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GENERALIZED FIBONACCI NUMBERS AND 
ASSOCIATED MATRICES 

E. P. MILES, JR., The Florida State University 

Introduction. We define k-generalized Fibonacci numbers (k _2) in such a 
way that for k =2 we get the ordinary Fibonacci numbers. We prove several 
interesting facts about these k-generalized numbers which reduce for k =2 to 
well-known properties of the ordinary Fibonacci numbers. We study a sequence 
of 2 by 2 nonsingular matrices with elements consecutive Fibonacci numbers 
whose members become arbitrarily ill-conditioned if we progress far enough in 
the sequence. This result is later generalized to obtain a sequence of k by k 
matrices with k-generalized Fibonacci numbers for elements and comparably 
ill-conditioned members. 

The k-generalized Fibonacci numbers fi,k are defined as follows: 
k 

(1) f1,k = 0, 0 ?<j _ k - 2, fk-l,k ='1 fjk = EfJ-n,k ji k. 
n-1 

When k= 2 the numbersfj,2, or simply fj, which satisfy 

(1)' fo = 0, ff = 1, fj =fj-1 +fj-2, j >1 

are the ordinary Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, * e . . We first state with- 
out proof three well-known (see for instance [1]) properties (2), (3), (4) of these 
fj. However, these properties are just special cases of their counterparts (2)", 
(3)", and (4)" for the fj,k which we prove later. The first properties to be gen- 
eralized are 

(2) fn = [(1 + \/5)n - (1 - \/5)n]/2/5, n = 0, 1, ... 

(3) lim f7+l/fn = (1 + AV5)/22 
fl-4 00 

2 
1n+1,. (4) fnfn+2 -fn+1 = (-1) n= 0, 1, 

It is convenient for recognizing the form which our generalizations will take 
to rewrite (2), (3), and (4) in terms of the concepts introduced in (5), (6), and (7) 
which follow. We consider the equation, 

(5) E2(x) = x2-X-1 = 0, 

having roots 

(6) rl = (1 - /5)/22 r2 = (1 + V/5)/2, ri < r2, 

and the family of 2 by 2 matrices, 

745 
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746 FIBONACCI NUMBERS AND ASSOCIATED MATRICES [October 

(7) = (f:+n fn+f) =0,1, fn.. (7) An 
~~~~~~fn+l fn+20 

1 

In terms of quantities just defined, (2), (3), and (4) become 

(2)' fn = rl/(r- r2) + r2/(r2-ri) 

(3)' lim fn+i/fn = r2, 

(4') 1AJ = (-1)n+l. 

Since the family of matrices A. defined by (7) has some interesting proper- 
ties not immediately apparent, we proceed with a development and discussion 
of these properties before passing to our generalizations. The matrix An is the 
nonsingular coefficient matrix for the system 

(8) fnxl + fn+lX2 = fn+2, fn+lXl + fn+2X2 = fn+3; 

with the obvious unique solution (1, 1). 
In view of (3) it is obvious that the system (8) becomes "nearly" dependent 

with increasing n, since the corresponding coefficients become almost propor- 
tional. This leads to excellent classroom illustrations of systems with integral 
coefficients and integral exact solutions which are highly unstable if the coeffi- 
cients are known only approximately. For instance, consider the system (8) for 
n= 10 under the assumption that all coefficients are exactly known except that 
of x2 in the second equation which may have an error no greater than .02%. The 
system may be indicated as follows: 

(9) 55x, + 89x2 = 144, 

89x1 + (144 ? e)X2 = 233, 0 ? e ? .0288. 

For e=0 the correct solution is (1, 1), for e=.02 it becomes (18.8, -10), for 
e=..018 it is (-159.2, 100). This wide variation in the solutions for small 
changes in e is to be expected since the system for e = 1/55 is inconsistent and 
hence has no solution at all. 

By using the P-condition number of von Neumann (absolute value of the 
ratio of larger eigenvalue of An to the smaller), we can make a precise statement 
about the ill-condition of An. The characteristic equation for An, 

(10) (fn - X) (fn+2 - X) 2fn+ = 0 

may, with the aid of (4), be written as 

(I1) X2 - (fn +fn+2)X + (-1)n+ = O. 

It is easily verified that Ao has eigenvalues Xi,o-ri= (1-V/5)/2 and X2,0=r2 
= (1 + V/5)/2 and P-condition number = r2/r, = r = (3 + \/5)/2. Likewise A1 has 
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19601 FIBONACCI NUMBERS AND ASSOCIATED MATRICES 747 

eigenvalues Xij = (3- VS)/2 = r2 and X2,1 = (3 + V/5)/2 = r2 and P-condition num- 
ber 42. This suggests the general result which we now prove* that A. has eigen- 
values el+ = 'rl, AX2, = r2+ and P-condition number r`n+2. From (5) we see that 
rlr2 -1. Then by (2)' we have 

n n n+2 n+2 

fn +fn+2 = r- + - + + r2 
ri-r2 r2-r1 r1-r2 r2-ri 

n+1 n+1 

= _ r (r-+ ri + r , _ + r2) 
(12) ri1-72 ri 2-71i \2 / 

n+1 n+1 

- 

i 
(-r2 +r1)+ 

r2 

(-71+7r2) 
ri-r2 r2-r 

n+1 n+1 
=ri + r2 

Using (12), (11) becomes sAX2 - (r+1 +rl+)>X +r +1r' =0, which obviously has 
the roots specified. The P-condition number of An is thus seen to be n22,+2 which 
becomes arbitrarily large as n increases. 

The conditions (1) completely determine the value offn,*. This is readily 
ascertainable from the general solution of the kth-order difference equation 
with constant coefficients, 

(13) aof(n + k) + alf(n + k-1) + + akf(n)=0, 

which has been known since Bernoulli (1728) (see, for instance, Aitken [2 ]). The 
general solution of (13) is of the form 

(14) f(n) = clzl + * * + CkZk 

whenever the algebraic equation 

(15) aoz1 + ajz'1- + *.*+ a = 0 

has k distinct roots z1, * *, Zk. Substituting for n the values 0, 1, , k -1 
in (14) imposes k independent and consistent conditions on the constants 
Cl, *. , Ck which determine them uniquely. 

Thus we turn now to a study of the roots of 

(5)1 Ek t (x) = X7c - X70-1 -*** - X - I = O) 

showing them to be distinct roots ri,k, *, k which may be ordered so that 

* An alternative proof involves showing that A'=A.-I, an interesting property noted by the 
author only after the first submission of the paper. This property, which for k > 2 does not apply to 
the An,k of this paper, has been generalized in the author's Classroom Note, On matrix slide rules, 
pages 788-791 of this issue of the MONTHLY. 
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748 FIBONACCI NUMBERS AND ASSOCIATED MATRICES [October 

(6)" r,k <1 1 < j _k - 1 and 1 < r7,k < 2. 

Since Ek'(1)=1-k<0 and Ekt(2)-1, there is at least one root of Ek"(x)=O 
on the open interval (1, 2). Let the largest such root be called rk,k We now show 
that Ek " (z) has no roots on the unit circle. In particular it does not have the root 
z-1, so we may write (5)" in equivalent form 

(16) zk = (Zk - 1)/(Z - 1), z j 1. 

Assuming that (16), and hence (5)", has a root cos 0+i sin 6= z we obtain, by 
substituting zi in (16), equating the square of the absolute values of each side, 
and simplifying, the condition cos kO = cos 8, which is satisfied only for 
8= (2n7r)/(k-1) or 0= (2nr)/(k +1) and integral n. The first value for 0 makes 
=z = 1 which is already ruled out; the second value for 0 makes z4 equal to 

1/z1 and, by (16), to - 1/zx, which is impossible. Thus (5) has no roots on the 
unit circle. It is now helpful to introduce 

(5') Ek' (z) = z*+ - 2zA + 1 = O, 

formed by multiplying (16) by z- 1 and collecting terms. Obviously Ek' = 0 has 
k roots in common with Ek," =0. It has one additional root, z= 1, on the unit 
circle and at least one root rk,k outside the unit circle. We show that its roots 
inside the unit circle are distinct. Any repeated root of Ek" = 0 would also be 
a root of (k+1)Zk-2kxk-1=0 and accordingly either z=0 or z=(2k)/(k+l). 
Of these possibilities z = 0, the only one inside the unit circle, is not a root of 
Bk' = 0. We complete our analysis of the roots of Ek" = 0 by showing that 
Bk=0 has exactly k -1 roots interior to the unit circle. We do this by showing 
that Ek' (z) and - 2zk +1=0 have the same number of zeros interior to the cir- 
cle PE, I%: Z = (1+ e) /' k, for sufficiently small positive e. Let f(z) = Z+1 and g(z) 
= -2zk + 1. On Fe we have if(z)I = (1 +,E) (k+1) Ik and I g(z) =-|-2(1 +c)ei+ 1I 
>2(1+e)-1=1+2e. Thus on r, 

I g(z) I /jf(z) I > [(1 + 2E)/[(1 + E)Q(+1)kIl = F(e). 

Now, F(0) =1 and 

(1 + e)(k+1)/k[2] - [1 + 2E][(k + 1)/k](1 + e)l1k 
F'(0) = (1 + e)(2k+2)/ / 

so that F'(0) = (k- 1)/k> 0. Thus for some positive e* sufficiently small we have 
F(E)> 1 for 0 <e < e*. 

Applying Rouche's theorem we see that, for all sufficiently small positive 
e, g(z) -2Zk + 1 and f(z) +g(z) = Ek' (z) have the same number of zeros in rP. 
Since e may be chosen as near zero as we wish, the k zeros of f(z) +g(z) must be 
in or on the unit circle. Only one of these zeros (z =1) is on the unit circle, so 
the other k-I distinct zeros must be interior to the unit circle. 

As noted above we may assume that the jth term of our k-generalized 
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1960] FIBONACCI NUMBERS AND ASSOCIATED MATRICES 749 

Fibonacci sequence is expressible as a linear combination of the jth powers of 
the distinct roots rlk, * , rk,k of Ek " = 0, that is, that 

k 

(17) fj,k = E B0(r,,k)i, j-O, 1, ,k-1, k, 
i=1 

Using (1) we see that the coefficients Bi are determined by the linear system 
k 

EBi(ri,k)m = Oy m = 0, 1, ** k-2, 
(18) i1 

k 

F. Bi(ri,k)k1 = 1, 
i-1 

of k equations in k unknowns. In solving (18) by Cramer's rule we see that 

(19) Bi= NI/DA, 

where Dk is the Vandermonde determinant 

1 *** 1 

rl,k . .rk;,k 

(20) DkA = (rik - 

k-1 k-1 
ri, k ... rk,k 

where, in the product, m > n, 2? m < k, and Ni is obtained from Dk by replacing 
its ith column by a column of k-1 zeros followed by a 1. Expanding Dk by its 
ith column we see that it is (- l)k+ times a Vandermonde determinant of order 
k-I involving all the rn,k except ri,k. Thus we have 

(21) Ni = (- 1)k+i II (rm,k - r,k) 

where, in the product, iFm>n#i, 2<rmnk. Substituting (21) and (20) in 
(19) we have 

(22) Bi= (1)k+i/ Ji(rm,k - rn,k) = JI2(ri,k -r,k)-l 

where, in II1, m=i or n=i, m>n, 2_m<k, and in fl2, iOn, 1<n<k. The 
last step in (22) follows on changing the sign of the k-i factors (rm,k -ri,k), m > i, 
and introducing the compensating factor (-l)- to preserve equality. Thus 
we have 

(2)" f, = F [TI2(rj,k -rj,) ](ri,)!. 
i=1 

We note that (2)' and (2) follow readily from (2)" in the special case k = 2. 
From (2)" and the facts that (a) I rijkI < 1, i <k, and (b) I rk,kI > 1, we con- 

clude that limj-.. (fj,k-Bkrj) =0, whence we obtain 
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750 FIBONACCI NUMBERS AND ASSOCIATED MATRICES [October 

(3)" lim (fj+1,k)/(fj,k) - rk,k = 0, 

which includes (3)' and (3) as special cases. 
The matrix Aj,k which occurs in the generalization we make of (4)' is de- 

fined as follows. Aj, k is the matrix with general element amn =fj+m+n-2,k, 1_ m, tn 
<k; i.e., 

fi l,k *f*X +k-1,k 

(7)" Aj,k = f,+i, * 

j+-1 ,k .. *f jj+2k-2,k, 

We now show that 

(4)" Aj,k = (-1)(2i+k)(k-1)/2 

which reduces to (4)' or (4) for k =2. 
We observe that the matrix Ao,k is lower triangular with determinant 

(23) | Ao,k = (-)k1(_)k-2 ... (-1)l = (1)k(k-1)/2. 

We also note that 

(24) | AjA = (-1)k-1I Aj-l,k 

because I A _1 k I is equivalent to the determinant I A', / obtained from / AJ1,k | 
by replacing each element of its first column by its row sum, and IA" I has 
identical columns with those of / Aj, I permuted cyclically so that the last col- 
umn of I Aj,k is the first column of IA" I. Repeated application of (24) yields 

(25) Ajk = (-1)i(k 1) I Ao,A | 

By substitution of Ao,k from (23) in (25) we may complete the proof of (4)". 
From (3)" it follows that the rows of Aj,k become almost dependent for 

large j. We obtain a crude measure of the ill-condition of these matrices from 
the following considerations. 

The eigenvalues of the real symmetric matrix Aj,k are the k real roots of an 
equation of form 

k-1 

-k E fj+2n,k Ak 1 + + (_ )k(_1)(2i+k)(k-1)/2 = 0. 
nO0 

The largest eigenvalue of Aj,k exceeds fj which is the smallest trace element. 
Thus for j> k we have Xk,k>fj,k>l1 Since the product of the eigenvalues has 
absolute value unity and one of them exceeds unity the smallest must be such 
that I Xl I < 1. This means that for fixed k and j> k the P-condition number of 
A j,kexceedsfi,i which we have seen to be of the order of magnitude of C(rk,k)i 

We consider a relatively unstable system of three equations associated with 
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19601 FIBONACCI NUMBERS AND ASSOCIATED MATRICES 751 

the matrix A5,3 under the assumption that all of its elements except a33 are 
exactly known. We may write the system in the following form. 

4x + 7y + 13z = 24, 7x + 13y + 24z = 44, 13x + 24y + (44 + E)z = 81. 

For certain values of e corresponding to errors in ass of less than 1 % we note 
the following: 

e = 0: (x, y, z) = (1, 1, 1), 

e = .3: (x, y, z) = (-2, 13, 10), 

e = .4: (x, y, z) = (3, 11, -5), 
e = 1/3: no solution. 

We conclude with a generalization of the well-known fact that the ordinary 
Fibonacci numbers f.,2 or fn may be obtained by diagonal summing of the bi- 
nomial coefficients arranged in a Pascal triangle. This familiar result, for which 
an inductive proof was given by Ganis [31, may be expressed analytically as 
follows: 

(26) l~~~~~(n-1) 12] (n - 1- m) 

(26) fn = 
m=0 m 

In order to write the generalized form of (26) which the author has obtained, 
the following notation is introduced. The symbol (al, , ak) * is defined to 
have the value 

( E a)!i H tI(aj ) 
j=l j=l 

for a1 integral and nonnegative and the value zero otherwise (in particular if 
one of the aj is negative). Consider ordered k-tuples (a,, * * * , ak); the set 
S.,k is defined as the set of all such k-tuples whose elements are nonnegative 
integers such that 

k 

(27) Ej*a; = n. 
j=1 

With the above notation (26) may be rewritten as 

(28) fn.2 = E (a,, a2)*, n> 1 
Sn-1,2 

a special case of our general result 

(28)" fn,k = E (a,, ... , ak)*, n ?f k - 1, 
S -k+lk 

which we now establish. The proof depends upon the following extension to 
multinomial coefficients (a,, * * * , ak) * of the familiar Pascal relation for bi- 
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752 FIBONACCI NUMBERS AND ASSOCIATED MATRICES [October 

nomial coefficients. We accept as our starting point this easily proved relation, 

(29) (a,, a2, * * ,ak)* = (a- 1, a2, * , ak)* + (a,, a2-1, , ak) + 

+ (a,, a2, *..., ak-1)*- 

which holds for any set of k nonnegative integers a1, , ak, at least one of 
which is positive. 

Now suppose that for a given k, and n replaced by each of the k consecutive 
integers n-k, * * *, n-1, the relation (28)" holds, we can show using (1) that 
(28)" holds in general. Consider the result of replacing each term on the right 
hand side of (28)" by its expansion in terms of (29). The replacement for a single 
term will consist of k terms, some of which may have the value zero, with the 
property that the jth such term belongs to the right-hand side of the assumed 
version of (28)" in which fn-j,k is expressed as a sum over Sn-j-k+1,k. When the 
complete breakdown of the right-hand side of (28)" for fnk is accomplished in 
this fashion we note that the totality of terms on the right in this equation 
coincides with the totality of the corresponding terms in the expansions for 
fn-l,ky . . . f7v-k,k. Furthermore these last quantities which occur on the left 
in our assumed expansions total fn,k by (1) and the desired result follows. There 
remains only the problem of demonstrating k consecutive values of n for which 
(28)" holds. This may be observed to hold for n=k-1, k, k+1, * * * , 2k-2 for 
which the values fn,k are successively 1, 1, 2, 4, * * *, 2k-2. By the above argu- 
ments and the principle of induction, (28)" holds for a fixed k ?2 and all 
n ? k -1. We check the result for the case n =9 and k =4. The sequence fn,4 
goes 0, 0, 0, 1, 1, 2, 4, 8, 15, 29, * * *, so that fg,4= 29. On the other hand by 
(28)" we get 

f9,4 = E, (a,, a2, a3, a4)* 
s6,4 

= (6,0,0,0)* + (4, 1,0,0)* + (3,0, 1,0)*+ (2, 2,0,0)* 
+ (2,0,0,1)*+ (1, 1,1,0)*+ (0,3,0,0)*+ (0, 1,0, 1)*+ (0,0, 2,0)* 

= 1+5+4+6+3+6+1+2+1 = 29, 

which is what it should be. 
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