A survey on Riordan arrays

Donatella Merlini

Dipartimento di Sistemi e Informatica Università di Firenze, Italia

December 13, 2011, Paris

Outline

- 2 Main properties of Riordan arrays
- 3 Riordan arrays and binary words avoiding a pattern

Some history roperties of Riordan arrays

Main properties of Riordan arrays Riordan arrays and binary words avoiding a pattern Riordan arrays, combinatorial sums and recursive matrices

A previous seminar

• I'm very sorry to have not met P. Flajolet in the recent years.

A previous seminar

- I'm very sorry to have not met P. Flajolet in the recent years.
- I remember with pleasure my seminar at INRIA on October 10, 1994: *Riordan arrays and their applications*

References -1-

D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. *Discrete Mathematics*, 22: 301–310, 1978.

References -1-

- D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. *Discrete Mathematics*, 22: 301–310, 1978.
- L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. *Discrete Applied Mathematics*, 34: 229–239, 1991.

References -1-

- D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. *Discrete Mathematics*, 22: 301–310, 1978.
- L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. *Discrete Applied Mathematics*, 34: 229–239, 1991.
- R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Mathematics, 132: 267–290, 1994.

References -1-

- D. G. Rogers. Pascal triangles, Catalan numbers and renewal arrays. *Discrete Mathematics*, 22: 301–310, 1978.
- L. W. Shapiro, S. Getu, W.-J. Woan, and L. Woodson. The Riordan group. *Discrete Applied Mathematics*, 34: 229–239, 1991.
- R. Sprugnoli. Riordan arrays and combinatorial sums. Discrete Mathematics, 132: 267–290, 1994.
- D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri. On some alternative characterizations of Riordan arrays. *Canadian Journal of Mathematics*, 49(2): 301–320, 1997.

References -2-

 T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays. Discrete Mathematics, 309: 3962–3974, 2009.

References -2-

- T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays. Discrete Mathematics, 309: 3962–3974, 2009.
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. *Theoretical Computer Science*, 412 (27), 2988-3001, 2011.

References -2-

- T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays. Discrete Mathematics, 309: 3962–3974, 2009.
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. *Theoretical Computer Science*, 412 (27), 2988-3001, 2011.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli. Identities induced by Riordan arrays. *Linear Algebra and its Applications*, 436: 631-647, 2012.

References -2-

- T. X. He and R. Sprugnoli. Sequence characterization of Riordan arrays. Discrete Mathematics, 309: 3962–3974, 2009.
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. *Theoretical Computer Science*, 412 (27), 2988-3001, 2011.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli. Identities induced by Riordan arrays. *Linear Algebra and its Applications*, 436: 631-647, 2012.
- The bibliography on the subject is vast and still growing.

Definition in terms of d(t) and h(t)

• A Riordan array is a pair

 $D = \mathcal{R}(d(t), h(t))$

in which d(t) and h(t) are formal power series such that $d(0) \neq 0$ and h(0) = 0; if $h'(0) \neq 0$ the Riordan array is called *proper*.

Definition in terms of d(t) and h(t)

• A Riordan array is a pair

 $D = \mathcal{R}(d(t), h(t))$

in which d(t) and h(t) are formal power series such that $d(0) \neq 0$ and h(0) = 0; if $h'(0) \neq 0$ the Riordan array is called *proper*.

The pair defines an infinite, lower triangular array (d_{n,k})_{n,k∈N} where:

$$d_{n,k} = [t^n]d(t)(h(t))^k$$

An example: the Pascal triangle

$$P = \mathcal{R}\left(\frac{1}{1-t}, \frac{t}{1-t}\right)$$

$$d_{n,k} = [t^n] \frac{1}{1-t} \cdot \frac{t^k}{(1-t)^k} = [t^{n-k}](1-t)^{-k-1} = \binom{n}{k}$$

$$\frac{n/k \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{0 \quad 1}$$

$$\frac{n/k \mid 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5}{1 \quad 1 \quad 1}$$

$$\frac{1}{2} \mid 1 \quad 2 \quad 1$$

$$\frac{1}{3} \mid 1 \quad 3 \quad 3 \quad 1$$

$$\frac{4}{1} \mid 1 \quad 4 \quad 6 \quad 4 \quad 1$$

$$\frac{5}{1} \mid 5 \quad 10 \quad 10 \quad 5 \quad 1$$

An example: the Catalan triangle

$$C = \mathcal{R}\left(\frac{1-\sqrt{1-4t}}{2t}, \ \frac{1-\sqrt{1-4t}}{2}\right)$$

$$d_{n,k} = [t^n]d(t)(h(t))^k = [t^{n+1}]\left(\frac{1-\sqrt{1-4t}}{2}\right)^{k+1} = \frac{k+1}{n+1}\binom{2n-k}{n-k}$$

n/k	0	1	2	3	4	· ·	
0	1						
1	1	1					
2	2	2	1				
3	5	5	3	1			
4	14	14	9	4	1		
5	42	1 2 5 14 42	28	14	5	1	

The Group structure

Product: $\mathcal{R}(d(t), h(t)) * \mathcal{R}(a(t), b(t)) = \mathcal{R}(d(t)a(h(t)), b(h(t)))$ Identity: $\mathcal{R}(1, t)$ Inverse: $\mathcal{R}(d(t), h(t))^{-1} = \mathcal{R}\left(\frac{1}{d(\overline{h}(t))}, \overline{h}(t)\right)$ $h(\overline{h}(t)) = \overline{h}(h(t)) = t$

Pascal triangle: product and inverse

$$P = \mathcal{R}\left(\frac{1}{1-t}, \ \frac{t}{1-t}\right)$$

Subgroups

APPELL

$$\mathcal{R}(d(t), t) * \mathcal{R}(a(t), t) = \mathcal{R}(d(t)a(t), t)$$
$$\mathcal{R}(d(t), t)^{-1} = \mathcal{R}\left(\frac{1}{d(t)}, t\right)$$
$$\mathsf{LAGRANGE}$$

$$egin{aligned} \mathcal{R}(1, \ h(t)) * \mathcal{R}(1, \ b(t)) &= \mathcal{R}(1, \ h(b(t))) \ && \mathcal{R}(1, \ h(t))^{-1} = \mathcal{R}(1, \ \overline{h}(t)) \end{aligned}$$

RENEWAL d(t) = h(t)/t

HITTING – TIME $d(t) = \frac{th'(t)}{h(t)}$

Inversion of Riordan arrays

$$\mathcal{R}(d(t), h(t))^{-1} = \mathcal{R}\left(\frac{1}{d(\overline{h}(t))}, \overline{h}(t)\right)$$

Every Riordan array is the product of an Appell and a Lagrange Riordan array

$$\mathcal{R}(d(t), h(t)) = \mathcal{R}(d(t), t) * \mathcal{R}(1, h(t))$$

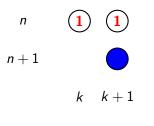
From this fact we obtain the formula for the inverse Riordan array

Pascal triangle: construction by columns

 $d(t)h(t)^k$ is the g.f. of column k

1 ·	$\frac{1}{-t}$,	$\frac{t}{(1-t)^2},$			$\frac{t^2}{(1-t)^3}, \cdots$			
	n/k	0	1	2	3	4	5	
	0	1						
	1	1	1					
	2	1	2	1				
	3	1	3	3	1			
	4	1	4	6	4	1		
	5	1	5	1 3 6 10	10	5	1	

Pascal triangle: construction by rows



$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

The A and Z sequences

An alternative definition, is in terms of the so-called A-sequence and Z-sequence, with generating functions A(t) and Z(t)satisfying the relations:

$$h(t) = tA(h(t)), \quad d(t) = rac{d_0}{1 - tZ(h(t))} \quad ext{with} \quad d_0 = d(0).$$

$$d_{n+1,k+1} = a_0 d_{n,k} + a_1 d_{n,k+1} + a_2 d_{n,k+2} + \cdots$$
$$d_{n+1,0} = z_0 d_{n,0} + z_1 d_{n,1} + z_2 d_{n,2} + \cdots$$

Pascal triangle: A-sequence $1, 1, 0, 0, \dots \Longrightarrow A(t) = 1 + t$

The A-sequence for the Catalan triangle

n/k	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	2	2	1					
3	5	5	3	1				
4	14	14	9	4	1			
5	42	42	28	14	5	1		
6	132	132	90	48	20	6	1	
7	429	429	297	1 4 14 48 165	75	27	7	1

A-sequence $1, 1, 1, 1, \dots \Longrightarrow A(t) = \frac{1}{1-t}$

Rogers' Theorem - 1978

The A-sequence is unique and only depends on h(t)h(t) = tA(h(t))

Pascal
$$h(t) = t(1 + h(t))$$

 $h_P(t) = \frac{t}{1 - t}$

Catalan
$$h(t) = t \frac{1}{1-h(t)}$$

 $h_C(t) = \frac{1-\sqrt{1-4t}}{2}.$

The *B*-sequence: $B(t) = A(t)^{-1}$

 $d_{n,k}$ linearly depends on the elements of row n+1

n/k	0	1	2		4	
0	1		1 3 6 10			
1	1	1				
2	1	2	1			
3	1	3	3	1		
4	1	4	6	4	1	
5	1	5	10	10	5	1
$\sum_{j=0}^{n}(-$						

A-approach to R.a.'s

Product
$$A_3(t) = A_2(t)A_1\left(\frac{t}{A_2(t)}\right)$$

Inverse $A^*(t) = \left[\frac{1}{A(y)} \mid y = tA(y)\right]$

$$\begin{aligned} A_{P*C}(t) &= \frac{1}{1-t} \left[1+y \mid y = t(1-t) \right] = \frac{1+t-t^2}{1-t} \\ A_{C*P}(t) &= (1+t) \left[\frac{1}{1-y} \mid y = \frac{t}{1+t} \right] = (1+t)^2 \\ A_{P^{-1}}(t) &= \left[\frac{1}{1+y} \mid y = t(1+y) \right] = 1-t \end{aligned}$$

Pascal triangle: the A-matrix (not unique)

n/k	0	1	2	3	4	5	$P^{[0]}(t) = 1 \qquad P^{[1]}(t) = 1 + t$ $A(t) = \frac{P^{[0]}(t) + \sqrt{P^{[0]}(t)^2 + 4tP^{[1]}(t)}}{2}$ $A(t) = \frac{1 + \sqrt{1 + 4t^2}}{2} = 1 + t$
0	1						$P^{[0]}(t) = 1$ $P^{[1]}(t) = 1 + t$
1	1	1					
2	1	2	1				$A(t) = \frac{P^{[0]}(t) + \sqrt{P^{[0]}(t)^2 + 4tP^{[1]}(t)}}{2}$
3	1	3	3	1			ζ, ζ
4	1	4	6	4	1		$A(t) = \frac{1+\sqrt{1+4t+4t^2}}{2} = 1+t$
5	1	5	10	10	5	1	
	-				n ·	- 1	
						n	
					n-	+ 1	
							k k + 1

The A-matrix in general

$$d_{n+1,k+1} = \sum_{i\geq 0} \sum_{j\geq 0} \alpha_{i,j} d_{n-i,k+j} + \sum_{j\geq 0} \rho_j d_{n+1,k+j+2}.$$

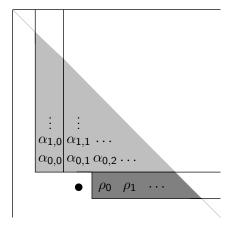
Matrix $(\alpha_{i,j})_{i,j\in\mathbb{N}}$ is called the *A*-matrix of the Riordan array. If, for $i \geq 0$:

$$P^{[i]}(t) = \alpha_{i,0} + \alpha_{i,1}t + \alpha_{i,2}t^2 + \alpha_{i,3}t^3 + \dots$$

and Q(t) is the generating function for the sequence $(\rho_j)_{j\in\mathbb{N}}$, then we have:

$$\frac{h(t)}{t} = \sum_{i \ge 0} t^i P^{[i]}(h(t)) + \frac{h(t)^2}{t} Q(h(t)).$$
$$A(t) = \sum_{i \ge 0} t^i A(t)^{-i} P^{[i]}(t) + t A(t) Q(t).$$

A graphical representation of the A-matrix



Binary words avoiding a pattern

 We consider the language of binary words with no occurrence of a pattern p = p₀ · · · p_{h−1}.

- We consider the language of binary words with no occurrence of a pattern p = p₀ · · · p_{h−1}.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.

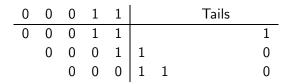
- We consider the language of binary words with no occurrence of a pattern p = p₀ · · · p_{h−1}.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.
 - L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. *Zeitschrift für Wahrscheinlichkeitstheorie*, 53:241–262, 1980.

- We consider the language of binary words with no occurrence of a pattern p = p₀ · · · p_{h−1}.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.
 - L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. *Zeitschrift für Wahrscheinlichkeitstheorie*, 53:241–262, 1980.
 - R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.

- We consider the language of binary words with no occurrence of a pattern p = p₀ · · · p_{h−1}.
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors.
 - L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. *Zeitschrift für Wahrscheinlichkeitstheorie*, 53:241–262, 1980.
 - R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.
- The fundamental notion is that of the *autocorrelation vector* of bits c = (c₀,..., c_{h-1}) associated to a given p.

The pattern $\mathfrak{p} = 00011$

0 0 0 1 1 Tails



0	0	0	1	1				Tails	
0		0		1					1
	0	0	0	1	1				0
		0	0	0	1	1			0
			0	1 0 0	0	1	1		0

The pattern $\mathfrak{p} = 00011$

The autocorrelation vector is then c = (1, 0, 0, 0, 0)

The bivariate generating function

Let $F_{n,k}^{[p]}$ denotes the number of words excluding the pattern and having *n* bits 1 and *k* bits 0, then we have

$$F^{[\mathfrak{p}]}(x,y) = \sum_{n,k\geq 0} F^{[\mathfrak{p}]}_{n,k} x^n y^k = \frac{C^{[\mathfrak{p}]}(x,y)}{(1-x-y)C^{[\mathfrak{p}]}(x,y) + x^{n_1^\mathfrak{p}} y^{n_0^\mathfrak{p}}},$$

where $n_1^{[p]}$ and $n_0^{[p]}$ correspond to the number of ones and zeroes in the pattern and $C^{[p]}(x, y)$ is the bivariate autocorrelation polynomial.

An example with $\mathfrak{p} = 110011$

-

We have
$$C^{[p]}(x, y) = 1 + x^2y^2 + x^3y^2$$
, and:

$$F^{[p]}(x,y) = \frac{1 + x^2 y^2 + x^3 y^2}{(1 - x - y)(1 + x^2 y^2 + x^3 y^2) + x^4 y^2}.$$

n/k	0	1	2	3	4	5	6	7
0	1	1	1	1	1	1	1	1
1	1	2	3	4	5	6	7	8
2	1	3	6	10	15	21	28	36
3	1	4	10	20	35	56	84	120
4	1	5	14	33	67	122	205	324
5	1	6	19	50	114	232	432	750
6	1	7	25	72	181	404	822	1552
7	1	8	32	100	273	660	1451	7 1 8 36 120 324 750 1552 2952

... the lower and upper triangular parts

n/k	0	1	2	3	4	5	n/k	0	1	2	3	4	5
0	1						0	1					
1	2	1					1	2	1				
2	6	3	1				2	6	3	1			
3	20	10	4	1			3	20	10	4	1		
4	67	33	14	5	1		4	67	35	15	5	1	
5	2 6 20 67 232	114	50	19	6	1	5	1 2 6 20 67 232	122	56	21	6	1

Matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$

• Let $R_{n,k}^{[p]} = F_{n,n-k}^{[p]}$ with $k \le n$. More precisely, $R_{n,k}^{[p]}$ counts the number of words avoiding p with n bits one and n - k bits zero.

Matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$

- Let $R_{n,k}^{[p]} = F_{n,n-k}^{[p]}$ with $k \le n$. More precisely, $R_{n,k}^{[p]}$ counts the number of words avoiding p with n bits one and n k bits zero.
- Let $\bar{\mathfrak{p}} = \bar{p}_0 \dots \bar{p}_{h-1}$ be the conjugate pattern.

Matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$

- Let $R_{n,k}^{[p]} = F_{n,n-k}^{[p]}$ with $k \le n$. More precisely, $R_{n,k}^{[p]}$ counts the number of words avoiding p with n bits one and n k bits zero.
- Let $\overline{\mathfrak{p}} = \overline{p}_0 \dots \overline{p}_{h-1}$ be the conjugate pattern.
- We obviously have $R_{n,k}^{[\bar{p}]} = F_{n,n-k}^{[\bar{p}]} = F_{n-k,n}^{[p]}$, therefore, the matrices $\mathcal{R}^{[\bar{p}]}$ and $\mathcal{R}^{[\bar{p}]}$ represent the lower and upper triangular part of the array $\mathcal{F}^{[\bar{p}]}$, respectively.

Riordan patterns

• When matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ are both Riordan arrays?

Riordan patterns

- When matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ are both Riordan arrays?
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. *Theoretical Computer Science*, 412 (27), 2988-3001, 2011.

Riordan patterns

- When matrices $\mathcal{R}^{[p]}$ and $\mathcal{R}^{[\bar{p}]}$ are both Riordan arrays?
- D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. *Theoretical Computer Science*, 412 (27), 2988-3001, 2011.
- We say that $\mathfrak{p} = p_0 ... p_{h-1}$ is a Riordan pattern if and only if

$$C^{[\mathfrak{p}]}(x,y) = C^{[\mathfrak{p}]}(y,x) = \sum_{i=0}^{\lfloor (h-1)/2 \rfloor} c_{2i} x^i y^i, \ |n_1^{[\mathfrak{p}]} - n_0^{[\mathfrak{p}]}| \in \{0,1\}.$$

Main Theorem -1-

The matrices $\mathcal{R}^{[\mathfrak{p}]}$ and $\mathcal{R}^{[\mathfrak{p}]}$ are both Riordan arrays $\mathcal{R}^{[\mathfrak{p}]} = (d^{[\mathfrak{p}]}(t), h^{[\mathfrak{p}]}(t))$ and $\mathcal{R}^{[\mathfrak{p}]} = (d^{[\mathfrak{p}]}(t), h^{[\mathfrak{p}]}(t))$ if and only if \mathfrak{p} is a Riordan pattern. Moreover we have:

$$d^{[\mathfrak{p}]}(t) = d^{[\overline{\mathfrak{p}}]}(t) = [x^0]F\left(x, \frac{t}{x}\right) = \frac{1}{2\pi i} \oint F\left(x, \frac{t}{x}\right) \frac{dx}{x}$$

and

$$h^{[p]}(t) = \frac{1 - \sum_{i=0}^{n_1^{p}-1} \alpha_{i,1} t^{i+1} - \sqrt{(1 - \sum_{i=0}^{n_1^{p}-1} \alpha_{i,1} t^{i+1})^2 - 4 \sum_{i=0}^{n_1^{p}-1} \alpha_{i,0} t^{i+1} (\sum_{i=0}^{n_1^{p}-1} \alpha_{i,2} t^{i+1} + 1)}{2(\sum_{i=0}^{n_1^{p}-1} \alpha_{i,2} t^{i+1} + 1)}$$

Main Theorem -2-

... where $\delta_{i,j}$ is the Kronecker delta,

$$\sum_{i=0}^{n_1^{\mathfrak{p}}-1} \alpha_{i,0} t^i = \sum_{i=0}^{n_1^{\mathfrak{p}}-1} c_{2i} t^i - \delta_{-1,n_0^{\mathfrak{p}}-n_1^{\mathfrak{p}}} t^{n_1^{\mathfrak{p}}-1},$$

$$\sum_{i=0}^{n_1^{\mathfrak{p}}-1} \alpha_{i,1} t^i = -\sum_{i=0}^{n_1^{\mathfrak{p}}-1} c_{2(i+1)} t^i - \delta_{0,n_0^{\mathfrak{p}}-n_1^{\mathfrak{p}}} t^{n_1^{\mathfrak{p}}-1},$$
$$\sum_{i=0}^{n_1^{\mathfrak{p}}-1} \alpha_{i,2} t^i = \sum_{i=0}^{n_1^{\mathfrak{p}}-1} c_{2(i+1)} t^i - \delta_{1,n_0^{\mathfrak{p}}-n_1^{\mathfrak{p}}} t^{n_1^{\mathfrak{p}}-1},$$

and the coefficients c_i are given by the autocorrelation vector of \mathfrak{p} . An analogous formula holds for $h^{[\bar{\mathfrak{p}}]}(t)$.

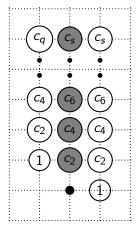
A Corollary

Let \mathfrak{p} be a Riordan pattern. Then the Riordan array $\mathcal{R}^{[\mathfrak{p}]}$ is characterized by the *A*-matrix defined by the following relation:

$$\begin{aligned} R_{n+1,k+1}^{[\mathfrak{p}]} &= R_{n,k}^{[\mathfrak{p}]} + R_{n+1,k+2}^{[\mathfrak{p}]} - R_{n+1-n_1^{\mathfrak{p}},k+1+n_0^{\mathfrak{p}}-n_1^{\mathfrak{p}}}^{[\mathfrak{p}]} + \\ &- \sum_{i\geq 1} c_{2i} \left(R_{n+1-i,k+1}^{[\mathfrak{p}]} - R_{n-i,k}^{[\mathfrak{p}]} - R_{n+1-i,k+2}^{[\mathfrak{p}]} \right), \end{aligned}$$

where the c_i are given by the autocorrelation vector of \mathfrak{p} .

The A-matrix corresponding to a Riordan pattern



The coefficients in the gray circles are negative, $s = 2n_1^p$, $q = 2(n_1^p - 1)$. Moreover, we have to consider the contribution of $-R_{n+1-n_1^p,k+1+n_0^p-n_1^p}^{[p]}$.

The case
$$n_1^{[p]} - n_0^{[p]} = 1$$

By specializing the main result to the cases $|n_1^{\mathfrak{p}} - n_0^{\mathfrak{p}}| \in \{0, 1\}$ and by setting $C^{[\mathfrak{p}]}(t) = C^{[\mathfrak{p}]}(\sqrt{t}, \sqrt{t}) = \sum_{i \ge 0} c_{2i}t^i$, we have the following explicit generating functions:

$$d^{[\mathfrak{p}]}(t) = \frac{C^{[\mathfrak{p}]}(t)}{\sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{n_0^{\mathfrak{p}}})}},$$
$$h^{[\mathfrak{p}]}(t) = \frac{C^{[\mathfrak{p}]}(t) - \sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{n_0^{\mathfrak{p}}})}{2C^{[\mathfrak{p}]}(t)}.$$

The case
$$n_1^{[p]} - n_0^{[p]} = 0$$

$$d^{[\mathfrak{p}]}(t) = rac{C^{[\mathfrak{p}]}(t)}{\sqrt{(C^{[\mathfrak{p}]}(t) + t^{n_0^\mathfrak{p}})^2 - 4tC^{[\mathfrak{p}]}(t)^2}},
onumber \ h^{[\mathfrak{p}]}(t) = rac{C^{[\mathfrak{p}]}(t) + t^{n_0^\mathfrak{p}} - \sqrt{(C^{[\mathfrak{p}]}(t) + t^{n_0^\mathfrak{p}})^2 - 4tC^{[\mathfrak{p}]}(t)^2}}{2C^{[\mathfrak{p}]}(t)}.$$

The case
$$n_0^{[\mathfrak{p}]} - n_1^{[\mathfrak{p}]} = 1$$

$$d^{[\mathfrak{p}]}(t) = \frac{C^{[\mathfrak{p}]}(t)}{\sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{n_1^\mathfrak{p}})}},$$
$$h^{[\mathfrak{p}]}(t) = \frac{C^{[\mathfrak{p}]}(t) - \sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{n_1^\mathfrak{p}})}{2(C^{[\mathfrak{p}]}(t) - t^{n_1^\mathfrak{p}})}.$$

An example with $\mathfrak{p} = 00011$

n/k	0	1	2	3	4	5							
0	1						$(\mathfrak{p} _{(+)})$ 1						
1	2	1					$d^{[p]}(t) = rac{1}{\sqrt{1-4t+4t^3}}$						
2	6	3	1										
3	18	10	4	1			$h^{[\mathfrak{p}]}(t) = rac{1-\sqrt{1-4t+4t^3}}{2(1-t^2)}$						
4	58	32	15	5	1		$2(1-t^2)$						
5	192	106	52	21	6	1							
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												

The *A*-sequence for $\mathfrak{p} = 00011$

• For $\mathfrak{p} = 00011$, we find after setting $R(t) = \sqrt{1 + 4t^4 - 4t^3}$:

$$A(t) = \frac{\left(2t^3 - t^2 - t - 1 - (t^2 + t + 1)R(t)\right)\left(2t^3 - \sqrt{2}\sqrt{2t^6 + 8t^4 - 12t^3 + 4 - (4 - 4t^3)R(t)}\right)}{8t^4(t - 1)(t + 1)}$$

 $=1+t+t^{2}+t^{4}+t^{5}+2t^{7}+t^{8}-t^{9}+5t^{10}-t^{11}-4t^{12}+16t^{13}-14t^{14}-8t^{15}+57t^{16}-83t^{17}+15t^{18}+197t^{19}+O(t^{20}).$

The *A*-sequence for $\mathfrak{p} = 00011$

• For $\mathfrak{p} = 00011$, we find after setting $R(t) = \sqrt{1 + 4t^4 - 4t^3}$:

$$A(t) = \frac{\left(2t^3 - t^2 - t - 1 - (t^2 + t + 1)R(t)\right)\left(2t^3 - \sqrt{2}\sqrt{2t^6 + 8t^4 - 12t^3 + 4 - (4 - 4t^3)R(t)}\right)}{8t^4(t - 1)(t + 1)}$$

 $=1+t+t^{2}+t^{4}+t^{5}+2t^{7}+t^{8}-t^{9}+5t^{10}-t^{11}-4t^{12}+16t^{13}-14t^{14}-8t^{15}+57t^{16}-83t^{17}+15t^{18}+197t^{19}+O(t^{20}).$

 In general, the Riordan arrays for binary words avoiding p are characterized by a complex A-sequence, while the A-matrix is quite simple. However, the presence of negative coefficients leads to non trivial combinatorial interpretations.

The *A*-sequence for $\mathfrak{p} = 00011$

• For $\mathfrak{p} = 00011$, we find after setting $R(t) = \sqrt{1 + 4t^4 - 4t^3}$:

$$A(t) = \frac{\left(2t^3 - t^2 - t - 1 - (t^2 + t + 1)R(t)\right)\left(2t^3 - \sqrt{2}\sqrt{2t^6 + 8t^4 - 12t^3 + 4 - (4 - 4t^3)R(t)}\right)}{8t^4(t - 1)(t + 1)}$$

 $=1+t+t^{2}+t^{4}+t^{5}+2t^{7}+t^{8}-t^{9}+5t^{10}-t^{11}-4t^{12}+16t^{13}-14t^{14}-8t^{15}+57t^{16}-83t^{17}+15t^{18}+197t^{19}+O(t^{20}).$

- In general, the Riordan arrays for binary words avoiding p are characterized by a complex A-sequence, while the A-matrix is quite simple. However, the presence of negative coefficients leads to non trivial combinatorial interpretations.
- S. Bilotta, D. Merlini, E. Pergola, R. Pinzani. Pattern 1^{j+1}0^j avoiding binary words. To appear in *Fundamenta Informaticae*.

Formulas relative to whole classes of patterns

$$\begin{aligned} \bullet \quad \mathfrak{p} &= \mathbf{1}^{j+1}\mathbf{0}^{j} \\ d^{[\mathfrak{p}]}(t) &= \frac{1}{\sqrt{1 - 4t + 4t^{j+1}}}, \quad h^{[\mathfrak{p}]}(t) &= \frac{1 - \sqrt{1 - 4t + 4t^{j+1}}}{2} \end{aligned} \\ \bullet \quad \mathfrak{p} &= \mathbf{0}^{j+1}\mathbf{1}^{j} \\ d^{[\mathfrak{p}]}(t) &= \frac{1}{\sqrt{1 - 4t + 4t^{j+1}}}, \quad h^{[\mathfrak{p}]}(t) &= \frac{1 - \sqrt{1 - 4t + 4t^{j+1}}}{2(1 - t^{j})} \end{aligned} \\ \bullet \quad \mathfrak{p} &= \mathbf{1}^{j}\mathbf{0}^{j} \text{ and } \mathfrak{p} &= \mathbf{0}^{j}\mathbf{1}^{j} \\ d^{[\mathfrak{p}]}(t) &= \frac{1}{\sqrt{1 - 4t + 2t^{j} + t^{2j}}}, \quad h^{[\mathfrak{p}]}(t) &= \frac{1 + t^{j} - \sqrt{1 - 4t + 2t^{j} + t^{2j}}}{2} \end{aligned}$$

$$\bullet \quad \mathfrak{p} &= (10)^{j}\mathbf{1} \\ d^{[\mathfrak{p}]}(t) &= \frac{\sum_{i=0}^{j} t^{i}}{\sqrt{1 - 2\sum_{i=1}^{j} t^{i} - 3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}, \quad h^{[\mathfrak{p}]}(t) &= \frac{\sum_{i=0}^{j} t^{i} - \sqrt{1 - 2\sum_{i=1}^{j} t^{i} - 3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}{2\sum_{i=0}^{j} t^{i}} \end{aligned}$$

Riordan array summation

$$\sum_{k=0}^n d_{n,k}f_k = [t^n]d(t)f(h(t))$$

Partial sum theorem:

$$\sum_{k=0}^n f_k = [t^n] \frac{f(t)}{1-t}$$

Euler transformation:

$$\sum_{k=0}^{n} \binom{n}{k} f_k = [t^n] \frac{1}{1-t} f\left(\frac{t}{1-t}\right)$$

A simple example: Harmonic numbers

$$\mathcal{G}\left(\frac{1}{n}\right) = \ln \frac{1}{1-t}$$
$$\mathcal{G}\left(\sum_{k=1}^{n} \frac{1}{k}\right) = \mathcal{G}(H_n) = \frac{1}{1-t} \ln \frac{1}{1-t}$$
$$\sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k-1}}{k} =$$
$$= [t^n] \frac{1}{1-t} \left[\ln \frac{1}{1+w} \mid w = \frac{t}{1-t}\right] =$$
$$= [t^n] \frac{1}{1-t} \ln \frac{1}{1-t} = H_n.$$

General rules for binomial coefficients

$$\sum_{k} \binom{n+ak}{m+bk} f_k = [t^n] \frac{t^m}{(1-t)^{m+1}} f\left(\frac{t^{b-a}}{(1-t)^b}\right) \qquad b > a$$

$$\sum_{k} \binom{n+ak}{m+bk} f_k = [t^m](1+t)^n f(t^{-b}(1+t)^a) \qquad b < 0$$

$$\begin{split} &\sum_{k} \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^{k}}{k+1} = [t^{n}] \frac{t^{m}}{(1-t)^{m+1}} \left[\frac{\sqrt{1+4y}-1}{2y} \mid y = \frac{t}{(1-t)^{2}} \right] = \\ &= [t^{n-m}] \frac{1}{(1-t)^{m+1}} \left(\sqrt{1+\frac{4t}{(1-t)^{2}}} - 1 \right) \frac{(1-t)^{2}}{2t} = [t^{n-m}] \frac{1}{(1-t)^{m}} = \binom{n-1}{m-1}. \end{split}$$

General rules for binomial coefficients

$$\sum_{k} \binom{n+ak}{m+bk} f_k = [t^n] \frac{t^m}{(1-t)^{m+1}} f\left(\frac{t^{b-a}}{(1-t)^b}\right) \qquad b > a$$

$$\sum_{k} \binom{n+ak}{m+bk} f_k = [t^m](1+t)^n f(t^{-b}(1+t)^a) \qquad b < 0$$

$$\begin{split} &\sum_{k} \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^{k}}{k+1} = [t^{n}] \frac{t^{m}}{(1-t)^{m+1}} \left[\frac{\sqrt{1+4y}-1}{2y} \mid y = \frac{t}{(1-t)^{2}} \right] = \\ &= [t^{n-m}] \frac{1}{(1-t)^{m+1}} \left(\sqrt{1+\frac{4t}{(1-t)^{2}}} - 1 \right) \frac{(1-t)^{2}}{2t} = [t^{n-m}] \frac{1}{(1-t)^{m}} = \binom{n-1}{m-1}. \end{split}$$

 R. Sprugnoli. Riordan Array Proofs of Identities in Gould's Book.

Recursive matrices

 A. Luzon, D. Merlini, M. A. Moron and R. Sprugnoli. Identities induced by Riordan arrays. *Linear Algebra and its Applications*, 436 (3), 631-647, 2012.

Recursive matrices

 A. Luzon, D. Merlini, M. A. Moron and R. Sprugnoli. Identities induced by Riordan arrays. *Linear Algebra and its Applications*, 436 (3), 631-647, 2012.

 $egin{aligned} D &= \mathcal{X}(d(t), \ h(t)) \ d_{n,k} &= [t^n] d(t) h(t)^k \quad n,k \in \mathbb{Z} \end{aligned}$

Recursive matrices

 A. Luzon, D. Merlini, M. A. Moron and R. Sprugnoli. Identities induced by Riordan arrays. *Linear Algebra and its Applications*, 436 (3), 631-647, 2012.

$$egin{aligned} D &= \mathcal{X}(d(t), \ h(t)) \ d_{n,k} &= [t^n] d(t) h(t)^k \quad n,k \in \mathbb{Z} \end{aligned}$$

• The introduction of recursive matrices simply extends the properties of Riordan arrays.

The Pascal recursive matrix

$n \setminus k$	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
-6	1	0	0	0	0	0	0	0	0	0	0	0	0
-5	-5	1	0	0	0	0	0	0	0	0	0	0	0
-4	10	-4	1	0	0	0	0	0	0	0	0	0	0
-3	-10	6	-3	1	0	0	0	0	0	0	0	0	0
-2	5	-4	3	-2	1	0	0	0	0	0	0	0	0
-1	-1	1	$^{-1}$	1	$^{-1}$	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0
2	0	0	0	0	0	0	1	2	1	0	0	0	0
3	0	0	0	0	0	0	1	3	3	1	0	0	0
4	0	0	0	0	0	0	1	4	6	4	1	0	0
5	0	0	0	0	0	0	1	5	10	10	5	1	0
6	0	0	0	0	0	0	1	6	15	20	15	6	1

The Catalan recursive matrix

	-4	-3	-2	-1	0	1	2	3	4	5
-6	0	0	0	0	0	0	0	0	0	0
-5	0	0	0	0	0	0	0	0	0	0
-4	1	0	0	0	0	0	0	0	0	0
-3	-3	1	0	0	0	0	0	0	0	0
-2	0	-2	1	0	0	0	0	0	0	0
-1	-1	-1	-1	1	0	0	0	0	0	0
0	-3	-2	$^{-1}$	0	1	0	0	0	0	0
1	-9	-5	-2	0	1	1	0	0	0	0
2	-28	-14	-5	0	2	2	1	0	0	0
3	-90	-42	-14	0	5	5	3	1	0	0
4	-297	-132	-42	0	14	14	9	4	1	0
5	-1001	-429	-132	0	42	42	28	14	5	1
6	-3432	-1430	-429	0	132	132	90	48	20	6

Generalized Sums

Identities with three parameters $k, n, m \in \mathbb{Z}$

$$d_{n+m,k+m} = \sum_{j=0}^{n-k} a_j^{(m)} d_{n,k+j} = \sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j,k}$$

$$a_j^{(m)} = [t^j]A(t)^m$$

 $h_{j+m}^{(m)} = [t^{j+m}]h(t)^m = [t^j](h(t)/t)^m$

Generalized Sums for the Catalan triangle

$$\sum_{j=0}^{n-k} \binom{m+j-1}{j} \frac{k+j+1}{n+1} \binom{2n-j-k}{n-j-k} = \\ = \frac{k+m+1}{n+m+1} \binom{2n+m-k}{n-k}.$$
$$\sum_{j=0}^{n-k} \frac{m}{m+2j} \binom{m+2j}{j} \frac{k+1}{n-j+1} \binom{2n-2j-k}{n-j-k} = \\ = \frac{k+m+1}{n+m+1} \binom{2n+m-k}{n-k}.$$

Specializing the parameters

$$n \mapsto n, \ m \mapsto n, \ k \mapsto 0$$

$$\sum_{j=0}^{n} \frac{j+1}{n+1} \binom{n+j-1}{j} \binom{2n-j}{n-j} = \frac{n+1}{2n+1} \binom{3n}{n}$$

$$\sum_{j=0}^{n} \frac{n}{n+2j} \binom{n+2j}{j} \frac{1}{n-j+1} \binom{2n-2j}{n-j} = \frac{n+1}{2n+1} \binom{3n}{n}$$

$$n \mapsto 2n, \ m \mapsto n, \ k \mapsto n$$

$$\sum_{j=0}^{n} \frac{n+j+1}{2n+1} \binom{n+j-1}{j} \binom{3n-j}{n-j} = \frac{2n+1}{3n+1} \binom{4n}{n}$$

$$\sum_{j=0}^{n} \frac{n}{n+2j} \binom{n+2j}{j} \frac{n+1}{2n-j+1} \binom{3n-2j}{n-j} = \frac{2n+1}{3n+1} \binom{4n}{n}$$

Work in progress: the complementary Riordan array

	-4	-3	-2	-1	0	1	2	3	4	5
-6	0	0	0	0	0	0	0	0	0	0
-5	0	0	0	0	0	0	0	0	0	0
-4	1	0	0	0	0	0	0	0	0	0
-3	-3	1	0	0	0	0	0	0	0	0
-2	0	-2	1	0	0	0	0	0	0	0
-1	-1	-1	-1	1	0	0	0	0	0	0
0	-3	-2	-1	0	1	0	0	0	0	0
1	-9	-5	-2	0	1	1	0	0	0	0
2	-28	-14	-5	0	2	2	1	0	0	0
3	-90	-42	-14	0	5	5	3	1	0	0
4	-297	-132	-42	0	14	14	9	4	1	0
5	-1001	-429	-132	0	42	42	28	14	5	1

 $D^{\perp}=\mathcal{R}(d(\overline{h}(t))\overline{h}'(t),\ \overline{h}(t))=\mathcal{R}(rac{1-2t}{1-t},t(1-t))$

End of the seminar

Thank you for your attention and for the invitation

•
$$d_{n+m,k+m} = \sum_{j=0}^{n-k} a_j^{(m)} d_{n,k+j} = \sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j,k}$$

•
$$d_{n+m,k+m} = \sum_{j=0}^{n-k} a_j^{(m)} d_{n,k+j} = \sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j,k}$$

 $a_j^{(m)} = [t^j](1+t)^m = \binom{m}{j}$
 $h_{m+j}^m = [t^{j+m}] \left(\frac{t}{1-t}\right)^m = \binom{m+j-1}{j}$

٩

$$d_{n+m,k+m} = \sum_{j=0}^{n-k} a_j^{(m)} d_{n,k+j} = \sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j,k}$$
$$a_j^{(m)} = [t^j](1+t)^m = \binom{m}{j}$$
$$h_{m+j}^m = [t^{j+m}] \left(\frac{t}{1-t}\right)^m = \binom{m+j-1}{j}$$
$$\binom{n+m}{k+m} = \sum_{j=0}^{n-k} \binom{m}{j} \binom{n}{k+j} = \sum_{j=0}^{n-k} \binom{m}{j} \binom{n}{n-k-j}$$

٩

Exercise: find the identities induced by Pascal triangle.

$$d_{n+m,k+m} = \sum_{j=0}^{n-k} a_j^{(m)} d_{n,k+j} = \sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j,k}$$
$$a_j^{(m)} = [t^j](1+t)^m = \binom{m}{j}$$
$$h_{m+j}^m = [t^{j+m}] \left(\frac{t}{1-t}\right)^m = \binom{m+j-1}{j}$$
$$\binom{n+m}{k+m} = \sum_{j=0}^{n-k} \binom{m}{j} \binom{n}{k+j} = \sum_{j=0}^{n-k} \binom{m}{j} \binom{n}{n-k-j}$$

Well! You have proved Vandermonde's identity

٩

Exercise: find the identities induced by Pascal triangle.

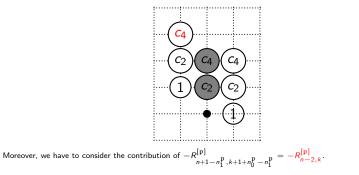
$$d_{n+m,k+m} = \sum_{j=0}^{n-k} a_j^{(m)} d_{n,k+j} = \sum_{j=0}^{n-k} h_{j+m}^{(m)} d_{n-j,k}$$
$$a_j^{(m)} = [t^j](1+t)^m = \binom{m}{j}$$
$$h_{m+j}^m = [t^{j+m}] \left(\frac{t}{1-t}\right)^m = \binom{m+j-1}{j}$$
$$\binom{n+m}{k+m} = \sum_{j=0}^{n-k} \binom{m}{j} \binom{n}{k+j} = \sum_{j=0}^{n-k} \binom{m}{j} \binom{n}{n-k-j}$$

Well! You have proved Vandermonde's identity

$$\binom{n+m}{k+m} = \sum_{j=0}^{n} \binom{m+j-1}{j} \binom{n-j}{k}.$$

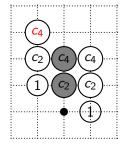
Exercise: find $A^{[p]}(t)$ for p = 10101

$$C^{[p]}(x,y) = 1 + xy + x^2y^2 \Rightarrow Q(t) = 1, \quad P^{[0]}(t) = P^{[1]}(t) = 1 - t + t^2$$



Exercise: find $A^{[p]}(t)$ for p = 10101

$$C^{[p]}(x,y) = 1 + xy + x^2y^2 \Rightarrow Q(t) = 1, \quad P^{[0]}(t) = P^{[1]}(t) = 1 - t + t^2$$



Moreover, we have to consider the contribution of $-R^{[p]}_{n+1-n_1^p,k+1+n_0^p-n_1^p} = -R^{[p]}_{n-2,k}.$

$$A(t) = \sum_{i \ge 0} t^{i} A(t)^{-i} P^{[i]}(t) + t A(t) Q(t) = 1 - t + t^{2} + t A(t)^{-1} (1 - t + t^{2}) + t A(t)$$

$$A(t) = \frac{1 - t + t^2 - \sqrt{1 + 2t - 5t^2 + 6t^2 - 3t^4}}{2(1 - t)} = 1 + t + 3t^3 - 3t^4 + 12t^5 - 30t^6 + 93t^7 - 282t^8 + O(t^9)$$

Donatella Merlini A survey on Riordan arrays