . , N − 1,

verify that Dk
q l j (q−k

; q) = δ jk for 0 ≤ j, k ≤ N − 1. Therefore

Pj (x; q
−N , b, c; q) =

N−1∑
k=0

Dk
q Pj (q

−k
; q−N , b, c; q)lk(x; q), 0 ≤ j ≤ N − 1;

so the matrix C = (Dk
q Pj (q−k

; q−N , b, c; q))N−1
j,k=0 is nonsingular. Fix D, a nonsingular diagonal

matrix of order N , and define A = C−1 D2(C−1)t . The rest of the proof follows as in
Theorem 3.1. �

4. Generalized little q-Jacobi polynomials

As in the case of the big q-Jacobi polynomials, Hahn introduced in [13] other q-analogues of
the Jacobi polynomials, later studied in detail by Andrews and Askey in [5,6], who named them
as little q-Jacobi polynomials. For real parameters a, b such that 0 < a, b < q−1, monic little
q-Jacobi polynomials pn(·; a, b|q) are the ones fulfilling the orthogonality condition [15, 3.12.2,
3.12.4]

(bq; q)∞
(q; q)∞

∫ 1

0

(qx; q)∞
(bqx; q)∞

x logq a pm(x; a, b|q)pn(x; a, b|q) dq x

=

∞∑
k=0

(bq; q)k
(q; q)k

(aq)k pm(q
k
; a, b|q)pn(q

k
; a, b|q)

= anqn2 (abq2n+2
; q)∞

(aqn+1; q)∞

(q; q)n(bq; q)n
(abqn+1; q)n

δmn, m, n ∈ N0. (4.15)

For each n ∈ N0, these polynomials can be defined in terms of the q-hypergeometric series
2φ1 by means of [15, 3.12.1, 3.12.4]

pn(x; a, b|q) = (−1)nqn(n−1)/2 (aq; q)n
(abqn+1; q)n

2φ1

(
q−n, abqn+1

aq

∣∣∣∣ q; qx

)
. (4.16)

Observe that the above representation works perfectly for all real values of the parameters a and
b, except when a ∈ {q−1, q−2, . . .} or ab ∈ {q−2, q−3, . . .}. Our intention is to accomplish the
extension of monic little q-Jacobi polynomials for all real values of the first parameter a.

Starting with (4.16), and using that (q−n
; q)k vanishes for k > n, we get

pn(x; a, b|q) = (−1)nqn(n−1)/2 (aq; q)n
(abqn+1; q)n

∞∑
k=0

(q−n
; q)k(abqn+1

; q)k
(aq; q)k

(qx)k

(q; q)k

= (−1)nqn(n−1)/2
n∑

k=0

(q−n
; q)k

(q; q)k

(aqk+1
; q)n−k

(abqn+k+1; q)n−k
(qx)k .
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Using (2.4), we obtain:

Definition 4.1. Let a be an arbitrary real number and let b be a real number such that ab 6∈
{q−2, q−3, . . .}. For each n ∈ N0 we define the nth degree generalized monic little q-Jacobi
polynomial pn(·; a, b|q) by

pn(x; a, b|q) =
n∑

k=0

(−1)n
[

n
k

]
q

(aqk+1
; q)n−k

(abqn+k+1; q)n−k
q(n−k)(n−k−1)/2(−x)k . (4.17)

Working directly with the representation (4.17), one can verify that generalized monic little
q-Jacobi polynomials satisfy the same three term recurrence relation as the classical monic little
q-Jacobi polynomials [15, 3.12.4, 3.12.3]. Concretely, we obtain the following proposition.

Proposition 4.1. Let a be an arbitrary real number and let b be a real number such that
ab 6∈ {q−2, q−3, . . .}. For each n ∈ N0, the generalized monic little q-Jacobi polynomials fulfill
the three term recurrence relation

pn+1(x; a, b|q) =
(

x − A(a,b;q)n

)
pn(x; a, b|q)− B(a,b;q)n pn−1(x; a, b|q),

where

A(a,b;q)n =
qn

(1− abq2n+1)

(
(1− aqn+1)(1− abqn+1)

(1− abq2n+2)
+

a(1− qn)(1− bqn)

(1− abq2n)

)
,

B(a,b;q)n = aq2n−1 (1− qn)(1− aqn)(1− bqn)(1− abqn)

(1− abq2n−1)(1− abq2n)2(1− abq2n+1)
.

Again, the restriction ab 6= q−1 is not necessary because in B(a,b;q)1 , the last factor in the
numerator simplifies with the first factor in the denominator.

If a = 0, then B(0,b;q)n vanishes for all nonnegative integers n, and the corresponding
generalized monic little q-Jacobi polynomials are defined, for each n ≥ 0, by pn(x; 0, b|q) =
(−1)nqn(n−1)/2(q1−n x; q)n (observe that there is no dependence with the parameter b).

For N ∈ N and b ∈ R \ {q N−2, q N−3, . . .}, B(q
−N ,b;q)

N vanishes; so no orthogonality results
can be deduced from Favard’s theorem. Our objective is to give an orthogonality statement for the
generalized monic little q-Jacobi polynomials for these outstanding values of the first parameter
a (i.e., for a ∈ {q−1, q−2, . . .}). We will need two key tools (the corollaries below) for this
purpose.

Directly, from (4.17), it is an easy matter to verify that the q-derivative operator Dq acts on
the generalized monic little q-Jacobi polynomials as it acts on the classical monic little q-Jacobi
ones [15, 3.12.7, 3.12.4].

Proposition 4.2. For a ∈ R and ab ∈ R \ {q−2, q−3, . . .}, monic generalized little q-Jacobi
polynomials verify the forward shift relation

Dq pn(x; a, b|q) =
(1− qn)

(1− q)
pn−1(x; aq, bq|q), n ≥ 0. (4.18)

Iterating expression (4.18) it follows:
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Corollary 4.1. Let a be an arbitrary real number and let b be a real number such that ab 6∈
{q−2, q−3, . . .}. For each nonnegative integer n, and for each k ∈ {0, 1, . . . , n + 1},

Dk
q pn(x; a, b|q) =

(qn−k+1
; q)k

(1− q)k
pn−k(x; aqk, bqk

|q).

We will show now that the point x = 0 is a zero of precise order N of the polynomials
pN+n(·; q−N , b|q), where b ∈ R \ {q N−2, q N−3, . . .}.

Proposition 4.3. For a fixed N ∈ N we have, for b ∈ R \ {q N−2, q N−3, . . .} and n ≥ N,

pn(x; q
−N , b|q) = x N pn−N (x; q

N , b|q).

Proof. For a fixed positive integer N , (4.17) yields, for each n ∈ N0,

pn(x; q
−N , b|q) =

n∑
k=0

(−1)n
[

n
k

]
q

(qk+1−N
; q)n−k

(bqn+k+1−N ; q)n−k
q(n−k)(n−k−1)/2(−x)k .

For all n ≥ N , (qk+1−N
; q)n−k = 0 for each k ≤ N − 1. Therefore, for n ≥ N

pn(x; q
−N , b|q) =

n∑
k=N

(−1)n
[

n
k

]
q

(qk+1−N
; q)n−k

(bqn+k+1−N ; q)n−k
q(n−k)(n−k−1)/2(−x)k

= x N
n−N∑
k=0

(−1)n−N
[

n
N + k

]
q

(qk+1
; q)n−N−k

(bqn+k+1; q)n−N−k
q(n−N−k)(n−N−k−1)/2(−x)k .

Using (2.8), we simplify the above equation to

pn(x; q
−N , b|q) = x N

n−N∑
k=0

(−1)n−N
[

n − N
k

]
q

(q N qk+1
; q)n−N−k

(q N bqn−N+k+1; q)n−N−k

× q(n−N−k)(n−N−k−1)/2(−x)k

= x N pn−N (x; q
N , b|q). �

The previous result implies that p(k)n (0; q−N , b|q) = 0 for 0 ≤ k ≤ N −1 and n ≥ N . Taking
into account that

Dk
q f (0) =

(q; q)k
(1− q)k

f (k)(0)
k!

, k ≥ 0, (4.19)

for a function f analytic in a neighborhood of 0 (see [14]), we can also establish that x = 0 is a
“q-zero” of precise order N of the polynomials pn(·; q−N , b|q).

Corollary 4.2. Let N be a fixed positive integer. For b ∈ R \ {q N−2, q N−3, . . .} and n ≥ N,

Dk
q pn(0; q−N , b|q) = 0, 0 ≤ k ≤ N − 1. (4.20)
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5. q-Sobolev orthogonality of little q-Jacobi polynomials

In Section 4 we have shown that no orthogonality results can be deduced from Favard’s
theorem for the family of generalized monic little q-Jacobi polynomials {pn(·; q−N , b|q)}∞n=0
when N is a positive integer and b ∈ R \ {q N−2, q N−3, . . .}. Again, as in Section 3, we will
consider a suitable modification of our previous result [18, Theorem 3] to establish a non-
standard orthogonality condition for the system of generalized monic little q-Jacobi polynomials.

Theorem 5.1. For each positive integer N, there exists a symmetric and positive definite
matrix A, of order N, such that the family of generalized monic little q-Jacobi polynomials
{pn(·; q−N , b|q)}∞n=0, with b < q−N−1 and b 6∈ {q N−2, q N−3, . . .}, is orthogonal with respect

to the inner product (·, ·)(N ;A)
(b;q) defined by

(p1, p2)
(N ;A)
(b;q) =

(
p1(0), Dq p1(0), . . . , DN−1

q p1(0)
)

A
(

p2(0), Dq p2(0), . . . , DN−1
q p2(0)

)t

+

∞∑
k=0

(bq N+1
; q)k

(q; q)k
qk
(

DN
q p1(q

k)
) (

DN
q p2(q

k)
)
, p1, p2 ∈ P. (5.21)

Proof. Let {l j (·; q)}
N−1
j=0 ⊂ PN−1 be the set of polynomials defined by

l j (x; q) =
(1− q) j

(q; q) j
x j , 0 ≤ j ≤ N − 1.

Since both {l j (·; q)}
N−1
j=0 and {p j (·; q−N , b|q)}N−1

j=0 are bases of PN−1, and taking into account

that Dk
q l j (0; q) = δk j (see (4.19)), we have

p j (x; q
−N , b|q) =

N−1∑
k=0

Dk
q p j (0; q−N , b|q)lk(x; q), 0 ≤ j ≤ N − 1.

Therefore, we can ensure that the matrix C = (Dk
q p j (0; q−N , b|q))N−1

j,k=0 is nonsingular. Also, if

D = (κ jδ jk)
N−1
j,k=0 is a nonsingular diagonal matrix of order N (κ j ∈ R\{0}), then the symmetric

matrix A = C−1 D2(C−1)t = (C−1 D)(C−1 D)t is positive definite.
In order to state the orthogonality we will consider three cases:
(i) If 0 ≤ m, n ≤ N − 1, then DN

q pm(x; q−N , b|q) = DN
q pn(x; q−N , b|q) = 0. Therefore

(pm(·; q
−N , b|q), pn(·; q

−N , b|q))(N ;A)
(b;q)

=

((
Dk

q pm(0; q−N , b|q)
)N−1

k=0
C−1

)
D2
((

Dk
q pn(0; q−N , b|q)

)N−1

k=0
C−1

)t

= (δmk)
N−1
k=0 D2((δnk)

N−1
k=0 )

t
= κ2

n δmn .

(ii) If 0 ≤ m ≤ N − 1 and n ≥ N , then DN
q pm(x; q−N , b|q) = 0 and also (Corollary 4.2)

Dk
q pn(0; q−N , b|q) = 0 for 0 ≤ k ≤ N − 1. Thus

(pm(·; q
−N , b|q), pn(·; q

−N , b|q))(N ;A)
(b;q) = 0.
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(iii) Finally, if m, n ≥ N , then Dk
q pm(0; q−N , b|q) = Dk

q pn(0; q−N , b|q) = 0 for 0 ≤ k ≤
N −1. Using Corollary 4.1 and the orthogonality condition for the classical monic little q-Jacobi
polynomials, replacing a by 1 and b by bq N in (4.15), it follows

(pm(·; q
−N , b|q), pn(·; q

−N , b|q))(N ;A)
(b;q)

=

∞∑
k=0

(bq N+1
; q)k

(q; q)k
qk
(

DN
q pm(q

k
; q−N , b|q)

) (
DN

q pn(q
k
; q−N , b|q)

)
=
(qm−N+1

; q)N

(1− q)N

(qn−N+1
; q)N

(1− q)N

∞∑
k=0

(bq N+1
; q)k

(q; q)k
qk

× pm−N (q
k
; 1, bq N

|q)pn−N (q
k
; 1, bq N

|q)

=

(
(qn−N+1

; q)N

(1− q)N

)2

q(n−N )2 (bq2n−N+2
; q)∞

(qn−N+1; q)∞
(q; q)n−N

(bq N+1
; q)n−N

(bqn+1; q)n−N
δmn

=

(
(q; q)n
(1− q)n

)2

q(n−N )2(1− q)2(n−N )eq(q)
(bq2n−N+2

; q)∞(bq N+1
; q)n−N

(bqn+1; q)n−N
δmn . �

6. Particular cases: Big and little q-Laguerre polynomials

When the second parameter of the families of big and little q-Jacobi polynomials vanishes,
we get (respectively) the families of big and little q-Laguerre polynomials. With this in mind,
all the above relations and results can be given for the the families of big and little q-Laguerre
polynomials. Neither new arguments, nor new computations are needed to describe the previous
q-Sobolev orthogonality history, developed in the scenery of the q-Jacobi families, into the new
scenery of the q-Laguerre families.

6.1. The generalized big q-Laguerre polynomials

Monic big q-Laguerre polynomials Pn(·; a, b; q) are monic big q-Jacobi polynomials
Pn(·; a, c, b; q) with c = 0. Therefore, first setting b = 0 and then replacing c by b in all
the results of Sections 2 and 3 (which concern big q-Jacobi polynomials), we will obtain similar
results for the family of monic big q-Laguerre polynomials. We will briefly summarize all these
results.

(i) Definition as a basic series (2.2)
Let a, b ∈ R \ {q−1, q−2, . . .}. For each n ∈ N0 we define the nth degree monic big
q-Laguerre polynomial Pn(·; a, b; q) by

Pn(x; a, b; q) = (aq; q)n(bq; q)n3φ2

(
q−n, 0, x
aq, bq

∣∣∣∣ q; q

)
, x ∈ R.

(ii) Orthogonality relation (2.3)
For 0 < a < q−1 and b < 0,∫ aq

bq

(a−1x, b−1x; q)∞
(x; q)∞

Pm(x; a, b; q)Pn(x; a, b; q) dq x

= a(1− q)
∞∑

k=0

(qk+1, (a/b)qk+1
; q)∞

(aqk+1; q)∞
Pm(aqk+1

; a, b; q)Pn(aqk+1
; a, b; q)qk+1
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−b(1− q)
∞∑

k=0

(qk+1, (b/a)qk+1
; q)∞

(bqk+1; q)∞
Pm(bqk+1

; a, b; q)Pn(bqk+1
; a, b; q)qk+1

= an+1(−b)nq(n+2)(n+1)/2(1− q)(q; q)n
(q, b/a, (a/b)q; q)∞
(aqn+1, bqn+1; q)∞

δmn, m, n ∈ N0.

(iii) Generalized monic big q-Laguerre polynomials (Definition 2.1)
Let a, b ∈ R. For each n ∈ N0 and each x ∈ R, we define the nth degree generalized
monic big q-Laguerre polynomial Pn(·; a, b; q) by

Pn(x; a, b; q) =
n∑

k=0

(−1)k
[

n
k

]
q
(aqk+1

; q)n−k(bqk+1
; q)n−kqk(k+1−2n)/2(x; q)k .

(iv) Three term recurrence relation (Proposition 2.1)
For n ∈ N0 and a, b ∈ R,

Pn+1(x; a, b; q) =
(

x − A(a,b;q)n

)
Pn(x; a, b; q)− B(a,b;q)n Pn−1(x; a, b; q),

where

A(a,b;q)n = 1− (1− aqn+1)(1− bqn+1)− a(−b)qn+1(1− qn),

B(a,b;q)n = a(−b)qn+1(1− qn)(1− aqn)(1− bqn).

When a, b ∈ {q−1, q−2, . . .} ∪ {0}, no orthogonality results can be deduced from Favard’s
theorem.

(v) Iterated forward shift operator (Corollary 2.1)
For n ∈ N0, 0 ≤ k ≤ n + 1, and a, b ∈ R,

Dk
q Pn(x; a, b; q) =

(qn−k+1
; q)k

(1− q)k
qk(k−n)Pn−k(q

k x; aqk, bqk
; q).

(vi) Factorization (Proposition 2.3)
For a fixed N ∈ N, for all b ∈ R, and for each n ≥ N ,

Pn(x; q
−N , b; q) = (−1)N q N (N+1−2n)/2(x; q)N Pn−N (q

N x; q N , bq N
; q). (6.22)

(vii) Evaluations on the lattice points (Corollary 2.3)
Let N ∈ N and let b ∈ R. For n ≥ N ,

Dk
q Pn(q

− j
; q−N , b; q) = 0, 0 ≤ k ≤ j ≤ N − 1. (6.23)

(viii) q-Sobolev orthogonality (Theorem 3.1).

Theorem 6.1. For each positive integer N, there exists a symmetric and positive definite
matrix A, of order N, such that the family of generalized monic big q-Laguerre polyno-
mials {Pn(·; q−N , b; q)}∞n=0, with b < 0, is orthogonal with respect to the inner product

(·, ·)
(N ;A)
(b;q) defined by

(p1, p2)
(N ;A)
(b;q) =

((
p1(q

−k)
)N−1

k=0

)
A

((
p2(q

−k)
)N−1

k=0

)t

+

∫ q

bq N+1
(b−1q−N x; q)∞ (D

N
q p1(q

−N x))(DN
q p2(q

−N x)) dq x, p1, p2 ∈ P.
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6.2. The generalized little q-Laguerre polynomials

Monic little q-Laguerre polynomials pn(·; a|q) are monic little q-Jacobi polynomials
pn(·; a, b|q) with b = 0. Therefore, setting b = 0 in all the results of Sections 4 and 5, we will
obtain results for the family of monic little q-Laguerre polynomials, similar to those obtained
for the monic little q-Jacobi system. As in the previous subsection, we will summarize all these
results, that have been previously obtained in [20].

(i) Definition as a basic series (4.16)
Let a ∈ R \ {q−1, q−2, . . .}. For each n ∈ N0 we define the nth degree monic little q-
Laguerre polynomial pn(·; a|q) by

pn(x; a|q) = (−1)nqn(n−1)/2(aq; q)n 2φ1

(
q−n, 0

aq

∣∣∣∣ q; qx

)
, x ∈ R.

(ii) Orthogonality relation (4.15)
For 0 < a < q−1,

1
(q; q)∞

∫ 1

0
(qx; q)∞x logq a pm(x; a|q)pn(x; a|q) dq x

=

∞∑
k=0

(aq)k

(q; q)k
pm(q

k
; a|q)pn(q

k
; a|q) = anqn2 (q; q)n

(aqn+1; q)∞
δmn, m, n ∈ N0.

(iii) Generalized monic little q-Laguerre polynomials (Definition 4.1)
Let a ∈ R. For each n ∈ N0 and each x ∈ R, we define the nth degree generalized monic
little q-Laguerre polynomial pn(·; a|q) by

pn(x; a|q) =
n∑

k=0

(−1)n
[

n
k

]
q
(aqk+1

; q)n−kq(n−k)(n−k−1)/2(−x)k .

(iv) Three term recurrence relation (Proposition 4.1)
For n ∈ N0 and a ∈ R,

pn+1(x; a|q) =
(

x − A(a;q)n

)
pn(x; a|q)− B(a;q)n pn−1(x; a|q),

where A(a;q)n = qn(1 + a − aqn(1 + q)) and B(a;q)n = aq2n−1(1 − qn)(1 − aqn). When
a ∈ {q−1, q−2, . . .} ∪ {0}, no orthogonality results can be deduced from Favard’s theorem.

(v) Iterated forward shift operator (Corollary 4.1)
For n ∈ N0, 0 ≤ k ≤ n + 1, and a ∈ R,

Dk
q pn(x; a|q) =

(qn−k+1
; q)k

(1− q)k
pn−k(x; aqk

|q).

(vi) Factorization (Proposition 4.3)
For a fixed N ∈ N, and for each n ≥ N ,

pn(x; q
−N
|q) = x N pn−N (x; q

N
|q).

(vii) 0 as a q-zero of order N (Corollary 4.2)
Let N be a fixed positive integer. For n ≥ N ,

Dk
q pn(0; q−N

|q) = 0, 0 ≤ k ≤ N − 1.

(viii) q-Sobolev orthogonality (Theorem 5.1).
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Theorem 6.2. For each positive integer N, there exists a symmetric and positive definite
matrix A, of order N, such that the family of generalized monic little q-Laguerre polyno
mials {pn(·; q−N

|q)}∞n=0 is orthogonal with respect to the inner product (·, ·)(N ;A)q defined
by

(p1, p2)
(N ;A)
q =

(
p1(0), Dq p1(0), . . . , DN−1

q p1(0)
)

A

×

(
p2(0), Dq p2(0), . . . , DN−1

q p2(0)
)t

+

∞∑
k=0

qk

(q; q)k

(
DN

q p1(q
k)
) (

DN
q p2(q

k)
)
, p1, p2 ∈ P. (6.24)
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Appendix. More about factorization results

In this section we will give some factorization properties for the families of generalized monic
big and little q-Jacobi polynomials, which are closely related to those we have stated above
(Propositions 2.3 and 4.3). For some of these results we will need the relation Pn(x; a, b, 0; q) =
(aq)n pn((aq)−1x; b, a|q), that can be rewritten also in the form pn(x; a, b|q) = (bq)−n

Pn(bqx; b, a, 0; q) (for a different normalization, in the classical setting, see [15, p. 74]).
Using the relation above between big and little monic q-Jacobi polynomials, and also

Proposition 4.3, we can give a factorization result for the monic big q-Jacobi polynomials when
their second parameter equals q−N and their third parameter vanishes.

Proposition A.1. For a fixed N ∈ N and a ∈ R \ {q N−2, q N−3, . . .}, we have

Pn(x; a, q−N , 0; q) = x N Pn−N (x; a, q N , 0; q), n ≥ N .

Very similar calculations to those in the proof of Proposition 2.3 led us to the following
result, in which we establish the third factorization result for the generalized monic big q-Jacobi
polynomials, now when their third parameter equals q−N .

Proposition A.2. For a fixed N ∈ N and a ∈ R we have, for each b ∈ R such that ab 6∈
{q−2, q−3, . . .}, and for each n ≥ N,

Pn(x; a, b, q−N
; q) = (−1)N q N (N+1−2n)/2(x; q)N Pn−N (q

N x; aq N , bq N , q N
; q).

Suitable adaptations of Corollaries 2.2 and 2.3 give us:

Corollary A.1. Let N be a fixed positive integer, let a be an arbitrary real number, and let b be
a real number such that ab 6∈ {q−2, q−3, . . .}. For n ≥ N and 0 ≤ k ≤ j ≤ N − 1,

Pn(q
− j
; a, b, q−N

; q) = 0,

Dk
q Pn(q

− j
; a, b, q−N

; q) = 0.
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We can also give a factorization result for the monic little q-Jacobi polynomials, similar to
that in Proposition 4.3, but now when their second parameter equals q−N .

Proposition A.3. For a fixed N ∈ N and for a ∈ R \ {q N−2, q N−3, . . .}, we have

pn(x; a, q−N
|q) = (−1)N q−N (N+1−2n)/2(q1−N x; q)N pn−N (q

−N x; a, q N
|q), n ≥ N .

Proof. Using the relation between big and little monic q-Jacobi polynomials and Proposition 2.3,
we get

pn(x; a, q−N
|q) = q(N−1)n Pn(q

1−N x; q−N , a, 0; q)

= q(N−1)n(−1)N q N (N+1−2n)/2(q1−N x; q)N Pn−N (qx; q N , a, 0; q)

= (−1)N q−N (N+1−2n)/2(q1−N x; q)N pn−N (q
−N x; a, q N

|q), n ≥ N . �

In closing, we note that from Proposition A.2 we have a new result for the generalized monic
big q-Laguerre polynomials, similar to (6.22) and (6.23), that reads:

Proposition A.4. For a fixed N ∈ N, for all reals a, and for n ≥ N,

Pn(x; a, q−N
; q) = (−1)N q N (N+1−2n)/2(x; q)N Pn−N (q

N x; aq N , q N
; q),

Dk
q Pn(q

− j
; a, q−N

; q) = 0, 0 ≤ k ≤ j ≤ N − 1.
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