Continued Fractions and Linear Recurrences

By W. H. Mills

Abstract. Let t_0 , t_1 , t_2 , \cdots be a sequence of elements of a field F. We give a continued fraction algorithm for $t_0x + t_1x^2 + t_2x^3 + \cdots$. If our sequence satisfies a linear recurrence, then the continued fraction algorithm is finite and produces this recurrence.

More generally the algorithm produces a nontrivial solution of the system

$$\sum_{j=0}^{s} t_{i+j} \lambda_{j}, \qquad 0 \leqslant i \leqslant s-1,$$

for every positive integer s.

1. Let t_0, t_1, t_2, \cdots be a sequence of elements of a field F. Set

$$T = \sum_{i=0}^{\infty} t_i x^j.$$

Let d be a nonnegative integer. We say that T^* is an approximation of T of degree d if there exist polynomials V and W such that $T^* = V/W$, deg V < d, deg $W \le d$, $x \nmid W$, and $x^{2d} \mid WT - V$.

We shall give a continued fraction expansion for xT. This yields polynomials V_i , W_i , and integers d_i , $0 = d_1 < d_2 < d_3 < \cdots$, such that $(V_i, W_i) = 1$ and V_i/W_i is an approximation of T of degree d_i . Suppose T^* is any approximation of T of some degree d. Then $T^* = V_i/W_i$ for that value of i such that $d_i \le d < d_{i+1}$.

If the sequence of the t_j satisfies a linear recurrence of degree d, but not one of smaller degree, then there is an m such that $d_m = d$ and the linear recurrence is given by the polynomial W_m . In this case, $W_m T = V_m$, the continued fraction expansion, terminates at i = m, and we can determine W_m from the first 2d of the t_j , i.e., from those t_j such that $0 \le j \le 2d$.

Our algorithm is closely related to Zierler's version of Berlekamp's algorithm [1].

2. We consider continued fraction expansions of the form

$$\alpha = N_1 + \frac{1}{N_2 + \frac{1}{N_3 + \cdots}},$$

where N_1, N_2, N_3, \cdots are elements from some field E. We can write

Received January 28, 1974.

AMS (MOS) subject classifications (1970). Primary 12C10, 10F20.

Copyright © 1975, American Mathematical Society

$$\alpha = N_1 + R_1$$
, $1/R_1 = N_2 + R_2$, $1/R_2 = N_3 + R_3$, · · · .

If $R_m = 0$ for some m, then the continued fraction terminates with N_m . Otherwise it is an infinite continued fraction.

In the classical case, α is a real number, the N_i are integers, and $0 \le R_i < 1$ for all *i*. We are interested in a different case.

We set

(1)
$$P_0 = 1, \quad Q_0 = 0; \quad P_1 = N_1, \quad Q_1 = 1,$$

(2)
$$P_i = N_i P_{i-1} + P_{i-2}, \quad i \ge 2,$$

and

(3)
$$Q_i = N_i Q_{i-1} + Q_{i-2}, \quad i \ge 2.$$

It is well known, and easy to show, that

$$P_1/Q_1 = N_1$$
, $P_2/Q_2 = N_1 + 1/N_2$,
 $P_3/Q_3 = N_1 + 1/(N_2 + 1/N_3)$, · · · .

The sequence P_1/Q_1 , P_2/Q_2 , P_3/Q_3 , \cdots converges to α in many cases, including the classical case.

We put

$$\Delta_i = \alpha Q_i - P_i, \qquad i \geqslant 0.$$

Then we have

$$\Delta_0 = -1, \quad \Delta_1 = \alpha - N_1$$

and

(5)
$$\Delta_i = N_i \Delta_{i-1} + \Delta_{i-2}, \quad i \ge 2.$$

Clearly $R_1 = \alpha - N_1 = -\Delta_1/\Delta_0$. Since $R_{i+1} = -N_{i+1} + 1/R_i$ it follows from (5), by induction on i, that

(6)
$$R_i = -\Delta_i/\Delta_{i-1}, \quad i \ge 1.$$

3. We now take E to be the field of all series of the form $\sum_{j=k}^{\infty} a_j x^j$, where the a_j are elements of the field F and k is a rational integer which may be negative. For convenience let y=1/x. We set $\alpha=xT$ and $N_1=0$. Then $R_1=\alpha=xT$. We now define the N_i and R_i inductively using

(7)
$$1/R_{i-1} = N_i + R_i, \quad i \ge 2,$$

where we take N_i to be a polynomial in y and $x|R_i$. Thus if

$$1/R_{i-1} = \sum_{j=k}^{\infty} a_j x^j, \quad a_k \neq 0,$$

it turns out that k < 0 and we have

$$N_i = \sum_{j=k}^{0} a_j x^j = \sum_{u=0}^{-k} a_{-u} y^u$$
 and $R_i = \sum_{j=1}^{\infty} a_j x^j$.

This determines the N_i and R_i uniquely. If $R_m = 0$ for some m, then the process terminates at this point. The P_i , Q_i , and Δ_i are now determined by (1), (2), (3), (4), and (5).

We shall write $x^r || A$ if x^r divides A, but x^{r+1} does not divide A. This means that A is of the form $A = \sum_{j=r}^{\infty} a_j x^j$ with $a_r \neq 0$. Let $x^{ri} || R_i$, $i \geq 1$. If $R_m = 0$, we set $r_m = \infty$. Then $r_i \geq 1$ for $i \geq 1$. For $i \geq 2$, N_i is a polynomial in y of degree r_{i-1} . Set

(8)
$$d_i = \sum_{j=1}^{i-1} r_j.$$

Then we have $0 = d_1 < d_2 < d_3 < \cdots$. It follows from (1) and (3), by induction on *i*, that Q_i is a polynomial in *y* of degree d_i . Similarly, for $i \ge 2$, P_i is a polynomial in *y* of degree $d_i - r_1$. Set

$$V_i = x^{d_i-1} P_i, \quad W_i = x^{d_i} Q_i.$$

Then V_i and W_i are polynomials in x, deg $V_i < d_i$, and deg $W_i \le d_i$. Moreover, W_i has a nonzero constant term so that $x
mid W_i$. Now

$$TW_i - V_i = x^{d_i - 1} (\alpha Q_i - P_i) = x^{d_i - 1} \Delta_i.$$

Since $\Delta_0 = -1$, (6) gives us

$$\Delta_i = (-1)^{i+1} \prod_{j=1}^i R_j.$$

Since $x^{r_j}||R_i$, we have

(9)
$$x^{d_{i+1}} \| \Delta_i$$

by (8). Hence

(10)
$$x^{d_i + d_{i+1} - 1} || TW_i - V_i.$$

Therefore, $x^{2d_i}|TW_i-V_i$ so that V_i/W_i is an approximation of T of degree d_i . LEMMA 1. Let T^* be an approximation of T of degree d. Let i be the

integer such that $d_i \leq d < d_{i+1}$. Then $T^* = V_i/W_i$.

Proof. We have $T^* = V/W$, where deg $W \le d$, deg V < d, and $x^{2d}|WT - V$. Now $d + d_i \le 2d$ so that $x^{d+d_i}|WT - V$. Moreover, $d + d_i \le d_i + d_{i+1} - 1$ so that $x^{d+d_i}|W_iT - V_i$ by (10). Since

$$V_i W - V W_i = W_i (WT - V) - W(W_i T - V_i),$$

we have

$$x^{d+d_i}|V_iW - VW_i.$$

Now the degree of $V_iW - VW_i$ is less than $d + d_i$. Therefore $V_iW - VW_i = 0$, so that

$$T^* = V/W = V_i/W_i$$
.

LEMMA 2. If $V_i/W_i = V_j/W_i$, then i = j.

Proof. Suppose $V_i/W_i = V_j/W_j$. Then we have $V_i = VD$, $W_i = WD$, $V_j = VE$, $W_j = WE$ for suitable polynomials V, W, D, E with (V, W) = 1. Since $x \nmid W_i$, we have $x \nmid D$ so that (10) yields

$$x^{d_i+d_{i+1}-1}||TW-V.$$

Similarly

$$x^{d_j+d_{j+1}-1}||TW-V.$$

Hence

$$d_i + d_{i+1} - 1 = d_i + d_{i+1} - 1.$$

Therefore, i = j.

LEMMA 3. $(V_i, W_i) = 1$.

Proof. Suppose $(V_i, W_i) = D$ where $\deg D > 0$. Then $V_i = VD$, $W_i = WD$ for suitable polynomials V, W such that $x \nmid W$, $\deg W < d_i$, and $\deg V < d_i - 1$. Moreover $x \nmid D$ so that $x^{2d_i} | TW - V$. Hence V/W is an approximation of T of degree less than d_i . By Lemma 1 we have $V/W = V_j/W_j$ for some j < i. This contradicts Lemma 2.

Lemma 4. For any particular value of i we have either $\deg V_i = d_i - 1$ or $\deg W_i = d_i$.

Proof. Since $\deg W_1 = 0 = d_1$, we may suppose i > 1. If the result is false, then V_i/W_i is an approximation of T of degree less than d_i . By Lemma 1 this implies that $V_i/W_i = V_i/W_j$ for some j < i, which contradicts Lemma 2.

4. Let $\{t_j\}=\{t_0,\,t_1,\,\cdots,\,t_{n-1}\}$ be a finite sequence of elements of F, and set

$$T = \sum_{i=0}^{n-1} t_j x^j.$$

Let W be a polynomial of degree s with a nonzero constant term. Thus $W = \sum_{j=0}^{s} w_j x^j$, where the w_j are elements of F, $w_0 \neq 0$, $w_s \neq 0$. The linear recurrence given by W is

(11)
$$\sum_{i=0}^{s} w_i t_{k-i} = 0.$$

If (11) holds for a particular value k_0 of k, we say that the linear recurrence W holds

for k_0 . If (11) holds for all values of k for which the left side is defined, i.e., for $s \le k \le n-1$, then we say that the sequence $\{t_i\}$ satisfies the linear recurrence W.

Whenever we speak of a linear recurrence W we shall mean a polynomial W with a nonzero constant term. The degree of the linear recurrence is defined to be the degree of this polynomial.

In order to determine W, up to a multiplicative constant, we must have (11) satisfied by at least s values of k. Hence we must have $2s \le n$. Our problem is to determine whether or not the sequence $\{t_j\}$ satisfies a linear recurrence of degree $\le n/2$, and if so to determine the linear recurrence of lowest degree that $\{t_j\}$ satisfies.

Let $h = \lfloor n/2 \rfloor$. Thus h is an integer and either n = 2h or n = 2h + 1. Let xT be expanded in a continued fraction as indicated in Section 2 and Section 3. This gives us polynomials V_i and W_i and integers d_i . Let m be the integer such that $d_m \le h < d_{m+1}$. This is equivalent to

$$(12) 2d_m \le n < 2d_{m+1}.$$

Now suppose that the sequence $\{t_j\}$ satisfies a linear recurrence W of degree s, where $s \le n/2$. Thus $s \le h$. We suppose W chosen so that s is minimal. Set $V = \sum_{j=0}^{s-1} v_j x^j$, where

$$v_j = \sum_{i=0}^j w_i t_{j-i}.$$

Then $x^n|TW-V$ by (11) so that V/W is an approximation of T of degree h. More precisely it is an approximation of T of degree d for any d such that $s \le d \le h$. By Lemma 1 and the choice (12) of m we have $V/W = V_m/W_m$. Since W is of minimal degree, we have (V, W) = 1. Moreover $(V_m, W_m) = 1$ by Lemma 3, so that $W = \lambda W_m$ for some nonzero element λ of F.

More generally, suppose only that the linear recurrence W holds for those k such that $h \le k \le n-1$, that deg $W \le h$, and that W is a linear recurrence of minimal degree with these properties. As above there is a polynomial V such that V/W is an approximation of T of degree h, (V, W) = 1, and $W = \lambda W_m$ for some nonzero λ in F.

It is easy to see that there need not be such a linear recurrence. For example, we may take $\{t_j\} = \{0, 0, \cdots, 0, 1\}$. However, we have shown that if there is one, then it must be W_m , up to a multiplicative constant.

Now

$$x^{d_{m}+d_{m+1}-1} ||TW_{m} - V_{m}||$$

by (10). Hence if $n \ge d_m + d_{m+1}$, then $\{t_j\}$ does not satisfy the linear recurrence W_m , in fact W_m fails to hold for $d_m + d_{m+1} - 1$. Thus we have the following result:

THEOREM 1. If $d_m + d_{m+1} \le n \le 2d_{m+1}$, then the sequence $\{t_j\}$ does

not satisfy any linear recurrence of degree $\leq n/2$. In fact, there is no linear recurrence of degree $\leq n/2$ that holds for all k such that $h \leq k \leq n-1$.

Now suppose that $n < d_m + d_{m+1}$. Then the linear recurrence W_m holds for all k in the range $d_m \le k \le n-1$. We have $\deg W_m \le d_m$. If $\deg W_m = d_m$, then $\{t_j\}$ satisfies the linear recurrence W_m . However, if $\deg W_m < d_m$, then $\deg V_m = d_m - 1$ by Lemma 4, and, therefore, the linear recurrence W_m fails to hold at $d_m - 1$. Thus we have the following result:

THEOREM 2. Suppose $2d_m \leq n < d_m + d_{m+1}$. If $\deg W_m = d_m$, then W_m is a linear recurrence of minimal degree satisfied by $\{t_j\}$. If $\deg W_m < d_m$, then there is no linear recurrence of degree $\leq n/2$ which is satisfied by $\{t_j\}$. However, W_m is a linear recurrence of minimal degree that holds for all k such that $h \leq k \leq n-1$. It holds for all k in the range $d_m \leq k \leq n-1$, and fails to hold for d_m-1 .

5. In this section, we shall describe an efficient method of computing the polynomial W_m . As before, let $\{t_j\} = \{t_0, t_1, \cdots, t_{n-1}\}$ be the finite sequence we are interested in. We start with $N_1 = 0$, $\Delta_0 = -1$, and

$$\Delta_1 = xT - N_1 = \sum_{j=0}^{n-1} t_j x^{j+1}.$$

For $i \ge 2$, (6) and (7) give us

$$N_i + R_i = 1/R_{i-1} = -\Delta_{i-2}/\Delta_{i-1}$$

where $x|R_i$ and N_i is a polynomial in $y,\ y=1/x$. Thus N_i can be obtained from Δ_{i-2} and Δ_{i-1} by an ordinary division process. Then Δ_i is given by (5): $\Delta_i=N_i\Delta_{i-1}+\Delta_{i-2}$. In this way, the N_i and the Δ_i can be successively obtained. We must continue this out to i=m where $2d_m \le n < 2d_{m+1}$. Since $x^{d_i}||\Delta_{i-1}$ by (9), we know at once when we have reached i=m. If $d_m+d_{m+1}\le n$, then there is no solution. If $d_m+d_{m+1}>n$, then we calculate Q_m from the N_i and the relations $Q_0=0$, $Q_1=1$, $Q_i=N_iQ_{i-1}+Q_{i-2}$.

If Q_m has a nonzero constant term, then $\deg W_m = d_m$ and $W_m = x^{d_m}Q_m$ is the required linear recurrence. If Q_m has no constant term, then $\deg W_m < d_m$ and $\{t_j\}$ does not satisfy a linear recurrence of degree $\leq n/2$. However, in this case, $W_m = x^{d_m}Q_m$ is a linear recurrence that holds for all k such that $d_m \leq k \leq n-1$.

We note that $x^{d_i}\|\Delta_{i-1}$, $x^{d_{i-1}}\|\Delta_{i-2}$, and $d_i=r_{i-1}+d_{i-1}$. Hence in performing the division $\Delta_{i-2}/\Delta_{i-1}$ we need only use the first $r_{i-1}+1$ terms of Δ_{i-2} and the same number of terms of Δ_{i-1} . This is sufficient to determine N_i completely.

Finally we note that it is only necessary to calculate Δ_i out to the term in x^{n-d_i} . This corresponds to the fact that $\Delta=xT$ is known only out to the term in x^n . To see this, consider the division of Δ_{i-2} by Δ_{i-1} . We need $r_{i-1}+1$ terms of each. More terms of Δ_{i-2} are assumed known than of Δ_{i-1} . The number of terms of Δ_{i-1} that we have is $n-d_{i-1}-d_i+1=n-2d_i+r_{i-1}+1$. Since we

may suppose $i \leq m$, this is at least $r_{i-1}+1$ terms. Thus N_i may be computed exactly. Clearly if we know Δ_{i-2} out to the term in $x^{n-d_{i-2}}$ and Δ_{i-1} out to the term in $x^{n-d_{i-1}}$, then once N_i is known as a polynomial in y of degree r_{i-1} , we may calculate Δ_i out to the term in x^{n-d_i} .

Tables 1 and 2 give examples of the calculation for small n and F = GF(2). The unnecessary terms of Δ_i , i.e., those beyond x^{n-d_i} , are given in parenthesis. In the first example n=12, m=3, $d_3=3$, $d_4=7$, $d_m+d_{m+1} \le n$, so there is no solution and the Q_i are not calculated. In the second example, the sequence satisfies the linear recurrence x^4+x+1 .

TABLE 1
$$F = GF(2), \ n = 12, \ \{t_j\} = \{100101110111\}$$

$$i \quad N_i \qquad \qquad \Delta_i$$

$$0 \quad - \qquad 1$$

$$1 \quad 0 \qquad x + x^4 + x^6 + x^7 + x^8 + x^{10} + x^{11} + x^{12}$$

$$2 \quad y \qquad x^3 + x^5 + x^6 + x^7 + x^9 + x^{10} + x^{11}$$

$$3 \quad y^2 + 1 \quad x^7(+x^{12})$$

There is no linear recurrence of degree ≤ 6 .

TABLE 2
$$F = GF(2), \ n = 8, \ \{t_j\} = \{11101011\}$$

$$i \quad N_i \qquad \Delta_i \qquad Q_i$$

$$0 \quad - \qquad 1 \qquad \qquad 0$$

$$1 \quad 0 \qquad x + x^2 + x^3 + x^5 + x^7 + x^8 \quad 1$$

$$2 \quad y + 1 \quad x^3 + x^4 + x^5 + x^6 (+x^8) \qquad y + 1$$

$$3 \quad y^2 \qquad x^4 + x^5 (+x^6 + x^7 + x^8) \qquad y^3 + y^2 + 1$$

$$4 \quad y \qquad (x^7 + x^8) \qquad y^4 + y^3 + 1$$

The linear recurrence is $x^4(y^4 + y^3 + 1) = x^4 + x + 1$.

6. We now consider the system

(13)
$$\sum_{j=0}^{s} t_{i+j} \lambda_j, \quad 0 \leq i \leq s-1,$$

of s linear equations in s+1 unknowns. This system must have at least one non-trivial solution in F. If we set

$$\Lambda = \sum_{j=0}^{s} \lambda_j x^{s-j},$$

then we can write $\Lambda = x^r W$, where W is a polynomial with nonzero constant term,

and deg $W \le s-r$. If (13) holds, then there is a polynomial V such that deg V < s-r and $X^{2s-r}|TW-V$. Thus V/W is an approximation of T of degree s-r. Hence $V/W = V_m/W_m$ for some m with $d_m \le s-r$ and $d_m + d_{m+1} - 1 \ge 2s-r$, so that $d_m \le s < d_{m+1}$. Thus we see that our algorithm can be used to solve the system (13) for any positive integer s.

Institute for Defense Analyses Communications Research Division Princeton, New Jersey 08540

1. NEAL ZIERLER, "Linear recurring sequences and error-correcting codes," Error Correcting Codes, edited by H. B. Mann, Wiley, New York, 1968, pp. 47-59. MR 40 #2438.