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ON SOME ALTERNATIVE CHARACTERIZATIONS
OF RIORDAN ARRAYS

DONATELLA MERLINI, DOUGLAS G. ROGERS, RENZO SPRUGNOLI
AND M. CECILIA VERRI

ABSTRACT. We give several new characterizations of Riordan Arrays, the most im-
portant of which is: if fdnÒkgnÒk2N is a lower triangular array whose generic element dnÒk
linearly depends on the elements in a well-defined though large area of the array, then
fdnÒkgnÒk2N is Riordan. We also provide some applications of these characterizations
to the lattice path theory.

1. Introduction. In December 1994, during the second author’s visit to the “Di-
partimento di Sistemi e Informatica” in Florence (Italy), we began to investigate the
enumeration of lattice paths having diagonal steps from the Riordan Array point of view
(see, [23, 24]). This problem had been previously studied by Handa and Mohanty [17];
we approached the problem according to the theory discussed in [23, 24].

This theory had previously been developed for lattice paths with “steep” diagonal
steps, as illustrated in Figures 1(i) and 1(ii); it is well-known that the arrays determined
in this case are Riordan (see [16] for example). But [17] treats lattice paths having
“shallow” diagonal steps, illustrated in Figures 1(iii) and 1(iv).

The logical consequencewould be to extend the theory of Riordan arrays to the second
type of diagonal steps and this is what we want to do. The counting sequenceson the main
diagonal are obviously the same for both shallow and steep steps if their gradients are
reciprocal. This can be verified simply by running the lattice paths backwards (compare
Figures 1(i) and 1(iii), or Figures 1(ii) and 1(iv)). It is worth noting, however, that
whereas the array in Figure 1(iii) is also a Riordan array, the one in Figure 1(iv) is not.

By using both algebraic and combinatorial techniques, we were able to prove several
properties for lattice paths having both kinds of diagonal steps (steep and shallow).
To our surprise, we realized that many of these properties were so general that they
actually extended the original characterization of Riordan Arrays. The resulting The-
orem 2.5 greatly extends the Riordan Array theory, and shows that a lower triangular
array fdnÒkgnÒk2N is Riordan whenever its generic element dn+1Òk+1 linearly depends on
the elements drÒs lying in a well-defined, but large zone of the array (see Figure 2). This
is fundamental to the lattice path theory, (see last section), and it is also important in the
general Riordan Array theory, because it provides a remarkable characterization of many
lower triangular arrays of combinatorial importance, (that is, all the arrays for which a
recurrence can be given involving elements belonging to the relevant zone).
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31

9 24

3 7 12

1 2 3 4

1 1 1 1 1

(i)

19

6 16

2 5 9

1 2 3 4

1 1 1 1 1

(ii)

31

9 31

3 9 19

1 3 5 7

1 1 1 1 1
(iii)

19

6 19

2 6 13

1 2 4 6

1 1 1 1 1
(iv)

FIGURE 1: Some arrays illustrating the numeration of
lattice paths having diagonal steps.

These results seem significant to us and led us to divide our work into two parts. In
the present paper, we give an account of the new developments in the Riordan Array
theory, and use lattice paths as a guiding example. We focus our attention on the new
characterizations of Riordan Arrays and, in order to maintain the necessary generality, we
mainly use an algebraic approach based on generating functions. In our companion paper
“Lattice paths with steep and shallow steps” we deal with lattice path problems directly
and we use combinatorial proofs to determine which problems correspond to Riordan
Arrays and which do not. Even though they are limited to non-negative coefficients,
many of these proofs, will constitute the combinatorial counterpart of proofs given in
the present paper.

To be more specific, this paper is organized in the following way: in Section 2, we
give the definitions and the above-mentioned characterizations of Riordan Arrays. In
Section 3, we develop our algebraic theory by giving a number of results concerning the
generating functions related to the Riordan Arrays. Finally, in Section 4, we show how
the theory can be applied to lattice path problems.

We wish to point out that the combinatorial objects we are mainly interested in are
subdiagonal lattice paths in the Cartesian plane. Our paper treats some of the topics
studied by Gessel [4] and Labelle [10, 11, 12] but differs from these works in its
emphasis on paths not ending on the main diagonal. The simple geometric transformation
(éÒ é0) ! (é + é0Ò é0 � é0) changes underdiagonal paths into paths that never go below the
x-axis. This lattice path notation can be called “French notation” because it is mainly
used by researchers belonging to the French area (see Goulden and Jackson [7]).
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For brevity’s, we only outline many of our demonstration and so we refer the reader
to the report [15] for the details of the complete proofs.

2. Riordan arrays. By some abuse of language (see Shapiro et al. [23]), a Riordan
array is a pair

�
d(t)Ò h(t)

�
in which d(t) and h(t) are analytic functions (or formal power

series) such that d(0) 6= 0; if h(0) 6= 0, then the Riordan array is called proper. The pair
defines an infinite, lower triangular array fdnÒkgnÒk2N, in the sense that:

dnÒk = [tn]d(t)
�
th(t)

�kÒ

by definition. From this definition, it easily follows that d(t)
�
th(t)

�k
is the generating

function of column k in the array (in particular, d(t) is the generating function of column
0). The most common example of a Riordan array is the Pascal triangle, in which we
have d(t) = h(t) = 1Û(1 � t). Proper Riordan Arrays are known as “recursive matrices”
in the theory of Umbral Calculus (see Barnabei, Brini and Nicoletti [1]). A non-proper
Riordan Array

�
d(t)Ò h(t)

�
can be easily reduced to a proper one: if h(t) has order s ½ 1,

i.e., h(t) = tsv(t), with v(0) 6= 0, then
�
d(t)Ò v(t)

�
is a proper Riordan Array and is obtained

from
�
d(t)Ò h(t)

�
by moving every column k up ks positions. The Riordan Array theory

allows us to find properties concerning these matrices; for example, we have:

nX
k=0

dnÒkfk = [tn]d(t)f
�
th(t)

�
Ò(2.1)

for every sequence fk having f (t) as its generating function. A description of the Riordan
Array theory together with many examples of it, can be found in Shapiro et al. [23] or in
Sprugnoli [24].

Rogers [19] has proved the following, fundamental characterization of proper Riordan
Arrays:

THEOREM 2.1. An array fdnÒkgnÒk2N is a proper Riordan Array if and only if there
exists a sequence A = faigi2N with a0 6= 0 such that every element dn+1Òk+1 (not lying in
column 0 or row 0) can be expressed as a linear combination with coefficients in A of
the elements in the preceding row, starting from the preceding column on, i.e.:

dn+1Òk+1 = a0dnÒk + a1dnÒk+1 + a2dnÒk+2 + Ð Ð Ð (2.2)

PROOF. See Rogers [19].

The sum in (2.2) is actually finite because dnÒk = 0, 8k Ù n. Sequence A, called the
A-sequence of the Riordan array, is characteristic in the sense that it determines (and is
determined by) function h(t). If A(t) is the generating function of the A-sequence, it can
be proven (see Sprugnoli [24]) that h(t) is the solution of the functional equation:

h(t) = A
�
th(t)

�
(2.3)
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Conversely, A(y) can be determined by the relation:

A(y) = [h(t) j t = yh(t)�1]Ò

where this notation means that A(y) is obtained by substituting the solution of the
functional equation t = yh(t)�1 having t(0) = 0 for t in h(t). For example, this last relation
in the Pascal triangle gives:

A(y) =
� 1

1 � t

þþþþ t = y(1 � t)
½

=
� 1

1 � t

þþþþ t =
y

1 + y

½
= 1 + y

Therefore, the A-sequence for the Pascal triangle is f1Ò 1Ò 0Ò 0Ò   g and (2.2) becomes:
0
@n + 1

k + 1

1
A =

0
@n

k

1
A +

0
@ n

k + 1

1
AÒ

the well-known basic recurrence for binomial coefficients.
Let us now come to the latest developments in the Riordan Array theory. First of

all, as previously mentioned, the A-sequence does not completely characterize a proper
Riordan array

�
d(t)Ò h(t)

�
because the function d(t) is independent of A(t). We therefore

prove the following:

THEOREM 2.2. Let fdnÒkgnÒk2N be any infinite lower triangular array with dnÒn 6=
0Ò 8n 2 N (in particular, let it be a proper Riordan array); then a unique sequence
Z = fz0Ò z1Ò z2Ò   g exists such that every element in column 0 can be expressed as a
linear combination of all the elements in the preceding row, i.e.:

dn+1Ò0 = z0dnÒ0 + z1dnÒ1 + z2dnÒ2 + Ð Ð Ð (2.4)

PROOF. Let z0 = d1Ò0Ûd0Ò0. Now we can uniquely determine the value of z1 by
expressing d2Ò0 in terms of the elements in row 1, i.e.

d2Ò0 = z0d1Ò0 + z1d1Ò1 or z1 =
d0Ò0d2Ò0 � d2

1Ò0

d0Ò0d1Ò1


In the same way, we can determine z2 by expressing d3Ò0 in terms of the elements in
row 2, and by substituting the values just obtained for z0 and z1. By proceeding in this
way, we determine the Z-sequence in a unique way.

The Z-sequence characterizes column 0, while the A-sequence characterizes all the
other columns. The triple

�
d0ÒZ(t)ÒA(t)

�
characterizes a proper Riordan array:

THEOREM 2.3. Let
�
d(t)Ò h(t)

�
be a proper Riordan array and let Z(t) be the generating

function of the array’s Z-sequence. Therefore we obtain:

d(t) =
d0

1 � tZ
�
th(t)

� 



RIORDAN ARRAYS 305

PROOF. By the preceding theorem, the Z-sequence exists and is unique. Therefore,
equation (2.4) is valid for every n 2 N, and we can go on to the generating functions.

Since d(t)
�
th(t)

�k
is the generating function for column k, we have:

d(t) � d0

t
= z0d(t) + z1d(t)th(t) + z2d(t)t2h(t)2 + Ð Ð Ð

= d(t)
�
z0 + z1th(t) + z2t2h(t)2 + Ð Ð Ð

�
= d(t)Z

�
th(t)

�


By solving this equation in d(t), we immediately find the relation desired.

The relation can be inverted and this gives us a formula for the Z-sequence:

Z(y) =
�d(t) � d0

td(t)

þþþþ t = yh(t)�1
½


The reader can easily apply these formulas to the Pascal triangle, which we can apply
the following theorem to:

THEOREM 2.4. Let d0 = h0 6= 0. Then d(t) = h(t) if and only if A(y) = d0 + yZ(y).

PROOF. Let us assume that A(y) = d0+yZ(y) or Z(y) =
�
A(y)�d0

�
Ûy. By Theorem 2.3,

we have:

d(t) =
d0

1 � tZ
�
th(t)

� =
d0

1 �
�

tA
�
th(t)

�
� d0t

��
th(t)

=
d0th(t)

d0t
= h(t)Ò

because A
�
th(t)

�
= h(t). Vice versa, by the formula for Z(y), we obtain from the hypothesis

d(t) = h(t):

d0 + yZ(y) =
�
d0 + y

�1
t
� d0

th(t)

� þþþþ t = yh(t)�1
½

=
�
d0 +

th(t)
t

� d0th(t)
th(t)

þþþþ t = yh(t)�1
½

= [h(t) j t = yh(t)�1] = A(y)

Riordan arrays having d(t) = h(t) were first introduced by Rogers [19] who called them
“renewal arrays”. As the concepts of A- and Z-sequences show, what seems essential
in a Riordan array is the fact that the elements in a given row linearly depend on the
elements of the row above it, starting from the element on the left. It is surprising that
this dependence can be made much looser, as the following theorems show (see also
the presentation of Shapiro [22]). They greatly increase the applicability range of the
Riordan Array theory and play a basic role in our approach to lattice path problems. Let
us begin by the following:

LEMMA 2.4.1. If in a lower triangular array fdnÒkgnÒk2N we have:

dn+1Òk+1 =
X
j½0

ajdnÒk+j
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for some coefficients aj (j ½ 0), independent of n and k, with a0 6= 0, then we obtain

dnÒk =
X
j½0

bjdn+1Òk+1+j(2.5)

for coefficients bj (j ½ 0) also independent of n and k. Moreover, if A(t) and B(t) are the
generating functions of the two sequences, then B(t) = A(t)�1 and therefore:

b0 =
1
a0
Ò bn = � 1

a0

nX
j=1

bjan�j (j ½ 1)(2.6)

PROOF SKETCH. By writing formula (2.5) in a matrix form and by using Henrici’s
result [9, Section 1.3], we immediately obtain that A(t)�1 = B(t) and formula (2.6) is
simply the J. C. P. Miller formula for reciprocal formal power series (see Henrici [9,
Theorem 1.6c]).

This lemma is the basis of the following Riordan Array characterizations. We wish
to point out that, by Theorem 2.3, the Z-sequence exists for every lower triangular array,
and therefore we can implicitly assume its existence in all the subsequent theorems. Our
first result is:

THEOREM 2.5. A lower triangular array fdnÒkgnÒk2N is Riordan if and only if there
exists another array fãiÒjgiÒj2N, with ã0Ò0 6= 0, such that every dn+1Òk+1 (nÒ k ½ 0) can be
expressed as:

dn+1Òk+1 =
X
i½0

X
j½0

ãiÒjdn�iÒk+j(2.7)

PROOF SKETCH. If the array is Riordan, let fajgj2N be its A-sequence: the array
defined as ã0Òj = aj, 8j 2 N, and ãiÒj = 0, 8i Ù 0Ò j ½ 0, is exactly as we desired. The
proof of the “if” part given in [15] is rather long and complex. It consists in proving that
an A-sequence exists for the given array and, therefore, it is Riordan. Lemma 2.4.1 plays
a basic role in this proof.

This theorem shows that we can characterize a Riordan Array by means of an A-
matrix, rather than by a simple A-sequence. However, while the A-sequence is unique
for a given Riordan Array, the A-matrix is not. For example, the following A-matrices,
and many others, all define the Pascal triangle (the proof is quite obvious and relies on
the basic recurrence for the binomial coefficients):
0
BBBBBB@

1 1 0 0 Ð Ð Ð

0 0 0 0 Ð Ð Ð

0 0 0 0 Ð Ð Ð

0 0 0 0 Ð Ð Ð
...

...
...

...
. . .

1
CCCCCCA

0
BBBBBB@

1 0 0 0 Ð Ð Ð

1 1 0 0 Ð Ð Ð

0 0 0 0 Ð Ð Ð

0 0 0 0 Ð Ð Ð
...

...
...

...
. . .

1
CCCCCCA

0
BBBBBB@

1 0 0 0 Ð Ð Ð

1 0 0 0 Ð Ð Ð

1 1 0 0 Ð Ð Ð

0 0 0 0 Ð Ð Ð
...

...
...

...
. . .

1
CCCCCCA

0
BBBBBB@

1 0 0 0 Ð Ð Ð

1 0 0 0 Ð Ð Ð

1 0 0 0 Ð Ð Ð

1 1 0 0 Ð Ð Ð
...

...
...

...
. . .

1
CCCCCCA

We can extend the linear dependence of the generic element dn+1Òk+1 to allow for
elements on its own row, starting from dn+1Òk+2. In fact, we can prove the following
characterization:
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FIGURE 2: The zones which dn+1Òk+1 can depend on.

THEOREM 2.6. A lower triangular array fdnÒkgnÒk2N is Riordan if and only if there
exist another array fãiÒjgiÒj2N, with ã0Ò0 6= 0, and a sequence föigi2N such that:

dn+1Òk+1 =
X
i½0

X
j½0

ãiÒjdn�iÒk+j +
X
j½0

öjdn+1Òk+1+j(2.8)

PROOF. Here again, the “only if” part is obvious. As to the “if” part, we can eliminate
dn+1Òk+2 from the recurrence, by applying relation (2.8) and by eventually changing the
array fãiÒjg into fã0

iÒjg. In the same way, we can subsequently eliminate all the dn+1Òk+1+j’s.
Since only a finite number of them actually appears in the evaluation of dn+1Òk+1, we can
always reduce dn+1Òk+1 to depend on some array fã̄iÒjgi=0Ò1Ò, which is the left part of a
limit array fãŁ

iÒjg, as happens in Theorem 2.5. Therefore, we can conclude that fdnÒkg is
a Riordan Array.

This result will be used in our study of lattice path problems. Moreover, we can obtain
the widest possible characterization of Riordan Arrays (see Theorem 3.5 below):

THEOREM 2.7. A lower triangular array fdnÒkgnÒk2N is Riordan if and only if there
exists another array fãiÒjgiÒj2N, with ã0Ò0 6= 0, and s sequences fö[i]

j gj2N (i = 1Ò 2Ò    Ò s)
such that:

dn+1Òk+1 =
X
i½0

X
j½0

ãiÒjdn�iÒk+j +
sX

i=1

X
j½0

ö[i]
j dn+iÒk+i+j+1(2.9)

PROOF. Repeated applications of the elimination technique used in the previous
theorem’s proof.

In Figure 2, we try to give a graphic representation of the zones which the generic
element dn+1Òk+1 (denoted by a small disk or “bullet”) is allowed to depend on so that the
array can be Riordan. The three zones correspond to Theorems 2.5, 2.6 and 2.7, and the
only restrictions are that ã0Ò0 6= 0 and that the number of rows below row n be finite.

Up to now, we have assumed that ã0Ò0 6= 0 because this condition assures that the
resulting Riordan Array is proper. However, if we change this hypothesis, but maintain
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that some ãiÒ0 6= 0, for i Ù 0, then we obtain a non-proper Riordan Array, i.e., a Riordan
Array with h(0) = 0. This happens under the following conditions:

THEOREM 2.8. Let fdnÒkgnÒk2N be an array whose generic element dn+1Òk+1 is defined
by a linear recurrence:

dn+1Òk+1 =
X
i½0

X
j½0

åiÒjdóÒk+j ó � n + S for some S 2 N

Let ç be the minimum index for which åçÒ0 6= 0 and set ó0 = ó � çj. If 8åiÒj 6= 0 we
have i = n � ó0 and, whenever ó0 Ù n, we also have j ½ ó0 � n, then fdnÒkgnÒk2N is a
non-proper Riordan Array

�
d(t)Ò h(t)

�
with h(t) = tçv(t) and v(0) 6= 0.

PROOF. The theorem’s conditions allow us to define a new array fd0
nÒkgnÒk2N whose

generic element d0
n+1Òk+1 is given by:

d0
n+1Òk+1 =

X
i½0

X
j½0

ãiÒjd
0
n�iÒk+j +

sX
i½1

X
j½0

ö[i]
j d0

n+iÒk+i+j+1Ò

where ãiÒj = ån�ó0 Òj when ó0 � n, and ö[i]
j = åó0�nÒj when ó0 Ù n. The number s exists

thanks to the condition ó � n + S, for some S. This is actually the definition of a proper
Riordan Array, in which d0

nÒk = dn+kçÒk because the columns of fd0
nÒkg are the columns of

fdnÒkg moved çk positions up. If
�
d(t)Ò v(t)

�
is the new proper Riordan Array, then we

should have h(t) = tçv(t).

In Section 4, we will examine an example of a non-proper Riordan Array in connection
with a lattice path problem.

3. Generating functions. As previously noted, the A-sequence and the function
h(t) of a Riordan Array are strictly related to each other. This fact allows us to think that
h(t) can be deduced from the A-matrix fãiÒjgiÒj2N and the set of sequences fö[i]

j gj2N for
i = 0Ò 1Ò    Ò s. Then, after finding the function h(t), we can also find the A-sequence by
determining its generating function A(t).

Almost always, dn+1Òk+1 only depends on the elements of a finite number of rows
above it; therefore, instead of treating a global generating function for the A-matrix, let
us examine a sequence of generating functions P[0](t)ÒP[1](t)ÒP[2](t)Ò    corresponding
to the rows 0Ò 1Ò 2Ò    of the A-matrix, i.e.:

P[0](t) = ã0Ò0 + ã0Ò1t + ã0Ò2t2 + ã0Ò3t3 + Ð Ð Ð
P[1](t) = ã1Ò0 + ã1Ò1t + ã1Ò2t2 + ã1Ò3t3 + Ð Ð Ð

and so on. Moreover, let Q[i](t) be the generating function for the sequence fö[i]
j gj2N.

Thus we have:

THEOREM 3.1. If fdnÒkgnÒk2N is a Riordan Array whose generic element dn+1Òk+1 is de-
fined by formula (2.9) through the A-matrix fãiÒjgiÒj2N and the set of sequences fö[i]

j gj2N,
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i = 1Ò 2Ò    Ò s, then the functions h(t) and A(t) for fdnÒkg are given by the following
implicit expressions:

h(t) =
X
i½0

tiP[i]
�
th(t)

�
+

sX
i=1

th(t)i+1Q[i]
�
th(t)

�
(3.1)

A(t) =
X
i½0

tiA(t)�iP[i](t) + t
sX

i=1
A(t)iQ[i](t)(3.2)

PROOF. Let dk(t) = d(t)
�
th(t)

�k
be the generating function of column k of the Riordan

Array; from (2.9) we deduce:

dk+1(t)
t

=
X
i½0

X
j½0

ãiÒjt
idk+j(t) +

sX
i=1

X
j½0

ö[i]
j t�idk+i+j+1(t)

d(t)
�
th(t)

�k+1

t
=
X
i½0

X
j½0

ãiÒjt
id(t)

�
th(t)

�k+j
+

sX
i=1

X
j½0

ö[i]
j t�id(t)

�
th(t)

�k+i+j+1

We can now divide everything by d(t)
�
th(t)

�k
:

h(t) =
X
i½0

ti X
j½0

ãiÒj

�
th(t)

�j
+

sX
i=1

t�i
�
th(t)

�i+1 X
j½0

ö[i]
j

�
th(t)

�j

We now go on to the generating functions P[i](t) and Q[i](t) and formula (3.1) immediately
follows. Finally, by applying formula (2.3) we obtain the expression (3.2) for A(t).

This theorem allows us to give some explicit formulas for the element an of the
A-sequence. By extracting the coefficient of tn, we find:

an = [tn]A(t) =
X
i½0

[tn�i]B(t)iP[i](t) +
sX

i=1
[tn�1]A(t)iQ[i](t)

an =
nX

i=0

n�iX
j=0

b(i)
j ãiÒn�i�j +

sX
i=1

n�iX
j=0

a(i)
j ö[i]

n�i�jÒ

where a(i)
j and b(i)

j denote the coefficients of tj in the formal power series A(t)i and
B(t)i = A(t)�i, respectively. As far as Theorem 2.5 is concerned, we have s = 0 and so:

an =
nX

i=0

n�iX
j=0

b(i)
j ãiÒn�i�jÒ

which agrees with the values a0 = b(0)
0 ã0Ò0 and a1 = b(0)

0 ã0Ò1 + b(1)
0 ã1Ò0 = ã0Ò1 + b0ã1Ò0 =

ã0Ò1 + ã1Ò0Ûã0Ò0 (see the proof of Theorem 2.6 in [15]). As to Theorem 2.6, we have:

an =
nX

i=0

n�iX
j=0

b(i)
j ãiÒn�i�j +

n�iX
j=0

ajön�i�jÒ

which only depends on the previously computed aj values .
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The generic element dn+1Òk+1 often only depends on the two previous rows and some-
times on the elements of its own row. In this case, the functional equation (3.2) reduces
to a second degree equation in A(t) and, as a result, we can give an explicit expression
for the generating function of the A-sequence.

THEOREM 3.2. Let fdnÒkgnÒk2N be a Riordan Array whose generic element dn+1Òk+1

only depends on the two previous rows and, in case, on its own row. If P(t)Ò P̄(t) and Q(t)
are the generating functions for the coefficients of this dependence, i.e., P(t) = P[0](t),
P̄(t) = P[1](t) and Q(t) = Q[1](t), then we have:

A(t) =
P(t) +

r
P(t)2 + 4tP̄(t)

�
1 � tQ(t)

�
2
�
1 � tQ(t)

� (3.3)

PROOF SKETCH. Formula (3.2) gives two solutions for A(t) and the one having A(0) =
0 must be discarded because we always assume that a0 6= 0.

It is worth noting that if Q(t) = 0, that is dn+1Òk+1 does not depend on the elements of
its own row, then we have:

A(t) =
P(t) +

q
P(t)2 + 4tP̄(t)

2
Ò

which is quite useful in several cases. When the dependence is more complicated, it is
naturally more difficult to give an explicit expression for the A-sequence.

As shown in the previous section, h(t) is related to A(t) and d(t) is related to Z(t), the
Z-sequence generating function. Since the Z-sequence exists for every lower triangular
array (see Theorem 2.2), every recurrence defining dn+1Ò0 in terms of the other elements
in the array can be accepted as a good definition of column 0. Therefore, in analogy to
(2.9), let us assume that we have the following linear relation:

dn+1Ò0 =
X
i½0

X
j½0

êiÒjdn�iÒj +
sX

i=1

X
j½0

õ[i]
j dn+iÒi+j(3.4)

In general, there is no connection between the êiÒj’s and the ãiÒj’s or between the ö[i]
j ’s and

the õ[i]
j ’s and so we take the following generating functions into account:

R[0](t) = ê0Ò0 + ê0Ò1t + ê0Ò2t2 + ê0Ò3t3 + Ð Ð Ð
R[1](t) = ê1Ò0 + ê1Ò1t + ê1Ò2t2 + ê1Ò3t3 + Ð Ð Ð

(etc.) and S[i](t) =
P

j½0 õ[i]
j tj. The coefficients defining dn+1Òk+1 and dn+1Ò0 are sometimes

the same ones, in the sense that:

êiÒj = ãiÒj+1 and õ[i]
j = ö[i]

j 8iÒ 8j

In this case, we say that column 0 is unprivileged and we obtain the following formulas
for our generating functions:

R[i](t) =
P[i](t) � ãiÒ0

t
and S[i](t) = Q[i](t)
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for every i which R[i], P[i], S[i] and Q[i] are well-defined for.
At any rate, we can easily prove the following:

THEOREM 3.3. If fdnÒkgnÒk2N is a Riordan Array whose elements in column 0 are
defined by a relation (3.4), then the function d(t) is given by the following formula:

d(t) =
d0Ò0

1 �P
i½0 ti+1R[i]

�
th(t)

�
� t

Ps
i=1 h(t)iS[i]

�
th(t)

� (3.5)

PROOF SKETCH. We go on to generating functions and find (3.5) by solving in d(t).

When column 0 is unprivileged, the formula for d(t) can be drastically simplified and,
nevertheless, actually covers a large class of lattice path problems. For this reason, we
state it as a separate theorem:

THEOREM 3.4. If fdnÒkgnÒk2N is a Riordan Array whose column 0 is unprivileged, then
d(t) is given by the formula:

d(t) =
d0Ò0h(t)P
i½0 ãiÒ0ti

(3.6)

PROOF. We simply take the denominator in formula (3.5) and substitute R[i](t) and
S[i](t) by their counterparts when column 0 is unprivileged; we then use Theorem 3.1’s
first result.

Besides being important for its own sake, this theorem also allows us to prove a very
interesting characterization of “renewal arrays”, i.e., Riordan Arrays having d(t) = h(t),
when column 0 is unprivileged:

COROLLARY 3.4.1. Let fdnÒkgnÒk2N be a Riordan Array whose column 0 is unprivi-
leged; then fdnÒkgnÒk2N is a renewal array if and only if the following two conditions are
satisfied: i) dn+1Òk+1 only depends on dnÒk and not on any other element in column k;
ii) ã0Ò0 = d0Ò0.

PROOF. If column 0 is unprivileged and d(t) = h(t), then by (3.6) we have:P
i½0 ãiÒ0ti = d0Ò0; therefore ãiÒ0 = 0Ò 8i ½ 1 and this is equivalent to condition i).

Only ã0Ò0 = d0Ò0 is left and constitutes condition ii). Vice versa, if column 0 is un-
privileged, then condition i) implies:

P
i½0 ãiÒ0ti = ã0Ò0, so d(t) = d0Ò0h(t)Ûã0Ò0, and so

condition ii) gives d(t) = h(t).

We wish to conclude this section by introducing an important result concerning the
characterizations proven in the previous section. By means of generating functions, we
can show that Theorem 2.7 gives the largest possible characterization of Riordan Arrays.
In other words, we can show that if dn+1Òk+1 depends on elements not contained in the
grey zones of Figure 2, then fdnÒkgnÒk2N is not a Riordan Array. It is worth noting that
if dn+1Òk+1 depends on some elements dóÒî with ó Ù n and î Ú k + 1 + ó � n, then the
recurrence is not well-defined, and the computation of dn+1Òk+1 enters an infinite loop and
its indexes keep growing, and, as a result, fdnÒkgnÒk2N is actually not defined. We must
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therefore show that fdnÒkgnÒk2N is not a Riordan Array when dn+1Òk+1 depends on some
element dóÒî with ó � n and î Ú k. The following theorem shows this under the same
conditions as Theorem 2.5 (no ö[i]

j is involved) and with î ½ k � 1. Actually, this is

sufficient for our purposes because the presence of some ö[i]
j ’s does not change the proof.

Moreover, the method is virtually the same when î Ú k�1 (only a few technical aspects
are slightly modified).

THEOREM 3.5. If the generic element dn+1Òk+1 in an array fdnÒkgnÒk2N is defined by the
recurrence:

dn+1Òk+1 =
X
i½0

X
j½�1

ãŁ
iÒjdn�iÒk+j (dnÒ�1 = 0Ò 8n 2 N)

with some ãŁ
iÒ�1 6= 0, then fdnÒkgnÒk2N is not a Riordan Array.

PROOF SKETCH. By assuming that the array is Riordan and by going on to generating
functions, we obtain the contradiction that all theãŁ

iÒ�1 are zero. This proves the theorem.

4. Lattice path problems. In the foregoing sections, we assumed that Figure 1 can
provide a representation of four sample lattice path enumeration problems on the integer
square lattice. To state it in more formal—though less abstract—terms, a lattice path
of m steps is a finite sequence (s1Ò    Ò sm) of ordered pairs si =

�
(xi�1Ò yi�1)Ò (xiÒ yi)

�
,

1 � i � m, of lattice points such that:
a) x0 = y0 = 0;
b) for 1 � i � m, xi = xi�1 + éiÒ yi = yi�1 + é0i;
c) the pairs (éiÒ é0i)Ò 1 � i � m, are drawn from a set of permissible step templates;

and
d) these permissible step templates obey some conditions on their occurrence.

We say that such a path starts at the origin (0Ò 0) and ends at (xmÒ ym).
Therefore, in all the examples illustrated in Figure 1, we refer to the step templates

(0Ò 1), (1Ò 0), and (éÒ é0), subject to the condition that 0 � yi � xi, for 0 � i � m, and
only the choice of (éÒ é0) is at issue. In the examples that include Figure 1(i) and 1(ii),
é = 1, while é0 is a positive integer, so the gradient é0Ûé of the step template is large and
therefore the step is said to be “steep”. In the examples that include Figure 1(iii) and
1(iv), é0 = 1, while é is a positive integer, and we get a small gradient. Therefore, the
step is said to be “shallow”. We could obviously give some more complicated examples
that allow combinations of these step templates, and sometimes may have different
colours. There is vast literature on lattice path enumeration, and we particularly want to
mention the following: [2, 3, 5, 6, 7, 8, 13, 14, 16, 17, 18, 20, 21]. In all the examples
illustrated in Figure 1, we obtain lower triangular arrays fdnÒkgnÒk2N where dnÒk is the
number of paths which start at (0Ò 0) and end at (nÒ n�k), as illustrated in Figure 3. To be
more precise, we are going to examine some lattice paths having templates in the class
T = f(éÒ é0) j éÒ é0 2 NÒ é + é0 Ù 0g [ f(éÒ é0) j é Ú 0Ò é0 Ù 0g. We denote a step template
(éÒ é0) having é ½ 0 by eéné0

, where e stands for east and n for north; a template is steep
if é � é0 and is shallow if é Ù é0 + 1; if é = é0 + 1 the template will be called almost
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steep. A step template (éÒ é0) having é Ú 0 will be dejnoted by wjéjné0

, where w stands
for west; for convenience’s sake, we consider every template of this kind as being steep
too. In Figure 4(a) we illustrate the different kinds of templates and distinguish the sets
of steep from almost steep templates by two different shades of grey. These templates
play a fundamental role in our approach to the lattice path theory.

nÛk 0 1 2 3 4
0 1
1 1 1
2 3 2 1
3 9 7 3 1
4 31 24 12 4 1

nÛk 0 1 2 3 4
0 1
1 1 1
2 2 2 1
3 6 5 3 1
4 19 16 9 4 1

(i) (ii)

nÛk 0 1 2 3 4
0 1
1 1 1
2 3 3 1
3 9 9 5 1
4 31 31 19 7 1

nÛk 0 1 2 3 4
0 1
1 1 1
2 2 2 1
3 6 6 4 1
4 19 19 13 6 1

(i) (ii)

FIGURE 3: The lower triangular arrays resulting from Figure 1

We can now define a lattice path problem R as a pair (RAÒR∆), where:
ž RA is a possibly infinite set of templates in T ;
ž R∆ is a possibly infinite set of steep templates in T .

An R-path is a path composed of steps with templates in R, and satisfies the following
conditions: i) if a step ends on the main diagonal x � y = 0, then its template should
belong to R∆; otherwise ii) the template should belong to RA. There is an important
definition related to these conditions: let RS be the subset of RA made up of all its steep
templates; if RS 6= R∆, then we say that R is a lattice path problem with privileged access
to the main diagonal; otherwise, if RS = R∆, then R have unprivileged access to the main
diagonal. None of the examples in Figure 1 have privileged access to the main diagonal;
an example having privileged access will be given further on.

Thanks to these definitions, we can now prove our main result regarding lattice path
problems. When we go from a lattice path problem R = (RAÒR∆) to the lower triangular
array counting the paths from the origin to the point (nÒ n�k), as we did to go from Figure 1
to Figure 3, we simply change the two sets RA and R∆ into two recurrences: one valid in
general, the other only valid for the column corresponding to its main diagonal, i.e., for
column 0. It is immediately clear that a template (éÒ é0) translates into the dependence of
dn+1Òk+1 from dn�é+1Òk+é0+1�é. Since we always have d0Ò0 = 1, corresponding to the empty
path, these recurrences completely define the array. It is worth noting that a problem
with privileged (unprivileged) access to the main diagonal is translated into an array
with privileged (unprivileged) column 0.
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n3w2 n3w n3 n3e n3e2 n3e4 n3e4

n2w2 n2w n2 n2e n2e2 n2e3 n2e

nw2 nw n ne ne2 ne3 ne4

e e2 e3 e4

e3 ne3 n2e3 n3e3 n4e3

e2 ne2 n2e2 n3e2 n4e2

e ne n2e n3e n4e

n n2 n3 n4

nw n2w n3w

nw2 n2w2

(a) (b)

FIGURE 4:Possible steps originating from a given point in Z2

and their positions in the corresponding triangular array: e=east, n=north, w=west.

In Figure 4(b) we show, in terms of step templates, the dependence of the generic
element dn+1Òk+1 (or dn+1Ò0) (denoted by “þ”) from other elements in the array. Since R∆
is only made up of steep templates, the recurrence for dn+1Ò0 does not depend on any
elements in the white or dark-grey zones, and this makes very good sense. All these
considerations help us to prove our main theorem:

THEOREM 4.1. Let (RAÒR∆) be a lattice path problem and let fdnÒkgnÒk2N be its corre-
sponding counting array. Then fdnÒkgnÒk2N is a Riordan Array if and only if RA is made
of both steep templates and at least one almost steep template, and a number S exists
such that for every (éÒ é0) 2 RA [ R∆ with é Ú 0, we have é0 Ú S. Besides, fdnÒkgnÒk2N is
proper if RA contains the almost steep template (1Ò 0).

PROOF. This is an obvious consequence of Theorems 2.7 and 3.5; the condition on S
implies that there is only a finite number of rows below row n which dn+1Òk+1 (or dn+1Ò0)
may depend on.

This theorem justifies our initial statement that only case (iv) in Figure 1 does not
correspond to a Riordan Array. The Riordan Array theory can be applied to the other
cases to solve the lattice path problems, as we are now going to show:

In Figure 3(i), we give a schematic illustration of the dependence of dn+1Òk+1 from the
other elements in the array and obtain the recurrence:

dn+1Òk+1 = dnÒk + dnÒk+2 + dn+1Òk+2
However, we can directly use Theorem 3.1 to obtain the function h(t) because P[0](t) =
1 + t2 and Q[1](t) = 1, and therefore h(t) is the solution to the equation:

h(t) = 1 + t2h(t)2 + th(t)2
Since ã0Ò0 = 1, the Riordan Array is proper, i.e., h(0) 6= 0; this implies that:

h(t) =
1 �

p
1 � 4t � 4t2

2t(1 + t)
= 1 + t + 3t2 + 9t3 + 31t4 + 113t5 + Ð Ð Ð 
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The conditions in Corollary 3.4.1 are now satisfied and so the Riordan Array is actually
a renewal array and d(t) = h(t). Finally, the A-sequence can be computed with formula
(3.3), where P̄(t) = 0 and we find the simple expression:

A(t) =
1 + t2

1 � t
= 1 + t + 2t2 + 2t3 + 2t4 + 2t5 + Ð Ð Ð

The Riordan Array theory can now be used to obtain some information about these paths.
For example, the total number Nn of paths extending up to x = n is given by the row
sums, which can be computed by means of formula (2.1) with f (t) = (1 � t)�1:

N (t) =
X
n½0

Nntn =
d(t)

1 � th(t)
=

1 � 2t �
p

1 � 4t � 4t2

4t2


We can obtain the average height of these paths in a similar way. We begin by computing
the weighted row sums:

W (t) =
X
n½0

Wntn =
td(t)h(t)�

1 � th(t)
�2 =

1 � 4t � (1 � 2t)
p

1 � 4t � 4t2

8t3
;

we then extract the asymptotic value for Wn and Nn, by means of Darboux’ method:

Nn ³
q

4 � 2
p

2
4

(2 + 2
p

2)n+2

(2n + 3)
p
ô(n + 2)

Ò Wn ³
(2 �

p
2)
q

4 � 2
p

2
8

(2 + 2
p

2)n+3

(2n + 5)
p
ô(n + 3)



Finally, the quantity desired is computed by subtracting the value of WnÛNn from n
because the weight of an element measures the distance from the diagonal along the
y-axis.

For the problem illustrated in Figure 1(ii), we have P[0](t) = 1 + t3 and Q[1](t) = 1;
therefore, h(t) is given by the solution of the third degree equation:

h(t) = 1 + t3h(t)3 + th(t)2(4.1)

By Corollary 3.4.1, this is a renewal array and d(t) = h(t). By using the Lagrange
Inversion Formula (see Goulden and Jackson [7]), we can find an explicit expression
(although not a closed formula) for the generic element dnÒk. If we multiply (4.1) by t,
and set y = th(t) so that y(0) = 0, then we have y = t(1 + y3)Û(1 � y) and, therefore:

dnÒk = [tn]d(t)
�
th(t)

�k
= [tn]

y
t
yk = [tn+1]yk+1

=
k + 1
n + 1

[yn�k]

0
@1 + y3

1 � y

1
An+1

=
k + 1
n + 1

n�kX
j=0

0
@n + 1

jÛ3

1
A
0
@2n � k � j

n � k � j

1
AÒ

which can be easily checked against the true values given in Figure 3(ii) (if jÛ3 is not an
integer, the binomial coefficient should be taken as 0).



316 D. MERLINI, D. G. ROGERS, R. SPRUGNOLI AND M. C. VERRI

Finally, for the problem illustrated in Figure 1(iii), we have P[0](t) = P[1](t) = Q[1](t) =
1; therefore, h(t) is given by the solution of h(t) = 1 + t + th(t)2; that is:

h(t) =
1 �

p
1� 4t � 4t2

2t


By Corollary 3.4.1, this is not a renewal array and we should compute d(t) by means of
formula (3.5) in Theorem 3.3:

d(t) =
1

1 � th(t)
=

1 �
p

1 � 4t � 4t2

2t(1 + t)

which, as announced, is the same as for the problem illustrated in Figure 1(i).
The problem in Figure 1(iv) does not correspond to any Riordan Array; we do not try

to solve it here and invite the reader to refer to our paper “Lattice paths with steep and
shallow steps”.

We want to conclude this section with some other examples that illustrate various
ways of applying the results obtained in the previous sections.

The first example is R = (RAÒR∆) with RA = f(1Ò 0)Ò (1Ò 1)Ò (1Ò 2)g and R∆ = f(1Ò 2)g.
Since RS = f(1Ò 1)Ò (1Ò 2)g 6= R∆, we have a problem involving privileged access to
the main diagonal. In this case, we know the A- and Z-sequences, for which we have
A(t) = 1 + t + t2 and Z(t) = t. By formula (2.3) and Theorem 2.3, we find:

d(t) =
1 + t �

p
1 � 2t � 3t2

2t(1 + t)
Ò h(t) =

1 � t �
p

1 � 2t � 3t2

2t2


nÛk 0 1 2 3 4 5
0 1
1 0 1
2 1 1 1
3 1 3 2 1
4 3 6 6 3 1
5 6 15 15 10 4 1

3

1 6

1 3 6

0 1 2 3

1 1 1 1 1

FIGURE 5: Walks with eÒ ne and n2e steps having privileged access to the main diagonal.

The resulting triangle is shown in Figure 5; its row sums are:

nX
k=0

dnÒk = [tn]
d(t)

1 � th(t)
= [tn]

1p
1 � 2t � 3t2

which are the well-known trinomial coefficients.
Another example, is R = (RAÒR∆) RA = f(1Ò k) j k 2 Ng [ f(0Ò 1)g and R∆ = f(1Ò k) j

k 2 Ng, i.e., having unprivileged access to the main diagonal. In this case, even though
we have an infinite number of step templates, we can easily find P[0](t) = 1Û(1 � t)
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and Q[1](t) = 1. Figure 6 illustrates the situation corresponding to this problem; by
Theorem 3.1, we find that h(t) is the solution of the following third-degree equation:

h(t) =
1

1 � th(t)
+ th(t)2Ò or h(t) =

1�
1 � th(t)

�2 

If we set y = th(t), so that y(0) = 0, the previous relation becomes:

y =
t

(1 � y)2
Ò

and we are now able to apply the Lagrange Inversion Formula. By Corollary 3.4.1, this
is a renewal array and we have:

dnÒk = [tn]d(t)
�
th(t)

�k
= [tn]

1
t

�
th(t)

�k+1
= [tn+1]yk+1

=
1

n + 1
[yn]

(k + 1)yk

(1 � y)2n+2
=

k + 1
n + 1

[yn�k](1 � y)�2n�2 =
k + 1
n + 1

0
@3n � k + 1

n � k

1
A

nÛk 0 1 2 3 4
0 1
1 2 1
2 7 4 1
3 30 18 6 1
4 143 88 33 8 1

143

30 88

7 18 33

2 4 6 8

1 1 1 1 1

FIGURE 6: Walks with n and nke steps, k 2 N, and their corresponding array.

Another example having unprivileged access to the main diagonal and with an infinite
number of step templates is RA = f(éÒ é0) j é 2 NÒ é0 = é + 1g. We now have P[i](t) = 1,
8i ½ 0 and can therefore find:

h(t) =
1

1 � t


By Corollary 3.4.1, this is not a renewal array, but formula (3.6) in Theorem 3.4 gives
d(t) = h(t)ÛPi½0 ti = 1. Therefore, the Riordan Array is D = (1Ò (1 � t)�1) and dnÒk =�

n�1
k�1

�
.

Let us now consider an example having some north-west steps; more precisely, let
RA = f(1Ò 0), (0Ò 1)Ò (�1Ò 1)g with unprivileged access to the main diagonal. In Figure 7,
we show the first values corresponding to this problem. If we want to compute the first
n rows of the resulting array, we must begin by computing the first 2n starting values on
the x-axis. We then go on to compute the values on the line y = 1, and so forth, reducing
the number of values computed by one each time. This corresponds to evaluating a
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sufficient number of values on the diagonal n = k in the resulting Riordan Array. We
then examine one diagonal at a time and reduce the number of its rows by one.

nÛk 0 1 2 3 4
0 1
1 2 1
2 10 4 1
3 66 24 6 1
4 498 172 42 8 1

498

66 172 328

10 24 42 64 90

2 4 6 8 10 12 14

1 1 1 1 1 1 1 1 1

FIGURE 7: A problem with an nw template.

In this problem we have P[0](t) = Q[1](t) = Q[2](t) = 1, and formula (3.1) gives h(t) as a
solution of the third-degree equation:

h(t) = 1 + th(t)2 + th(t)3(4.2)

By Corollary 3.4.1, this is a renewal array and the Lagrange Inversion Formula can be
used to find an explicit expression for dnÒk. By setting y = h(t) � 1 so that y(0) = 0,
formula (4.2) becomes y = t(1 + y)(2 + y) and we therefore have for n 6= k:

[tn]d(t)
�
th(t)

�k
= [tn�k](1 + y)k+1 =

k + 1
n � k

[yn�k�1](1 + y)2n�k(2 + y)n�k

=
k + 1
n � k

n�k�1X
j=0

0
@n� k

j + 1

1
A
0
@2n � k

j

1
A2j+1Ò

which can be checked against the values shown in Figure 7.

nÛk 0 1 2
0 1
1 1
2 2 1
3 5 2
4 12 5 1
5 31 14 3

31

12 14

5 5 3

2 2 1 0

1 1 0 0 0

1 0 0 0 0 0

#

FIGURE 8: A problem corresponding to a non-proper Riordan Array.

We conclude by studying a problem corresponding to a non-proper Riordan Array.
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Let RA = f(0Ò 1)Ò (1Ò 1)Ò (2Ò 1)Ò (1Ò 2)g with unprivileged access to the main diagonal. In
Figure 8, we illustrate the problem schematically. We follow Theorem 2.8 and modify
the templates in order to obtain a problem relative to a proper Riordan Array. Each
template (éÒ é0) becomes a template (é̄Ò é̄0), where é̄ = é + ç(é0 � é) and é̄0 = é0 + ç(é0 � é).
In our case, ç = 1 and so the new templates are R̄A = f(1Ò 2)Ò (1Ò 1)Ò (1Ò 0)Ò (2Ò 3)g.
For this problem, we have P[0](t) = 1 + t + t2 and P[1](t) = t2. This gives the relation
h(t) = 1 + th(t) + t2h(t)2 + t3h(t)2; that is:

h(t) =
1 � t �

p
1 � 2t � 3t2 � 4t3

2t2(1 + t)


Since we have d(t) = h(t) by Corollary 3.4.1, we can conclude that the original problem
corresponds to the non-proper Riordan Array:

D =
 

1 � t �
p

1 � 2t � 3t2 � 4t3

2t2(1 + t)
Ò 1 � t �

p
1 � 2t � 3t2 � 4t3

2t(1 + t)

!
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