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ON THE MELLIN TRANSFORM OF A PRODUCT OF
HYPERGEOMETRIC FUNCTIONS
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(Received 17 June 1996)

Abstract

We obtain representations for the Mellin transform of the product of generalized hypergeo-
metric functions0F1[�a2x2]1F2[�b2x2] for a;b > 0. The later transform is a generaliza-
tion of the discontinuous integral of Weber and Schafheitlin; in addition to reducing to other
known integrals (for example, integrals involving products of powers, Bessel and Lommel
functions), it contains numerous integrals of interest that are not readily available in the
mathematical literature. As a by-product of the present investigation, we deduce the second
fundamental relation for3F2[1]. Furthermore, we give the sine and cosine transforms of

1F2[�b2x2].

1. Introduction

Although definite integrals of products of two generalized hypergeometric functions
have numerous applications in pure and applied mathematics (see, for example, [3]),
not all such integrals have been collected in tables or are readily available in the
mathematical literature. In what follows, we shall consider fora > 0 andb > 0 one
such rather general improper integral, namely the Mellin transform:
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Convergence of this integral will be discussed in Section 2.
If Þ D þ, the above Mellin transform reduces to the hypergeometric formulation of

the discontinuous integral of Weber and Schafheitlin (cf. [11, p. 398] and [6, Equations
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(2.3) to (2.5)]) which, since we shall need it later, we record below:Z 1
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.0< b < aI0< <.s/ < <.2C ¼C ¹//:

The above integral is, in fact, continuous ata D b. It is called “discontinuous”
because the representations on the right-hand sides of Equations (1.2a) and (1.2c) are
not analytic continuations of eachother. Thus “discontinuous” refers to a discontinuity
in representation acrossa D b. It should be noted also that whena D b, if ¼ � ¹
is an odd positive integer, then Equation (1.2b) actually holds true for 0< <.s/ <
<.2C ¼C ¹/ (see Watson’s treatise [11, p. 403] for further details).

In addition, we record for later use the well-known Mellin transform (see, for
example, [7, Section 8.4.47.(1), p. 717])Z 1
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wherea > 0 and 0< <.s/ < <.3
2
C ¼/.

Since we may write Bessel, Struve and Lommel functions, respectively, as (see, for
example, [10, p. 44])
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once a representation in terms of generalized hypergeometric functions is deduced for
the Mellin transformF.s/ (which will be done in Section 5), not only will we be able
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to obtain immediately all the known special cases (for example, integrals containing
the product of two Bessel functions or the integral of Weber and Schafheitlin [11,
pp. 401–403], products of Bessel and Lommel functions [7, Section 2.9.5.(1), p. 110],
and products of Bessel and Struve functions [7, Section 2.7.14.(1), p. 88]), but we
shall also be able to specialize, for example, to products of Bessel functions and the
Fresnel sine and cosine integrals
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and every other special case of1F2 that is of interest.
Recently, M. A. Chaudhry [2] reconsideredF.s/ specialized to Bessel and Lommel

functionss¼;¹.z/ and discussed the importance of these integrals in many applications.
Unfortunately, Chaudhry’s results [2, Equation (4)] holds true for the Lommel func-
tions S¼;¹.z/ and not fors¼;¹.z/ and the right side of [2, Equation (6)] is in error by a
factor of 1

2. Aside from numerous typographical and other oversights in [2], the latter
two mentioned equations produced further erroneous results. Prudnikovet al. [7,
Section 2.22.4.(1), p. 337] records the Mellin transform of products of Bessel and
generalized hypergeometric functionsp Fq[z], but the result is obviously not correct
when p D q � 1, since the integral must be discontinuous.

2. Convergence of the Integral (1.1)

We shall need the following asymptotic results: forjxj ! 1 andj arg.x/j < ³
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The above results are further simplifications of more precise asymptotic formulas
which we shall record in Section 4 (see Equations (4.1) and (4.2)). Note that Equation
(2.2) reduces to Equation (2.1) if we setÞ D þ.

Replacingx by bx (b > 0) in Equation (2.2) and using Equation (2.1), it is easy to
see that we may also write forjxj ! 1 andj arg.x/j < ³
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which now yields an identity whena D þ.
Next, by multiplying Equation (2.3) by
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and, for z > 0 sufficiently large, integrating the result over.z;1/, we have for
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It is obvious that, in order for the Mellin transformF.s/ defined by equation (1.1)
to converge at its lower limit of integration, we must have<.s/ > 0. Further, from the
latter asymptotic result and the convergence criteria of equations (1.2) and (1.3), we
see that, forb 6D a, convergence at the upper limit of integration is attained, provided
that

<.s/ < <.2C ¼C ¹ C þ � Þ/ and <.s/ < <� 3
2
C 2Þ C ¼Ð :

If b D a, F.s/ converges, provided that

0 < <.s/ < <.1C ¼C ¹ C þ � Þ/ and 0< <.s/ < <� 3
2
C 2Þ C ¼Ð I

but if b D a and¼ � ¹ C Þ � þ is an odd positive integer, thenF.s/ converges,
provided that

0 < <.s/ < <.2C ¼C ¹ C þ � Þ/ and 0< <.s/ < <� 3
2 C 2Þ C ¼Ð :
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We note that ifÞ D þ, the condition<.s/ < <.3
2 C 2Þ C ¼/ becomes superfluous,

since the second term in equation (2.4) is no longer present. This evidently completes
the analysis of the convergence ofF.s/.

3. The Incomplete Mellin Transform

If the upper limit of integration in equation (1.1) is replaced byz such thatjzj <1,
the integral is said to be incomplete and we define the Euler-type integral
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where, for convergence at the lower limit of integration,<.s/ > 0. But now the
parametersa andb may be arbitrary complex numbers.

The incomplete Mellin transformF.sI z/ is easily evaluated by expressing the
functions0F1 and 1F2 as hypergeometric sums, interchanging the resulting double
sum and integral and then performing the required term-by-term integrations. Or
the integral in equation (3.1) may be evaluated by using a tabulated result in Exton’s
handbook [3, Equation A(1.2.5), p. 172]. Either way we obtainF.sI z/ in terms
of a single Kamp´e de Fériet function which is everywhere convergent in its two
independent variables:
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where<.s/ > 0. Regions of convergence for Kamp´e de Fériet and other generalized
hypergeometric functions in two variables may be determined by using Horn’s theorem
for double series (see Srivastava and Karlsson [9, p. 57]).

Further, it is easy to show that the incomplete transformF.sI z/ in equation (3.2)
may be written in the following two different ways for<.s/ > 0:
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4. Asymptotic Formulas for pFpC1[�z2]

We shall want to evaluateF.sI z/ given by equations (3.3) and (3.4) asz! 1,
thereby obtaining the Mellin transformF.s/ defined by equation (1.1). To this
end, we record below somewhat simplified asymptotic formulas for the generalized
hypergeometric function

pFpC1[.ap/I .bpC1/I�z2]; p D 0;1;2:

These results are special cases of a general formula due to C. S. Meijer (circa 1946)
given by Luke [4, p. 203, Eq. (4)] forjzj ! 1 andj arg.z/j < ³=2:
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where

� D 1
2
.cC d C e� a� b� 1

2
/ and ¾.z/ D 2z� ³� C O.1

z
/:

Noting equation (1.4), we see that equation (4.1) is essentially the well-known
asymptotic formula for Bessel functions. We remark also that the right members of
equations (4.1) to (4.3) may be written in further abbreviated, yet useful, approximate
forms (cf. [5, p. 146])
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wherejzj ! 1; j arg.z/j < ³=2, andA; B;C; D are dependent on the parameters
of the functionpFpC1[�z2] .p D 0;1;2/.

5. Evaluation of the Mellin Transform (1.1)

Now that we have noted and developed some preliminaries, we are ready to derive
our main result for the Mellin transformF.s/ defined in equation (1.1) as
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where, for convergence of the integral (see Section 2),

0< <.s/ < <.2C ¼C ¹ C þ � Þ/

and

0< <.s/ < <
�

3

2
C 2Þ C ¼

�
:

If Þ D þ, the latter conditional inequality is superfluous and equations (5.1a) and
(5.1b) reduce, respectively, to equations (1.2c) and (1.2a). The casea D b will be
discussed in Section 6. In Section 7 we shall use equations (5.1) to derive the sine and
cosine transforms of1F2[�b2x2].
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whereD is obviously dependent on¼ andO.1
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Now, substituting the result in equation (5.3) for1F2[�a2z2] into equation (3.3),
we obtain
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The derivation of equation (5.1b) is similar to that of equation (5.1a), but is some-
what more complex in its details, because the asymptotic formula for2F3[�z2] given
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where
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Now, by using Equation (4.4) we can rewrite Equation (5.8) as
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as a hypergeometricm-summation, interchanging it with its precedingn-summation,
and then employing Equation (5.2), we arrive at

S1.z/ D 1

2
b�2Þzs�2Þ 0

�
s
2 � Þ

Ð
0.þ/0.1C ¹/

0
�
1C s

2
� ÞÐ0.þ � Þ/0.1C ¹ � Þ/

Ð
1X

mD0

.Þ/m.1C Þ � þ/m.Þ � ¹/m
�
Þ � s

2

Ð
m�

1C Þ � s
2

Ð
m

�� 1
b2z2

Ðm

m!
(5.10)

Ð 1F2

�
s
2
� Þ �mI

1C s
2
� Þ �m;1C ¼I � a2z2

½
:

We see from Equations (4.2) and (5.2) that1F2[�a2z2] in Equation (5.10) may be
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written as

1F2

�
s
2
� Þ �mI

1C s
2
� Þ �m;1C ¼I � a2z2

½
D z2Þ�s

as�2Þ

0.1C ¼/0 �1C s
2
� ÞÐ

0
�
1C ¼C Þ � s

2

Ð
Ð .�a2z2/m�
Þ � s

2

Ð
m

�
1C ¼C Þ � s

2

Ð
m

Ð 3F0

�
s

2
� Þ �m;0;

s

2
� Þ � ¼�mI I� 1

a2z2

½
C z�

3
2�¼

a
3
2C¼

0.1C ¼/0 �1C s
2
� ÞÐ

0
�

1
2

Ð
0
�

s
2 � Þ

Ð �
1C Þ � s

2

Ð
m�

Þ � s
2

Ð
m

�
1C O

�
1

z2

�½
Ð cos

�
2az� ³

2

�
3

2
C ¼

�
C O

�
1

z

�½
:

(5.11)

Upon noting in Equations (5.11) that3F0[�1=a2z2] D 1 for all integersm ½ 0, we
find from Equations (5.10) and (5.11) that

S1.z/ D 1
2
a�s

�
a2

b2

�Þ
0.1C ¼/0.1C ¹/0.þ/0 � s

2 � Þ
Ð

0.1C ¹ � Þ/0 �1C ¼C Þ � s
2

Ð
0.þ � Þ/

Ð
1X

mD0

.Þ/m.1C Þ � þ/m.Þ � ¹/m�
1C Þ � s

2

Ð
m

�
1C ¼C Þ � s

2

Ð
m

�
a2

b2

�m

m!

C 1
2

b�2Þ

a
3
2C¼

zs�¼�2Þ� 3
2

0.1C ¼/0.1C ¹/0.þ/
0
�

1
2

Ð
0.þ � Þ/0.1C ¹ � Þ/

�
1C O

�
1

z2

�½
Ð cos

�
2az� ³

2

�
3

2
C ¼

�
C O

�
1

z

�½
(5.12)

Ð 3F0

�
Þ;1C Þ � þ; Þ � ¹I I� 1

b2z2

½
:

Equation (5.12) may be written more simply as

S1.z/ D 1
2
a�s

�
a2

b2

�Þ
0.1C ¼/0.1C ¹/0.þ/0 � s

2
� ÞÐ

0.1C ¹ � Þ/0 �1C ¼C Þ � s
2

Ð
0.þ � Þ/

Ð 3F2

�
Þ;1C Þ � þ; Þ � ¹I

1C Þ � s
2
;1C ¼C Þ � s

2
I

a2

b2

½
(5.13)

C 1
2

A0
�
1C O

�
1

z2

�½
zs�¼�2Þ� 3

2 cos.2azC B0/

Ð 3F0

�
Þ;1C Þ � þ; Þ � ¹I I� 1

b2z2

½
;
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wherea < b and the definitions ofA0 andB0 are obvious.
Now, combining Equations (5.6), (5.9), and (5.13), we find that

F.sI z/ D 1
2b�s0

�
s
2

Ð
0
�
Þ � s

2

Ð
0.þ/0.1C ¹/

0.Þ/0
�
þ � s

2

Ð
0
�
1C ¹ � s

2

Ð 3F2

�
s
2;1C s

2 � þ; s
2 � ¹I

1C s
2
� Þ;1C ¼I

a2

b2

½
C 1

2a�s

�
a2

b2

�Þ
0.1C ¼/0.1C ¹/0.þ/0 � s

2 � Þ
Ð

0.1C ¹ � Þ/0 �1C ¼C Þ � s
2

Ð
0.þ � Þ/

Ð 3F2

�
Þ;1C Þ � þ; Þ � ¹I

1C Þ � s
2;1C ¼C Þ � s

2I
a2

b2

½
C 1

2 AzsCÞ�þ�¼�¹�2

�
1C O

�
1

z2

�½
cos.2azC B/ cos.2bzCC/

C 1
2

A0zs�¼�2Þ� 3
2

�
1C O

�
1

z2

�½
cos.2azC B0/ (5.14)

Ð 3F0

�
Þ;1C Þ � þ; Þ � ¹I I� 1

b2z2

½
:

Finally, recalling that

0< <.s/ < <.2C ¼C ¹ C þ � Þ/ and 0< <.s/ < <� 3
2
C 2Þ C ¼Ð ;

which secure the convergence ofF.sI z/ to F.s/, upon lettingz! 1, we see that
the third and fourth terms in Equation (5.14) vanish, and we are left with Equation
(5.1b). This evidently completes the derivation of Equations (5.1).

6. The Casea D b

The expressions on the right-hand side of Equations (5.1a) and (5.1b) are not
analytic continuations of each other. In particular, forÞ D þ we noted this in
Section 1 and mentioned also that the “discontinuous” nature ofF.s/ refers to the
discontinuity in its representation acrossa D b. However,F.s/ is continuous when
a D b. To see this, since the first integral on the right-hand side of Equation (2.4) is
continuous whena D b (see [11, p. 403]), then so is the integral on the left-hand side.
Thus also it is evident thatF.s/ is continuous whena passes throughb.

In addition, we showed in Section 2 that whena D b, a necessary condition that
the integralF.s/ converges is that

0< <.s/ < <.1C ¼C ¹ C þ � Þ/;
and a fortiori all three3F2 functions in equations (5.1) converge absolutely when
a D b, provided that the latter condition holds true. Thus, fora > 0,

0< <.s/ < <.1C ¼C ¹ C þ � Þ/ and 0< <.s/ < <.32 C 2Þ C ¼/;
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we deduce, respectively, from equations (5.1a) and (5.1b) thatZ 1
0

xs�1
0F1

� I
1C ¼I � a2x2

½
1F2

�
ÞI

þ;1C ¹I � a2x2

½
dx

D 1

2
a�s

0. s
2
/0.1C ¼/

0.1C ¼� s
2
/

3F2

�
Þ; s

2
; s

2
� ¼I

þ;1C ¹I1
½ (6.1)

and Z 1
0

xs�1
0F1

� I
1C ¼I � a2x2

½
1F2

�
ÞI

þ;1C ¹I � a2x2

½
dx

D 1
2
a�s

0. s
2
/0.Þ � s

2
/0.þ/0.1C ¹/

0.Þ/0.þ � s
2
/0.1C ¹ � s

2
/

3F2

�
s
2
;1C s

2
� þ; s

2
� ¹I

1C s
2
� Þ;1C ¼I1

½
C 1

2a�s
0.1C ¼/0.1C ¹/0.þ/0.s

2
� Þ/

0.1C ¹ � Þ/0.1C ¼C Þ � s
2
/0.þ � Þ/

Ð 3F2

�
Þ;1C Þ � þ; Þ � ¹I

1C Þ � s
2;1C ¼C Þ � s

2I
1
½
:

(6.2)

WhenÞ D þ, the second right member in equation (6.2) vanishes and it is easy
to see that the right-hand sides of equations (6.1) and (6.2) reduce, respectively, via
Gauss’s theorem to equation (1.2b). However, the3F2[1] functions in equations (6.1)
and (6.2) are not, in general, reducible, since their parameters are not interrelated [12].

If we equate the right members of equations (6.1) and (6.2), divide the result by
a�s=2, and then set

a D s

2
� ¼; b D s

2
; c D Þ; eD þ; and f D 1C ¹; (6.3)

we deduce the second fundamental relation for3F2[a;b; cIe; f I1], which is

3F2

�
a;b; cI

e; f I1
½

D 0.1� a/0.e/0. f /0.c� b/

0.e� b/0. f � b/0.1C b� a/0.c/
3F2

�
b;b� eC 1;b� f C 1I

1C b� c;1C b� aI1
½

C 0.1� a/0.e/0. f /0.b� c/

0.e� c/0. f � c/0.1C c� a/0.b/3F2

�
c; c� eC 1; c� f C 1I

1C c� b;1C c� aI1
½
:

The conditional inequality 0< <.s/ < <.3
2 C2ÞC¼/ with the relevant substitutions

of equations (6.3) may now be waived by appealing to the principle of analytic
continuation. That equation (6.4) manifests itself as a corollary is both surprising
and interesting, especially since Bailey [1] derives it by considering a certain contour
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integral, deforming its contour in two different ways, and then computing the integrals
via residues [1, p. 15].

Finally, we recall that in Section 2 we showed, in the casea D b, that F.s/
converges also when

0< <.s/ < <.2C ¼C ¹ C þ � Þ/ and 0< <.s/ < <� 3
2
C 2Þ C ¼Ð ;

provided that¼� ¹CÞ�þ is an odd positive integer. It is evident that equation (6.1)
does not hold true in this case since3F2[1] does not converge. It should be remarked
also that, in an earlier work, Srivastava and Exton [8] considered a generalization
of the Weber-Schafheitlin integral given in equation (1.2) for the product of several
Bessel (or0F1) functions.

7. The Sine and Cosine Transforms of1F2[�b2x2]

For brevity, we define

S .a;b/ :D
Z 1

0

sin.2ax/ 1F2[ÞIþ;  I�b2x2] dx

and

C .a;b/ :D
Z 1

0

cos.2ax/ 1F2[ÞIþ;  I�b2x2] dx;

which are, respectively, the sine and cosine transforms of1F2[�b2x2].
Since

sinzD z0F1

�
I 3

2
I�1

4
z2

½
and

coszD 0F1

�
I 1

2
I�1

4
z2

½
;

it is easy to deduce from equations (5.1) that

S .a;b/ D

8>>>>>>>>><>>>>>>>>>:

1
2a 3F2

"
1
2;1; ÞI
þ;  I

b2

a2

#
.0< b < a/

a
b2
.þ�1/.�1/

Þ�1 3F2

"
1;2� þ;2�  I

3
2;2� ÞI

a2

b2

#
C
p
³

2a

�
a2

b2

�Þ
Ð 0.þ/0. /0.1�Þ/
0.þ�Þ/0.�Þ/0. 1

2CÞ/
2F1

"
1C Þ � þ;1C Þ �  I

1
2
C ÞI

a2

b2

#
.0< a < b/;
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and

C .a;b/ D

8>>>>>><>>>>>>:

0 .0 < b < a/
p
³

2b

0.Þ� 1
2
/0.þ/0. /

0.Þ/0.þ� 1
2
/0.� 1

2
/
2F1

"
3
2�þ; 3

2 �  I
3
2
� ÞI

a2

b2

#
C
p
³

2a

�
a2

b2

�Þ
Ð 0. 1

2�Þ/0.þ/0. /
0.Þ/0.þ�Þ/0.�Þ/ 2F1

"
1C Þ � þ;1C Þ �  I

1
2
C ÞI

a2

b2

#
.0 < a < b/;

where

0< <.Þ/ < <.þ C  � 1
2
/:

8. Concluding Remarks

It should be mentioned that, by using a general result for the Mellin transform of
a product of generalized hypergeometric functions in [7, Section 2.22, p. 333],F.s/
defined by equation (1.1) may be represented by Meijer’sG-function. Thus, fora > 0
andb > 0, we have

F.s/ D 1

2
a�s0.1C ¼/0.1C ¹/0.þ/

0.Þ/
G1;2

3;3

�
b2

a2

þþþþ1� s
2
;1� Þ;1C ¼� s

2

0;�¹;1� þ
�
;

(8.1)

where

0 < <.s/ < <.2C ¼C ¹ C þ � Þ/ and 0< <.s/ < <� 3
2
C 2Þ C ¼Ð :

Furthermore, by using formulas for reducing theG-function to generalized hypergeo-
metric functions (see, for example, [4, Section 6.5, p. 230]), we may obtain equations
(5.1) from equation (8.1). Nonetheless, the derivation of equations (5.1) presented
herein is elementary in the sense that it does not require knowledge of theG-function
and its properties. In addition, the results given by equations (6.1), (6.2), and (6.4)
require a detailed analysis of the continuity and convergence criteria forF.s/ when
a D b, and, therefore, may not be deduced directly from equation (8.1).
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