A survey on Riordan arrays

Donatella Merlini

Dipartimento di Sistemi e Informatica Università di Firenze, Italia

December 13, 2011, Paris

Outline

(1) Some history
(2) Main properties of Riordan arrays
(3) Riordan arrays and binary words avoiding a pattern

4 Riordan arrays, combinatorial sums and recursive matrices

A previous seminar

- I'm very sorry to have not met P. Flajolet in the recent years.

A previous seminar

- I'm very sorry to have not met P. Flajolet in the recent years.
- I remember with pleasure my seminar at INRIA on October 10, 1994: Riordan arrays and their applications

References -1-

(1) D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22: 301-310, 1978.

References -1-

(1) D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22: 301-310, 1978.
(2) L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. Discrete Applied Mathematics, 34: 229-239, 1991.

References -1-

(1) D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22: 301-310, 1978.
(2) L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. Discrete Applied Mathematics, 34: 229-239, 1991.
(3) R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Mathematics, 132: 267-290, 1994.

References -1-

(1) D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. Discrete Mathematics, 22: 301-310, 1978.
(2) L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. Discrete Applied Mathematics, 34: 229-239, 1991.
(3) R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Mathematics, 132: 267-290, 1994.
(3) D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri. On some alternative characterizations of Riordan arrays. Canadian Journal of Mathematics, 49(2): 301-320, 1997.

References -2-

(1) T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays.Discrete Mathematics, 309: 3962-3974, 2009.

References -2-

(1) T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays.Discrete Mathematics, 309: 3962-3974, 2009.
(2) D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theoretical Computer Science, 412 (27), 2988-3001, 2011.

References -2-

(1) T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays.Discrete Mathematics, 309: 3962-3974, 2009.
(2) D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theoretical Computer Science, 412 (27), 2988-3001, 2011.
(3) A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli. Identities induced by Riordan arrays. Linear Algebra and its Applications, 436: 631-647, 2012.

References -2-

(1) T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays.Discrete Mathematics, 309: 3962-3974, 2009.
(2) D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theoretical Computer Science, 412 (27), 2988-3001, 2011.
(3) A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli. Identities induced by Riordan arrays. Linear Algebra and its Applications, 436: 631-647, 2012.

The bibliography on the subject is vast and still growing.

Definition in terms of $d(t)$ and $h(t)$

- A Riordan array is a pair

$$
D=\mathcal{R}(d(t), h(t))
$$

in which $d(t)$ and $h(t)$ are formal power series such that $d(0) \neq 0$ and $h(0)=0$; if $h^{\prime}(0) \neq 0$ the Riordan array is called proper.

Definition in terms of $d(t)$ and $h(t)$

- A Riordan array is a pair

$$
D=\mathcal{R}(d(t), h(t))
$$

in which $d(t)$ and $h(t)$ are formal power series such that $d(0) \neq 0$ and $h(0)=0$; if $h^{\prime}(0) \neq 0$ the Riordan array is called proper.

- The pair defines an infinite, lower triangular array $\left(d_{n, k}\right)_{n, k \in N}$ where:

$$
d_{n, k}=\left[t^{n}\right] d(t)(h(t))^{k}
$$

An example: the Pascal triangle

$$
\left.\begin{array}{c}
P=\mathcal{R}\left(\frac{1}{1-t}, \frac{t}{1-t}\right) \\
d_{n, k}=\left[t^{n}\right] \frac{1}{1-t} \cdot \frac{t^{k}}{(1-t)^{k}}=\left[t^{n-k}\right](1-t)^{-k-1}=\binom{n}{k} \\
n / k \\
\hline 0
\end{array} 0 \begin{array}{llllll}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & & & \\
2 & 1 & 2 & 1 & & \\
3 & 1 & 3 & 3 & 1 & \\
4 & 1 & 4 & 6 & 4 & 1
\end{array}\right]
$$

An example: the Catalan triangle

$$
\begin{aligned}
& C=\mathcal{R}\left(\frac{1-\sqrt{1-4 t}}{2 t}, \frac{1-\sqrt{1-4 t}}{2}\right) \\
& d_{n, k}=\left[t^{n}\right] d(t)(h(t))^{k}=\left[t^{n+1}\right]\left(\frac{1-\sqrt{1-4 t}}{2}\right)^{k+1}=\frac{k+1}{n+1}\binom{2 n-k}{n-k} \\
& \begin{array}{c|cccccc}
n / k & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 1 & & & & &
\end{array} \\
& \begin{array}{l|llll}
1 & 1 & 1 & & \\
2 & 2 & 2 & 1 & \\
3 & 5 & 5 & 3 & 1
\end{array} \\
& \begin{array}{l|lllll}
4 & 14 & 14 & 9 & 4 & 1
\end{array} \\
& \begin{array}{l|llllll}
5 & 42 & 42 & 28 & 14 & 5 & 1
\end{array}
\end{aligned}
$$

The Group structure

Product: $\quad \mathcal{R}(d(t), h(t)) * \mathcal{R}(a(t), b(t))=\mathcal{R}(d(t) a(h(t)), b(h(t)))$
Identity: $\mathcal{R}(1, t)$
Inverse: $\quad \mathcal{R}(d(t), h(t))^{-1}=\mathcal{R}\left(\frac{1}{d(\bar{h}(t))}, \bar{h}(t)\right)$

$$
h(\bar{h}(t))=\bar{h}(h(t))=t
$$

Pascal triangle: product and inverse

$$
\begin{gathered}
P=\mathcal{R}\left(\frac{1}{1-t}, \frac{t}{1-t}\right) \\
P * P=\mathcal{R}\left(\frac{1}{1-t}, \frac{t}{1-t}\right) * \mathcal{R}\left(\frac{1}{1-t}, \frac{t}{1-t}\right)= \\
=\mathcal{R}\left(\frac{1}{1-t} \frac{1-t}{1-2 t}, \frac{t}{1-t} \frac{1-t}{1-2 t}\right)=\mathcal{R}\left(\frac{1}{1-2 t}, \frac{t}{1-2 t}\right) . \\
P^{-1}=\mathcal{R}\left(\frac{1}{1+t}, \frac{t}{1+t}\right)
\end{gathered}
$$

Subgroups

APPELL

$$
\begin{gathered}
\mathcal{R}(d(t), t) * \mathcal{R}(a(t), t)=\mathcal{R}(d(t) a(t), t) \\
\mathcal{R}(d(t), t)^{-1}=\mathcal{R}\left(\frac{1}{d(t)}, t\right)
\end{gathered}
$$

LAGRANGE

$$
\begin{gathered}
\mathcal{R}(1, h(t)) * \mathcal{R}(1, b(t))=\mathcal{R}(1, h(b(t))) \\
\mathcal{R}(1, h(t))^{-1}=\mathcal{R}(1, \bar{h}(t))
\end{gathered}
$$

RENEWAL $\quad d(t)=h(t) / t$
HITTING - TIME $\quad d(t)=\frac{t h^{\prime}(t)}{h(t)}$

Inversion of Riordan arrays

$$
\mathcal{R}(d(t), h(t))^{-1}=\mathcal{R}\left(\frac{1}{d(\bar{h}(t))}, \bar{h}(t)\right)
$$

Every Riordan array is the product of an Appell and a Lagrange Riordan array

$$
\mathcal{R}(d(t), h(t))=\mathcal{R}(d(t), t) * \mathcal{R}(1, h(t))
$$

From this fact we obtain the formula for the inverse Riordan array

Pascal triangle: construction by columns

$$
d(t) h(t)^{k} \text { is the g.f. of column } k
$$

$$
\frac{1}{1-t}, \quad \frac{t}{(1-t)^{2}}, \quad \frac{t^{2}}{(1-t)^{3}}, \cdots
$$

n / k	0	1	2	3	4	5
0	1					
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	$\mathbf{1 0}$	5	1

Pascal triangle: construction by rows

$$
\begin{array}{cc}
n \\
n+1 \\
\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}
\end{array}
$$

The A and Z sequences

An alternative definition, is in terms of the so-called A-sequence and Z-sequence, with generating functions $A(t)$ and $Z(t)$ satisfying the relations:

$$
h(t)=t A(h(t)), \quad d(t)=\frac{d_{0}}{1-t Z(h(t))} \quad \text { with } \quad d_{0}=d(0)
$$

$$
\begin{gathered}
d_{n+1, k+1}=a_{0} d_{n, k}+a_{1} d_{n, k+1}+a_{2} d_{n, k+2}+\cdots \\
d_{n+1,0}=z_{0} d_{n, 0}+z_{1} d_{n, 1}+z_{2} d_{n, 2}+\cdots
\end{gathered}
$$

Pascal triangle: A-sequence $1,1,0,0, \cdots \Longrightarrow A(t)=1+t$

The A-sequence for the Catalan triangle

n / k	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	2	2	1					
3	5	5	3	1				
4	14	$\mathbf{1 4}$	9	4	1			
5	42	42	28	14	5	1		
6	132	132	90	48	20	6	1	
7	429	429	297	$\mathbf{1 6 5}$	75	27	7	1
A-sequence $1,1,1,1, \cdots \Longrightarrow A(t)=\frac{1}{1-t}$								

Rogers' Theorem - 1978

The A-sequence is unique and only depends on $h(t)$

$$
h(t)=t A(h(t))
$$

Pascal $\quad h(t)=t(1+h(t))$

$$
h_{P}(t)=\frac{t}{1-t}
$$

Catalan $\quad h(t)=t \frac{1}{1-h(t)}$

$$
h_{C}(t)=\frac{1-\sqrt{1-4 t}}{2}
$$

The B-sequence: $B(t)=A(t)^{-1}$

$d_{n, k}$ linearly depends on the elements of row $n+1$

$$
\begin{array}{c|cccccc}
n / k & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline 0 & 1 & & & & & \\
1 & 1 & 1 & & & & \\
2 & 1 & 2 & 1 & & & \\
3 & 1 & 3 & 3 & 1 & & \\
4 & 1 & 4 & 6 & 4 & 1 & \\
5 & 1 & 5 & 10 & 10 & 5 & 1 \\
\sum_{j=0}^{n}(-1)^{j}\binom{n+1}{k+j+1}=\binom{n}{k}
\end{array}
$$

A-approach to R.a.'s

$$
\begin{gathered}
\text { Product } A_{3}(t)=A_{2}(t) A_{1}\left(\frac{t}{A_{2}(t)}\right) \\
\text { Inverse } A^{*}(t)=\left[\left.\frac{1}{A(y)} \right\rvert\, y=t A(y)\right] \\
A_{P_{*} C}(t)=\frac{1}{1-t}[1+y \mid y=t(1-t)]=\frac{1+t-t^{2}}{1-t} \\
A_{C * P}(t)=(1+t)\left[\frac{1}{1-y} \left\lvert\, y=\frac{t}{1+t}\right.\right]=(1+t)^{2} \\
A_{P-1}(t)=\left[\left.\frac{1}{1+y} \right\rvert\, y=t(1+y)\right]=1-t
\end{gathered}
$$

Pascal triangle: the A-matrix (not unique)

$$
\begin{array}{c|ccccccc}
n / k & 0 & 1 & 2 & 3 & 4 & 5 & \\
\hline 0 & 1 & & & & & & P^{[0]}(t)=1 \quad P^{[1]}(t)=1+t \\
1 & 1 & 1 & & & & & \\
2 & 1 & 2 & 1 & & & & A(t)=\frac{P^{[0]}(t)+\sqrt{P^{[0]}(t)^{2}+4 t P^{[1]}(t)}}{2} \\
3 & 1 & 3 & 3 & 1 & & & \\
4 & 1 & 4 & 6 & 4 & 1 & & A(t)=\frac{1+\sqrt{1+4 t+4 t^{2}}}{2}=1+t \\
5 & 1 & 5 & 10 & 10 & 5 & 1 & \\
& & & & n-1 & (1)(1) \\
& & & \\
& & & & \\
& & & & k+1 &
\end{array}
$$

The A-matrix in general

$$
d_{n+1, k+1}=\sum_{i \geq 0} \sum_{j \geq 0} \alpha_{i, j} d_{n-i, k+j}+\sum_{j \geq 0} \rho_{j} d_{n+1, k+j+2}
$$

Matrix $\left(\alpha_{i, j}\right)_{i, j \in \mathbb{N}}$ is called the A-matrix of the Riordan array. If, for $i \geq 0$:

$$
P^{[i]}(t)=\alpha_{i, 0}+\alpha_{i, 1} t+\alpha_{i, 2} t^{2}+\alpha_{i, 3} t^{3}+\ldots
$$

and $Q(t)$ is the generating function for the sequence $\left(\rho_{j}\right)_{j \in \mathbb{N}}$, then we have:

$$
\begin{aligned}
& \frac{h(t)}{t}=\sum_{i \geq 0} t^{i} P^{[i]}(h(t))+\frac{h(t)^{2}}{t} Q(h(t)) \\
& A(t)=\sum_{i \geq 0} t^{i} A(t)^{-i} P^{[i]}(t)+t A(t) Q(t)
\end{aligned}
$$

A graphical representation of the A-matrix

Binary words avoiding a pattern

- We consider the language of binary words with no occurrence of a pattern $\mathfrak{p}=p_{0} \cdots p_{h-1}$.

Binary words avoiding a pattern

- We consider the language of binary words with no occurrence of a pattern $\mathfrak{p}=p_{0} \cdots p_{h-1}$.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.

Binary words avoiding a pattern

- We consider the language of binary words with no occurrence of a pattern $\mathfrak{p}=p_{0} \cdots p_{h-1}$.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.
(1) L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. Zeitschrift für Wahrscheinlichkeitstheorie, 53:241-262, 1980.

Binary words avoiding a pattern

- We consider the language of binary words with no occurrence of a pattern $\mathfrak{p}=p_{0} \cdots p_{h-1}$.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.
(1) L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. Zeitschrift für Wahrscheinlichkeitstheorie, 53:241-262, 1980.
(2) R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.

Binary words avoiding a pattern

- We consider the language of binary words with no occurrence of a pattern $\mathfrak{p}=p_{0} \cdots p_{h-1}$.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.
(1) L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. Zeitschrift für Wahrscheinlichkeitstheorie, 53:241-262, 1980.
(2) R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.
- The fundamental notion is that of the autocorrelation vector of bits $c=\left(c_{0}, \ldots, c_{h-1}\right)$ associated to a given \mathfrak{p}.

The pattern $\mathfrak{p}=00011$

0	0	0	1	1	Tails

The pattern $\mathfrak{p}=00011$

The pattern $\mathfrak{p}=00011$

0	0	0	1	1		Tails
0	0	0	1	1		
	0	0	0	1	1	1
					0	

The pattern $\mathfrak{p}=00011$

0	0	0	1	1			Tails	
0	0	0	1	1				1
	0	0	0	1	1			0
		0	0	0	1	1		0

The pattern $\mathfrak{p}=00011$

0	0	0	1	1				Tails	
0	0	0	1	1					1
	0	0	0	1	1			0	
		0	0	0	1	1			0
			0	0	0	1	1		0

The pattern $\mathfrak{p}=00011$

0	0	0	1	1				Tails	
0	0	0	1	1					1
	0	0	0	1	1				0
		0	0	0	1	1			0
			0	0	0	1	1		0
				0	0	0	1	1	0

The autocorrelation vector is then $c=(1,0,0,0,0)$

The bivariate generating function

Let $F_{n, k}^{[p]}$ denotes the number of words excluding the pattern and having n bits 1 and k bits 0 , then we have

$$
F^{[p]}(x, y)=\sum_{n, k \geq 0} F_{n, k}^{[p]} x^{n} y^{k}=\frac{C^{[p]}(x, y)}{(1-x-y) C^{[p]}(x, y)+x^{n_{1}^{p}} y^{n_{0}^{p}}},
$$

where $n_{1}^{[\mathrm{p}]}$ and $n_{0}^{[\mathrm{p}]}$ correspond to the number of ones and zeroes in the pattern and $C^{[p]}(x, y)$ is the bivariate autocorrelation polynomial.

An example with $\mathfrak{p}=110011$

We have $C^{[p]}(x, y)=1+x^{2} y^{2}+x^{3} y^{2}$, and:

$$
F^{[\mathfrak{p}]}(x, y)=\frac{1+x^{2} y^{2}+x^{3} y^{2}}{(1-x-y)\left(1+x^{2} y^{2}+x^{3} y^{2}\right)+x^{4} y^{2}} .
$$

n / k	0	1	2	3	4	5	6	7
0	$\mathbf{1}$	1	1	1	1	1	1	1
1	$\mathbf{1}$	2	3	4	5	6	7	8
2	$\mathbf{1}$	3	6	10	15	21	28	36
3	$\mathbf{1}$	4	10	20	35	56	84	120
4	$\mathbf{1}$	5	14	33	67	122	205	324
5	$\mathbf{1}$	6	19	50	114	232	432	750
6	$\mathbf{1}$	7	25	72	181	404	$\mathbf{8 2 2}$	1552
7	$\mathbf{1}$	8	32	100	273	660	1451	2952

...the lower and upper triangular parts

n / k	0	1	2	3	4	5	n / k	0	1	2	3	4	5
0	1						0	1					
1	2	1					1	2	1				
2	6	3	1				2	6	3	1			
3	20	10	4	1			3	20	10	4	1		
4	67	33	14	5	1		4	67	35	15	5	1	
5	232	114	50	19	6	1	5	232	122	56	21	6	1

Matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$

- Let $R_{n, k}^{[p]}=F_{n, n-k}^{[p]}$ with $k \leq n$. More precisely, $R_{n, k}^{[p]}$ counts the number of words avoiding \mathfrak{p} with n bits one and $n-k$ bits zero.

Matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$

- Let $R_{n, k}^{[p]}=F_{n, n-k}^{[p]}$ with $k \leq n$. More precisely, $R_{n, k}^{[p]}$ counts the number of words avoiding \mathfrak{p} with n bits one and $n-k$ bits zero.
- Let $\overline{\mathfrak{p}}=\bar{p}_{0} \ldots \bar{p}_{h-1}$ be the conjugate pattern.

Matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$

- Let $R_{n, k}^{[p]}=F_{n, n-k}^{[p]}$ with $k \leq n$. More precisely, $R_{n, k}^{[p]}$ counts the number of words avoiding \mathfrak{p} with n bits one and $n-k$ bits zero.
- Let $\overline{\mathfrak{p}}=\bar{p}_{0} \ldots \bar{p}_{h-1}$ be the conjugate pattern.
- We obviously have $R_{n, k}^{[\bar{p}]}=F_{n, n-k}^{[\bar{p}]}=F_{n-k, n}^{[p]}$, therefore, the matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ represent the lower and upper triangular part of the array $\mathcal{F}^{[p]}$, respectively.

Riordan patterns

- When matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[p]}$ are both Riordan arrays?

Riordan patterns

- When matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ are both Riordan arrays?
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theoretical Computer Science, 412 (27), 2988-3001, 2011.

Riordan patterns

- When matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ are both Riordan arrays?
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theoretical Computer Science, 412 (27), 2988-3001, 2011.
- We say that $\mathfrak{p}=p_{0} \ldots p_{h-1}$ is a Riordan pattern if and only if

$$
C^{[p]}(x, y)=C^{[\mathrm{p}]}(y, x)=\sum_{i=0}^{\lfloor(h-1) / 2\rfloor} c_{2 i} x^{i} y^{i},\left|n_{1}^{[p]}-n_{0}^{[\mathfrak{p}]}\right| \in\{0,1\}
$$

Main Theorem -1-

The matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ are both Riordan arrays $\mathcal{R}^{[p]}=\left(d^{[p]}(t), h^{[p]}(t)\right)$ and $\mathcal{R}^{[\mathfrak{p}]}=\left(d^{[\bar{p}]}(t), h^{[\vec{p}]}(t)\right)$ if and only if \mathfrak{p} is a Riordan pattern. Moreover we have:

$$
d^{[p]}(t)=d^{[[\overline{]}]}(t)=\left[x^{0}\right] F\left(x, \frac{t}{x}\right)=\frac{1}{2 \pi i} \oint F\left(x, \frac{t}{x}\right) \frac{d x}{x}
$$

and

$$
h^{[\mathfrak{p}]}(t)=\frac{1-\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 1} t^{i+1}-\sqrt{\left(1-\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 1} t^{i+1}\right)^{2}-4 \sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 0} t^{i+1}\left(\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 2} t^{i+1}+1\right)}}{2\left(\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 2} t^{i+1}+1\right)}
$$

Main Theorem -2-

... where $\delta_{i, j}$ is the Kronecker delta,

$$
\begin{gathered}
\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 0} t^{i}=\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} c_{2 i} t^{i}-\delta_{-1, n_{0}^{\mathfrak{p}}-n_{1}^{\mathfrak{p}}} t^{n_{1}^{\mathfrak{p}}-1}, \\
\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 1} t^{i}=-\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} c_{2(i+1)} t^{i}-\delta_{0, n_{0}^{\mathfrak{p}}-n_{1}^{\mathfrak{p}}} t^{n_{1}^{\mathfrak{p}}-1}, \\
\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} \alpha_{i, 2} t^{i}=\sum_{i=0}^{n_{1}^{\mathfrak{p}}-1} c_{2(i+1)} t^{i}-\delta_{1, n_{0}^{\mathfrak{p}}-n_{1}^{\mathfrak{p}}} t^{n_{1}^{\mathfrak{p}}-1},
\end{gathered}
$$

and the coefficients c_{i} are given by the autocorrelation vector of \mathfrak{p}. An analogous formula holds for $h^{[\bar{p}]}(t)$.

A Corollary

Let \mathfrak{p} be a Riordan pattern. Then the Riordan array $\mathcal{R}^{[\mathfrak{p}]}$ is characterized by the A-matrix defined by the following relation:

$$
\begin{aligned}
& R_{n+1, k+1}^{[\mathfrak{p}]}=R_{n, k}^{[\mathfrak{p}]}+R_{n+1, k+2}^{[\mathfrak{p}]}-R_{n+1-n_{1}^{\mathfrak{p}}, k+1+n_{0}^{\mathfrak{p}}-n_{1}^{\mathfrak{p}}+}^{[\mathfrak{p}]} \\
& \quad-\sum_{i \geq 1} c_{2 i}\left(R_{n+1-i, k+1}^{[\mathfrak{p}]}-R_{n-i, k}^{[\mathfrak{p}]}-R_{n+1-i, k+2}^{[\mathfrak{p}]}\right)
\end{aligned}
$$

where the c_{i} are given by the autocorrelation vector of \mathfrak{p}.

The A-matrix corresponding to a Riordan pattern

The coefficients in the gray circles are negative, $s=2 n_{1}^{\mathfrak{p}}$, $q=2\left(n_{1}^{\mathfrak{p}}-1\right)$. Moreover, we have to consider the contribution of
$-R_{n+1-n_{1}^{\mathrm{p}}, k+1+n_{0}^{\mathrm{p}}-n_{1}^{\mathrm{p}}}^{[\mathrm{p}]}$

The case $n_{1}^{[p]}-n_{0}^{[p]}=1$

By specializing the main result to the cases $\left|n_{1}^{p}-n_{0}^{p}\right| \in\{0,1\}$ and by setting $C^{[p]}(t)=C^{[p]}(\sqrt{t}, \sqrt{t})=\sum_{i \geq 0} C_{2 i} t^{i}$, we have the following explicit generating functions:

$$
\begin{gathered}
d^{[p]}(t)=\frac{C^{[p]}(t)}{\sqrt{C^{[p]}(t)^{2}-4 t C^{[p]}(t)\left(C C^{[p]}(t)-t^{r_{0}}\right)}}, \\
h^{[p]}(t)=\frac{C^{[p]}(t)-\sqrt{C^{[p]}(t)^{2}-4 t C^{[p]}(t)\left(C^{[p]}(t)-t^{r_{0}^{p}}\right)}}{2 C^{[p]}(t)} .
\end{gathered}
$$

$$
\begin{gathered}
d^{[p]}(t)=\frac{C^{[p]}(t)}{\sqrt{\left(C^{[p]}(t)+t^{n_{0}^{p}}\right)^{2}-4 t C^{[p]}(t)^{2}}}, \\
h^{[p]}(t)=\frac{\left.C^{[p]}(t)+t^{r_{0}^{p}}-\sqrt{\left(C^{[p]}\right]}(t)+t^{n_{0}^{p}}\right)^{2}-4 t C^{[p]}(t)^{2}}{2 C^{[p]}(t)} .
\end{gathered}
$$

The case $n_{0}^{[p]}-n_{1}^{[p]}=1$

$$
\begin{gathered}
d^{[p]}(t)=\frac{C^{[p]}(t)}{\sqrt{\left.C^{[p]}\right]}(t)^{2}-4 t C^{[p]}(t)\left(C^{[p]}(t)-t^{n_{1}^{p}}\right)}, \\
h^{[p]}(t)=\frac{C^{[p]}(t)-\sqrt{\left.C^{[p]}\right]}(t)^{2}-4 t C^{[p]}(t)\left(C^{[p]}(t)-t^{n_{1}^{p}}\right)}{2\left(C^{[p]}(t)-t^{n_{1}^{p}}\right)} .
\end{gathered}
$$

An example with $\mathfrak{p}=00011$

n / k	0	1	2	3	4	5	
0	1						${ }^{[p]}(t)=\frac{1}{}$
1	2	1					$d^{[p]}(t)=\frac{1}{\sqrt{1-4 t+4 t^{3}}}$
2	6	3	1				
3	18	10	4	1			$h^{[p]}(t)=\frac{1-\sqrt{1-4 t+4 t^{3}}}{2\left(1-t^{2}\right)}$
4	58	32	15	5	1		$h^{(1)}(t)=\frac{1}{2\left(1-t^{2}\right)}$
5	192	106	52	21	6	1	

The A-sequence for $\mathfrak{p}=00011$

- For $\mathfrak{p}=00011$, we find after setting $R(t)=\sqrt{1+4 t^{4}-4 t^{3}}$:

$$
\begin{aligned}
& A(t)=\frac{\left(2 t^{3}-t^{2}-t-1-\left(t^{2}+t+1\right) R(t)\right)\left(2 t^{3}-\sqrt{2} \sqrt{2 t^{6}+8 t^{4}-12 t^{3}+4-\left(4-4 t^{3}\right) R(t)}\right)}{8 t^{4}(t-1)(t+1)} \\
& =1+t+t^{2}+t^{4}+t^{5}+2 t^{7}+t^{8}-t^{9}+5 t^{10}-t^{11}-4 t^{12}+16 t^{13}-14 t^{14}-8 t^{15}+57 t^{16}-83 t^{17}+15 t^{18}+197 t^{19}+O\left(t^{20}\right) .
\end{aligned}
$$

The A-sequence for $\mathfrak{p}=00011$

- For $\mathfrak{p}=00011$, we find after setting $R(t)=\sqrt{1+4 t^{4}-4 t^{3}}$:

$$
\begin{aligned}
& A(t)=\frac{\left(2 t^{3}-t^{2}-t-1-\left(t^{2}+t+1\right) R(t)\right)\left(2 t^{3}-\sqrt{2} \sqrt{2 t^{6}+8 t^{4}-12 t^{3}+4-\left(4-4 t^{3}\right) R(t)}\right)}{8 t^{4}(t-1)(t+1)} \\
& =1+t+t^{2}+t^{4}+t^{5}+2 t^{7}+t^{8}-t^{9}+5 t^{10}-t^{11}-4 t^{12}+16 t^{13}-14 t^{14}-8 t^{15}+57 t^{16}-83 t^{17}+15 t^{18}+197 t^{19}+O\left(t^{20}\right) .
\end{aligned}
$$

- In general, the Riordan arrays for binary words avoiding \mathfrak{p} are characterized by a complex A-sequence, while the A-matrix is quite simple. However, the presence of negative coefficients leads to non trivial combinatorial interpretations.

The A-sequence for $\mathfrak{p}=00011$

- For $\mathfrak{p}=00011$, we find after setting $R(t)=\sqrt{1+4 t^{4}-4 t^{3}}$:

$$
\begin{aligned}
& A(t)=\frac{\left(2 t^{3}-t^{2}-t-1-\left(t^{2}+t+1\right) R(t)\right)\left(2 t^{3}-\sqrt{2} \sqrt{2 t^{6}+8 t^{4}-12 t^{3}+4-\left(4-4 t^{3}\right) R(t)}\right)}{8 t^{4}(t-1)(t+1)} \\
& =1+t+t^{2}+t^{4}+t^{5}+2 t^{7}+t^{8}-t^{9}+5 t^{10}-t^{11}-4 t^{12}+16 t^{13}-14 t^{14}-8 t^{15}+57 t^{16}-83 t^{17}+15 t^{18}+197 t^{19}+O\left(t^{20}\right)
\end{aligned}
$$

- In general, the Riordan arrays for binary words avoiding \mathfrak{p} are characterized by a complex A-sequence, while the A-matrix is quite simple. However, the presence of negative coefficients leads to non trivial combinatorial interpretations.
- S. Bilotta, D. Merlini, E. Pergola, R. Pinzani. Pattern $1^{j+1} 0^{j}$ avoiding binary words. To appear in Fundamenta Informaticae.

Formulas relative to whole classes of patterns

- $\mathfrak{p}=1^{j+1} 0^{j}$

$$
d^{[\mathfrak{p}]}(t)=\frac{1}{\sqrt{1-4 t+4 t^{j+1}}}, \quad h^{[\mathfrak{p}]}(t)=\frac{1-\sqrt{1-4 t+4 t^{j+1}}}{2}
$$

- $\mathfrak{p}=0^{j+1} 1^{j}$

$$
d^{[\mathfrak{p}]}(t)=\frac{1}{\sqrt{1-4 t+4 t^{j+1}}}, \quad h^{[\mathfrak{p}]}(t)=\frac{1-\sqrt{1-4 t+4 t^{j+1}}}{2\left(1-t^{j}\right)}
$$

- $\mathfrak{p}=1^{j} 0^{j}$ and $\mathfrak{p}=0^{j} 1^{j}$

$$
d^{[\mathfrak{p}]}(t)=\frac{1}{\sqrt{1-4 t+2 t^{j}+t^{2 j}}}, \quad h^{[\mathfrak{p}]}(t)=\frac{1+t^{j}-\sqrt{1-4 t+2 t^{j}+t^{2 j}}}{2}
$$

- $\mathfrak{p}=(10)^{j_{1}}$

$$
d^{[\mathfrak{p}]}(t)=\frac{\sum_{i=0}^{j} t^{i}}{\sqrt{1-2 \sum_{i=1}^{j} t^{i}-3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}, \quad h^{[\mathfrak{p}]}(t)=\frac{\sum_{i=0}^{j} t^{i}-\sqrt{1-2 \sum_{i=1}^{j} t^{i}-3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}{2 \sum_{i=0}^{j} t^{i}}
$$

Riordan array summation

$$
\sum_{k=0}^{n} d_{n, k} f_{k}=\left[t^{n}\right] d(t) f(h(t))
$$

Partial sum theorem:

$$
\sum_{k=0}^{n} f_{k}=\left[t^{n}\right] \frac{f(t)}{1-t}
$$

Euler transformation:

$$
\sum_{k=0}^{n}\binom{n}{k} f_{k}=\left[t^{n}\right] \frac{1}{1-t} f\left(\frac{t}{1-t}\right)
$$

A simple example: Harmonic numbers

$$
\begin{gathered}
\mathcal{G}\left(\frac{1}{n}\right)=\ln \frac{1}{1-t} \\
\mathcal{G}\left(\sum_{k=1}^{n} \frac{1}{k}\right)=\mathcal{G}\left(H_{n}\right)=\frac{1}{1-t} \ln \frac{1}{1-t} \\
\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k-1}}{k}= \\
=\left[t^{n}\right] \frac{1}{1-t}\left[\left.\ln \frac{1}{1+w} \right\rvert\, w=\frac{t}{1-t}\right]= \\
=\left[t^{n}\right] \frac{1}{1-t} \ln \frac{1}{1-t}=H_{n} .
\end{gathered}
$$

General rules for binomial coefficients

$$
\begin{aligned}
& \sum_{k}\binom{n+a k}{m+b k} f_{k}=\left[t^{n}\right] \frac{t^{m}}{(1-t)^{m+1}} f\left(\frac{t^{b-a}}{(1-t)^{b}}\right) \quad b>a \\
& \sum_{k}\binom{n+a k}{m+b k} f_{k}=\left[t^{m}\right](1+t)^{n} f\left(t^{-b}(1+t)^{a}\right) \quad b<0 \\
& \sum_{k}\binom{n+k}{m+2 k}\binom{2 k}{k} \frac{(-1)^{k}}{k+1}=\left[t^{n}\right] \frac{t^{m}}{(1-t)^{m+1}}\left[\left.\frac{\sqrt{1+4 y}-1}{2 y} \right\rvert\, y=\frac{t}{(1-t)^{2}}\right]= \\
& =\left[t^{n-m} \frac{1}{(1-t)^{m+1}}\left(\sqrt{1+\frac{4 t}{(1-t)^{2}}}-1\right) \frac{(1-t)^{2}}{2 t}=\left[t^{n-m} \frac{1}{(1-t)^{m}}=\binom{n-1}{m-1} .\right.\right.
\end{aligned}
$$

General rules for binomial coefficients

$$
\begin{aligned}
& \sum_{k}\binom{n+a k}{m+b k} f_{k}=\left[t^{n}\right] \frac{t^{m}}{(1-t)^{m+1}} f\left(\frac{t^{b-a}}{(1-t)^{b}}\right) \quad b>a \\
& \sum_{k}\binom{n+a k}{m+b k} f_{k}=\left[t^{m}\right](1+t)^{n} f\left(t^{-b}(1+t)^{a}\right) \quad b<0 \\
& \sum_{k}\binom{n+k}{m+2 k}\binom{2 k}{k} \frac{(-1)^{k}}{k+1}=\left[t^{n}\right] \frac{t^{m}}{(1-t)^{m+1}}\left[\left.\frac{\sqrt{1+4 y}-1}{2 y} \right\rvert\, y=\frac{t}{(1-t)^{2}}\right]= \\
& =\left[t^{n-m} \frac{1}{(1-t)^{m+1}}\left(\sqrt{1+\frac{4 t}{(1-t)^{2}}}-1\right) \frac{(1-t)^{2}}{2 t}=\left[t^{n-m} \frac{1}{(1-t)^{m}}=\binom{n-1}{m-1} .\right.\right.
\end{aligned}
$$

- R. Sprugnoli. Riordan Array Proofs of Identities in Gould's Book.

Recursive matrices

- A. Luzon, D. Merlini, M. A. Moron and R. Sprugnoli. Identities induced by Riordan arrays. Linear Algebra and its Applications, 436 (3), 631-647, 2012.

Recursive matrices

- A. Luzon, D. Merlini, M. A. Moron and R. Sprugnoli. Identities induced by Riordan arrays. Linear Algebra and its Applications, 436 (3), 631-647, 2012.

$$
\begin{gathered}
D=\mathcal{X}(d(t), h(t)) \\
d_{n, k}=\left[t^{n}\right] d(t) h(t)^{k} \quad n, k \in \mathbb{Z}
\end{gathered}
$$

Recursive matrices

- A. Luzon, D. Merlini, M. A. Moron and R. Sprugnoli. Identities induced by Riordan arrays. Linear Algebra and its Applications, 436 (3), 631-647, 2012.

$$
\begin{gathered}
D=\mathcal{X}(d(t), h(t)) \\
d_{n, k}=\left[t^{n}\right] d(t) h(t)^{k} \quad n, k \in \mathbb{Z}
\end{gathered}
$$

- The introduction of recursive matrices simply extends the properties of Riordan arrays.

The Pascal recursive matrix

$n \backslash k$	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
-6	1	0	0	0	0	0	0	0	0	0	0	0	0
-5	-5	1	0	0	0	0	0	0	0	0	0	0	0
-4	10	-4	1	0	0	0	0	0	0	0	0	0	0
-3	-10	6	-3	1	0	0	0	0	0	0	0	0	0
-2	5	-4	3	-2	1	0	0	0	0	0	0	0	0
-1	-1	1	-1	1	-1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0
2	0	0	0	0	0	0	1	2	1	0	0	0	0
3	0	0	0	0	0	0	1	3	3	1	0	0	0
4	0	0	0	0	0	0	1	4	6	4	1	0	0
5	0	0	0	0	0	0	1	5	10	10	5	1	0
6	0	0	0	0	0	0	1	6	15	20	15	6	1

The Catalan recursive matrix

	-4	-3	-2	-1	0	1	2	3	4	5
-6	0	0	0	0	0	0	0	0	0	0
-5	0	0	0	0	0	0	0	0	0	0
-4	1	0	0	0	0	0	0	0	0	0
-3	-3	1	0	0	0	0	0	0	0	0
-2	0	-2	1	0	0	0	0	0	0	0
-1	-1	-1	-1	1	0	0	0	0	0	0
0	-3	-2	-1	0	1	0	0	0	0	0
1	-9	-5	-2	0	1	1	0	0	0	0
2	-28	-14	-5	0	2	2	1	0	0	0
3	-90	-42	-14	0	5	5	3	1	0	0
4	-297	-132	-42	0	14	14	9	4	1	0
5	-1001	-429	-132	0	42	42	28	14	5	1
6	-3432	-1430	-429	0	132	132	90	48	20	6

Generalized Sums

Identities with three parameters $k, n, m \in \mathbb{Z}$

$$
d_{n+m, k+m}=\sum_{j=0}^{n-k} a_{j}^{(m)} d_{n, k+j}=\sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j, k}
$$

$$
\begin{gathered}
a_{j}^{(m)}=\left[t^{j}\right] A(t)^{m} \\
h_{j+m}^{(m)}=\left[t^{j+m}\right] h(t)^{m}=\left[t^{j}\right](h(t) / t)^{m}
\end{gathered}
$$

Generalized Sums for the Catalan triangle

$$
\begin{gathered}
\sum_{j=0}^{n-k}\binom{m+j-1}{j} \frac{k+j+1}{n+1}\binom{2 n-j-k}{n-j-k}= \\
=\frac{k+m+1}{n+m+1}\binom{2 n+m-k}{n-k} \\
\sum_{j=0}^{n-k} \frac{m}{m+2 j}\binom{m+2 j}{j} \frac{k+1}{n-j+1}\binom{2 n-2 j-k}{n-j-k}= \\
=\frac{k+m+1}{n+m+1}\binom{2 n+m-k}{n-k}
\end{gathered}
$$

Specializing the parameters

$$
\begin{gathered}
n \mapsto n, m \mapsto n, k \mapsto 0 \\
\sum_{j=0}^{n} \frac{j+1}{n+1}\binom{n+j-1}{j}\binom{2 n-j}{n-j}=\frac{n+1}{2 n+1}\binom{3 n}{n} \\
\sum_{j=0}^{n} \frac{n}{n+2 j}\binom{n+2 j}{j} \frac{1}{n-j+1}\binom{2 n-2 j}{n-j}=\frac{n+1}{2 n+1}\binom{3 n}{n} \\
n \mapsto 2 n, m \mapsto n, k \mapsto n \\
\sum_{j=0}^{n} \frac{n+j+1}{2 n+1}\binom{n+j-1}{j}\binom{3 n-j}{n-j}=\frac{2 n+1}{3 n+1}\binom{4 n}{n} \\
\sum_{j=0}^{n} \frac{n}{n+2 j}\binom{n+2 j}{j} \frac{n+1}{2 n-j+1}\binom{3 n-2 j}{n-j}=\frac{2 n+1}{3 n+1}\binom{4 n}{n}
\end{gathered}
$$

Work in progress: the complementary Riordan array

	-4	-3	-2	-1	0	1	2	3	4	5
-6	0	0	0	0	0	0	0	0	0	0
-5	0	0	0	0	0	0	0	0	0	0
-4	1	0	0	0	0	0	0	0	0	0
-3	-3	1	0	0	0	0	0	0	0	0
-2	0	-2	1	0	0	0	0	0	0	0
-1	-1	-1	-1	1	0	0	0	0	0	0
0	-3	-2	-1	0	1	0	0	0	0	0
1	-9	-5	-2	0	1	1	0	0	0	0
2	-28	-14	-5	0	2	2	1	0	0	0
3	-90	-42	-14	0	5	5	3	1	0	0
4	-297	-132	-42	0	14	14	9	4	1	0
5	-1001	-429	-132	0	42	42	28	14	5	1

End of the seminar

Thank you for your attention and for the invitation

Exercise: find the identities induced by Pascal triangle.

Exercise: find the identities induced by Pascal triangle.

- $d_{n+m, k+m}=\sum_{j=0}^{n-k} a_{j}^{(m)} d_{n, k+j}=\sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j, k}$

Exercise: find the identities induced by Pascal triangle.

- $d_{n+m, k+m}=\sum_{j=0}^{n-k} a_{j}^{(m)} d_{n, k+j}=\sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j, k}$

$$
\begin{gathered}
a_{j}^{(m)}=\left[t^{j}\right](1+t)^{m}=\binom{m}{j} \\
h_{m+j}^{m}=\left[t^{j+m}\right]\left(\frac{t}{1-t}\right)^{m}=\binom{m+j-1}{j}
\end{gathered}
$$

Exercise: find the identities induced by Pascal triangle.

- $d_{n+m, k+m}=\sum_{j=0}^{n-k} a_{j}^{(m)} d_{n, k+j}=\sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j, k}$

$$
\begin{gathered}
a_{j}^{(m)}=\left[t^{j}\right](1+t)^{m}=\binom{m}{j} \\
h_{m+j}^{m}=\left[t^{j+m}\right]\left(\frac{t}{1-t}\right)^{m}=\binom{m+j-1}{j} \\
\binom{n+m}{k+m}=\sum_{j=0}^{n-k}\binom{m}{j}\binom{n}{k+j}=\sum_{j=0}^{n-k}\binom{m}{j}\binom{n}{n-k-j}
\end{gathered}
$$

Exercise: find the identities induced by Pascal triangle.

- $d_{n+m, k+m}=\sum_{j=0}^{n-k} a_{j}^{(m)} d_{n, k+j}=\sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j, k}$

$$
\begin{gathered}
a_{j}^{(m)}=\left[t^{j}\right](1+t)^{m}=\binom{m}{j} \\
h_{m+j}^{m}=\left[t^{j+m}\right]\left(\frac{t}{1-t}\right)^{m}=\binom{m+j-1}{j} \\
\binom{n+m}{k+m}=\sum_{j=0}^{n-k}\binom{m}{j}\binom{n}{k+j}=\sum_{j=0}^{n-k}\binom{m}{j}\binom{n}{n-k-j}
\end{gathered}
$$

Well! You have proved Vandermonde's identity

Exercise: find the identities induced by Pascal triangle.

- $d_{n+m, k+m}=\sum_{j=0}^{n-k} a_{j}^{(m)} d_{n, k+j}=\sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j, k}$

$$
\begin{gathered}
a_{j}^{(m)}=\left[t^{j}\right](1+t)^{m}=\binom{m}{j} \\
h_{m+j}^{m}=\left[t^{j+m}\right]\left(\frac{t}{1-t}\right)^{m}=\binom{m+j-1}{j} \\
\binom{n+m}{k+m}=\sum_{j=0}^{n-k}\binom{m}{j}\binom{n}{k+j}=\sum_{j=0}^{n-k}\binom{m}{j}\binom{n}{n-k-j}
\end{gathered}
$$

Well! You have proved Vandermonde's identity

$$
\binom{n+m}{k+m}=\sum_{j=0}^{n}\binom{m+j-1}{j}\binom{n-j}{k}
$$

Exercise: find $A^{[p]}(t)$ for $\mathfrak{p}=10101$

$$
C^{[\mathfrak{p}]}(x, y)=1+x y+x^{2} y^{2} \Rightarrow Q(t)=1, \quad P^{[0]}(t)=P^{[1]}(t)=1-t+t^{2}
$$

Moreover, we have to consider the contribution of $-R_{n+1-n_{1}^{\mathfrak{p}}, k+1+n_{0}^{\mathfrak{p}}-n_{1}^{\mathfrak{p}}}^{p}=-R_{n-2, k}^{[\mathfrak{p}]}$.

Exercise: find $A^{[p]}(t)$ for $\mathfrak{p}=10101$

$$
C^{[\mathfrak{p}]}(x, y)=1+x y+x^{2} y^{2} \Rightarrow Q(t)=1, \quad P^{[0]}(t)=P^{[1]}(t)=1-t+t^{2}
$$

Moreover, we have to consider the contribution of $-R_{n+1-n_{1}^{\mathfrak{p}}, k+1+n_{0}^{\mathfrak{p}}-n_{1}^{\mathfrak{p}}}^{[\mathcal{p}}=-R_{n-2, k}^{[\mathfrak{p}]}$.

$$
A(t)=\sum_{i \geq 0} t^{i} A(t)^{-i} P^{[i]}(t)+t A(t) Q(t)=1-t+t^{2}+t A(t)^{-1}\left(1-t+t^{2}\right)+t A(t)
$$

$$
A(t)=\frac{1-t+t^{2}-\sqrt{1+2 t-5 t^{2}+6 t^{2}-3 t^{4}}}{2(1-t)}=1+t+3 t^{3}-3 t^{4}+12 t^{5}-30 t^{6}+93 t^{7}-282 t^{8}+O\left(t^{9}\right)
$$

