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Abstract
In this paper we find closed forms for certain finite sums. In each case the de-
nominator of the summand consists of products of generalized Fibonacci numbers.
Furthermore, we express each closed form in terms of rational numbers.

1. Introduction

The Fibonacci and Lucas numbers are defined, respectively, for all integers n, by

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

Define, for all integers n, the sequences {Un} and {Vn} by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1, (1)

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p, (2)

in which p is a positive integer. Then {Un} and {Vn} are integer sequences that
generalize the Fibonacci and Lucas numbers, respectively. Throughout this paper
p is taken to be a positive integer. Let ∆ = p2 + 4. Then with the use of standard
difference techniques it can be shown that the closed forms (the Binet forms) for
Un and Vn are

Un =
αn − βn

α− β
, Vn = αn + βn, (3)

where α =
�
p +

√
∆

�
/2, and β =

�
p−

√
∆

�
/2.

Next we define, for all integers n, the sequence {Wn} by

Wn = pWn−1 + Wn−2, W0 = a, W1 = b, (4)
1I dedicate this paper to my mother Maria. She continues to be a fountain of love and support.
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where a ≥ 0 and b ≥ 0 are integers with (a, b) �= (0, 0). These conditions on a and
b, together with the fact that p is assumed to be a positive integer, ensure that each
of the reciprocal sums in this paper is well defined. It can be shown that

Wn =
Aαn −Bβn

α− β
, (5)

where A = b − aβ and B = b − aα. Associated with {Wn} is the constant eW =
AB = b2 − pab− a2, which occurs in the sequel. Accordingly, eF = 1 and eL = −5.

An identity linking the Fibonacci and Lucas numbers is Ln = Fn−1 + Fn+1, and
a similar identity links the sequences {Un} and {Vn}. Motivated by this we define
a companion sequence

�
Wn

�
of {Wn} by Wn = Wn−1 + Wn+1. With the use of

(5) we see that
Wn = Aαn + Bβn. (6)

The sequences {Wn} and
�
Wn

�
generalize the sequences {Un} and {Vn}, respec-

tively. Furthermore Un = Vn, and V n = ∆Un, so that Fn = Ln, and Ln = 5Fn.
Let k ≥ 1, m ≥ 0, and n ≥ 2 be integers. In this paper (in Section 3) we give a

closed expression, in terms of rational numbers, for each of the following sums:

S (k,m, n) =
n−1�

i=1

(−1)ki

Wki+mWk(i+1)+m
, (7)

T1 (k,m, n) =
n−1�

i=1

(−1)kiUk(i+1)+m

Wki+mWk(i+1)+mWk(i+2)+m
, (8)

T2 (k,m, n) =
n−1�

i=1

(−1)kiVk(i+1)+m

Wki+mWk(i+1)+mWk(i+2)+m
, (9)

T3 (k,m, n) =
n−1�

i=1

(−1)kiW k(i+1)+m

Wki+mWk(i+1)+mWk(i+2)+m
, (10)

X (k,m, n) =
n−1�

i=1

1
Wki+mWk(i+1)+mWk(i+2)+mWk(i+3)+m

. (11)

In Section 2 we present some background and motivation for our study. In Section
3 we present our main results, and in Section 4 we present a detailed proof of one
of our results. The method of proof that we outline can be used to prove all the
results in this paper. It is reasonable to surmise that there are sums, analogous to
(7)-(11), with longer products in their denominators, for which closed forms can be
found. In Sections 5, 6, and 7 we select some of (7)-(11) and show that this is the
case.
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2. Background and Motivation

The broad question of summation of reciprocals that involve Fibonacci or general-
ized Fibonacci numbers has a long history. In this short paper it is not our intention
to give this history. Instead, in the next few paragraphs, we give a brief commen-
tary on work that we have cited on reciprocal sums that involve the summands in
(7)-(11). After this, we indicate the motivation for the present paper.

André-Jeannin [1] considered the summand in (7) for the particular cases Wn =
Un and Wn = Vn. Taking m = 0 and k an odd integer, he expressed the infinite
sums in terms of the Lambert Series

L(x) =
∞�

i=1

xi

1− xi
, |x| < 1.

Inspired by the work of André-Jeannin [1], the authors in [5] considered the
analogues of Un and Vn for the recurrence Wn = pWn−1 − Wn−2, and obtained
analogues of André-Jeannin’s results for these sequences. The authors first obtained
two finite sums in terms of the irrational roots of x2 − px + 1 = 0. They then took
the appropriate limits to obtain the corresponding infinite sums. Interestingly, these
infinite sums did not involve the Lambert Series, but were expressed in terms of the
irrational roots of x2 − px + 1 = 0.

Filipponi [3] considered the summand in (7) for the particular cases Wn = Un

and Wn = Vn. Taking m = 0 and k an even integer, he expressed the infinite sums
in terms of α and β.

André-Jeannin [2] considered the more general sequence of integers defined by
Wn = pWn−1 − qWn−2, in which the initial values W0 and W1 are integers, and p
and q are integers with pq �= 0. For this sequence he studied the sums

∞�

i=1

1
Wki+mWk(i+i0)+m

and
∞�

i=1

qki+m

Wki+mWk(i+i0)+m
, (12)

for integers k ≥ 1, m ≥ 0, and i0 ≥ 1. In the course of his analysis, André-
Jeannin expressed any finite sums in terms of one of the roots of x2 − px + q = 0.
Furthermore, in (12), he evaluated only the sum on the right in terms of rational
numbers.

In [6] we studied the infinite sums

∞�

i=1

W k(i+m)

WkiWk(i+m)Wk(i+2m)
, (13)

and
∞�

i=1

(−1)i

WkiWk(i+m)Wk(i+2m)Wk(i+3m)
, (14)
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in which k ≥ 1 and m ≥ 1 are odd integers.
In [7] we studied the infinite sums

∞�

i=1

W k(i+m)

WkiWk(i+m)Wk(i+2m)
, (15)

and
∞�

i=1

1
WkiWk(i+m)Wk(i+2m)Wk(i+3m)

, (16)

in which k ≥ 1 and m ≥ 1 are integers with k even. For (13)-(16) it was only in the
case of (15) that we managed to express the infinite sum as a finite sum of rational
numbers.

Reflecting upon the results in the foregoing paragraphs, we realized that sums
(finite or infinite) involving summands that are similar to those in (7)-(11) are
not usually evaluated in terms of rational numbers. It was this realization that
prompted us to embark upon the investigation that led to the present paper. We
list two finite sums (see [8]) that we recently evaluated in terms of rational numbers.

n−1�

i=1

1
Fki+mFk(i+1)+m

=
Fk(n−1)

FkFk+mFkn+m
, n > 1, (17)

where k > 0 is an even integer, and m > 0 is any integer.

n−1�

i=1

1
Lki+mLk(i+1)+m

=
Fk(n−1)

FkLk+mLkn+m
, n > 1, (18)

where k �= 0 is an even integer, and m is any integer. In the present paper our
evaluation of S1 (k,m, n) generalizes both (17) and (18).

3. The Main Results

We now state our main results. As stated in Section 1, in (19)-(23) k ≥ 1, m ≥ 0,
and n ≥ 2 are assumed to be integers. We have

UkWk+mS (k,m, n) =
(−1)kUk(n−1)

Wkn+m
, (19)

eW U2kWk+mT1 (k,m, n) = − 1
Uk

�
W−kUk(n−1)

Wkn+m
+

(−1)k+1WkUkn

Wk(n+1)+m

�

+
(−1)k+1Wk

W2k+m
, (20)
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eW U2kWk+mT2 (k,m, n) =
1

Uk

�
W−kUk(n−1)

Wkn+m
+

(−1)k+1W kUkn

Wk(n+1)+m

�

+
(−1)kW k

W2k+m
, (21)

UkWk+mT3 (k,m, n) =
(−1)k

W2k+m
− (−1)knWk+m

Wkn+mWk(n+1)+m
, (22)

eW VkU3kWk+mX (k,m, n) =
(−1)mW 4k+m

W2k+mW3k+m
+

(−1)k+m

U2
k

�
Uk(n−1)

Wkn+m

+
(−1)k+1V2kUkn

Wk(n+1)+m
+

Uk(n+1)

Wk(n+2)+m

�
. (23)

To illustrate, we present two examples of (23). Let k = 1 and m = 0. Then for
Wn = Fn (23) becomes

n−1�

i=1

1
FiFi+1Fi+2Fi+3

=
7
4
− 1

2

�
Fn−1

Fn
+

3Fn

Fn+1
+

Fn+1

Fn+2

�
. (24)

Let k = 2 and m = 0. Then for Wn = Ln (23) becomes

n−1�

i=1

1
L2iL2(i+1)L2(i+2)L2(i+3)

= − 1
432

− 1
360

�
F2(n−1)

L2n
− 7F2n

L2(n+1)
+

F2(n+1)

L2(n+2)

�
.

(25)

4. The Method of Proof

In this section, to illustrate our method of proof, we prove (23) in detail. We require
the following four identities, which can be proved with the use of the closed forms:

UknWkn+m − Uk(n−1)Wk(n+1)+m = (−1)k(n+1)UkWk+m, (26)
U4kW2k+m − (−1)kUkW3k+m − U2

kW 4k+m = (−1)kU3kWk+m, (27)
W2k+mW3k+m −Wk+mW4k+m = (−1)k+meW U2

kVk, (28)

and

Wkn+mWk(n+1)+m − V2kWkn+mWk(n+3)+m (29)
+ Wk(n+2)+mWk(n+3)+m = (−1)kn+meW UkVkU3k.
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For n ≥ 2 denote the right side of (23) by R (k,m, n). Then

R (k,m, n + 1)−R (k,m, n) =
(−1)k+m

U2
k

�
Ukn

Wk(n+1)+m
−

Uk(n−1)

Wkn+m

�

+
(−1)m+1V2k

U2
k

�
Uk(n+1)

Wk(n+2)+m
− Ukn

Wk(n+1)+m

�

+
(−1)k+m

U2
k

�
Uk(n+2)

Wk(n+3)+m
−

Uk(n+1)

Wk(n+2)+m

�
.

With the use of (26) the right side becomes

(−1)kn+mWk+m

Uk

�
1

Wkn+mWk(n+1)+m
− V2k

Wk(n+1)+mWk(n+2)+m

+
1

Wk(n+2)+mWk(n+3)+m

�
, (30)

and with the use of (29) we see that (30) simplifies to
eW VkU3kWk+m

Wkn+mWk(n+1)+mWk(n+2)+mWk(n+3)+m
. (31)

Thus

R (k,m, n + 1)−R (k,m, n) (32)
= eW VkU3kWk+m (X (k,m, n + 1)−X (k,m, n)) .

Next,

R (k,m, 2) =
(−1)k+m

U2
k

�
Uk

W2k+m
+

(−1)k+1U4k

W3k+m
+

U3k

W4k+m

�
(33)

+
(−1)mW 4k+m

W2k+mW3k+m
.

Expressing the right side of (33) as a fraction with denominator
U2

kW2k+mW3k+mW4k+m, the numerator is

(−1)m+1W4k+m

�
U4kW2k+m − (−1)kUkW3k+m − U2

kW 4k+m

�
(34)

+ (−1)k+mU3kW2k+mW3k+m.

Then, with the use of (27) and (28), we see that

R (k,m, 2) =
(−1)k+mU3k (W2k+mW3k+m −Wk+mW4k+m)

U2
kW2k+mW3k+mW4k+m

(35)

=
eW U2

kVkU3k

U2
kW2k+mW3k+mW4k+m

=
eW VkU3k

W2k+mW3k+mW4k+m

= eW VkU3kWk+mX (k,m, 2) .
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Taken together, (32) and (35) show that (23) is true.
We remark that all the results in this paper can be proved in a similar manner.

Above we made use of identities (26)-(29) to assist in the proof. An alternative
method is to simply use brute force. Specifically, to prove that two quantities are
equal we substitute the closed forms of the sequences in question and expand with
the use of a computer algebra system. All of the results in this paper can be proved
with this method. With this method any occurrence of eW is replaced by AB.

5. Sums that Belong to the Same Family as T3 (k, m, n)

Throughout the remainder of this paper k ≥ 1, m ≥ 0, and n ≥ 2 are assumed to
be integers. Let us write (22) as

UkWk+mW2k+mT3 (k,m, n) = (−1)k − (−1)knWk+mW2k+m

Wkn+mWk(n+1)+m
. (36)

Now define the following sum, where the denominator of the summand consists of
seven factors.

T7 (k,m, n) =
n−1�

i=1

(−1)kiW k(i+3)+m

Wki+mWk(i+1)+m · · ·Wk(i+6)+m
. (37)

In (37) we have modified our notation to make it more suggestive. Specifically, the
number 7 in the subscript of T7 denotes seven factors in the denominator of the
summand. We continue this convention in what follows.

Next, define the following sum, where the denominator of the summand consists
of eleven factors.

T11 (k,m, n) =
n−1�

i=1

(−1)kiW k(i+5)+m

Wki+mWk(i+1)+m · · ·Wk(i+10)+m
. (38)

Finally, define the following sum, where the denominator of the summand consists
of fifteen factors.

T15 (k,m, n) =
n−1�

i=1

(−1)kiW k(i+7)+m

Wki+mWk(i+1)+m · · ·Wk(i+14)+m
. (39)

In each of (37)-(39) the analogy with (10) is clear. Furthermore, the pattern in
(36) can be extended to yield

U3kWk+m · · ·W6k+mT7 (k,m, n) = (−1)k − (−1)knWk+m · · ·W6k+m

Wkn+m · · ·Wk(n+5)+m
, (40)
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U5kWk+m · · ·W10k+mT11 (k,m, n) = (−1)k − (−1)knWk+m · · ·W10k+m

Wkn+m · · ·Wk(n+9)+m
, (41)

and

U7kWk+m · · ·W14k+mT15 (k,m, n) = (−1)k − (−1)knWk+m · · ·W14k+m

Wkn+m · · ·Wk(n+13)+m
. (42)

The lists of formulas (37)-(39) and (40)-(42) have clearly defined patterns and
can easily be extended by the reader.

Are there similar sums, for which closed forms exist, that have 5, 9, 13, . . . factors
in the denominator of the summand? We have discovered such sums. The first few
representatives of these sums are

t5 (k,m, n) =
n−1�

i=1

W k(i+2)+m

Wki+mWk(i+1)+m · · ·Wk(i+4)+m
, (43)

t9 (k,m, n) =
n−1�

i=1

W k(i+4)+m

Wki+mWk(i+1)+m · · ·Wk(i+8)+m
, (44)

t13 (k,m, n) =
n−1�

i=1

W k(i+6)+m

Wki+mWk(i+1)+m · · ·Wk(i+12)+m
. (45)

We have found that

U2kWk+m · · ·W4k+mt5 (k,m, n) = 1− Wk+m · · ·W4k+m

Wkn+m · · ·Wk(n+3)+m
, (46)

U4kWk+m · · ·W8k+mt9 (k,m, n) = 1− Wk+m · · ·W8k+m

Wkn+m · · ·Wk(n+7)+m
, (47)

U6kWk+m · · ·W12k+mt13 (k,m, n) = 1− Wk+m · · ·W12k+m

Wkn+m · · ·Wk(n+11)+m
. (48)

We have not been able to find closed forms for those counterparts to (43)-(45)
where each summand is multiplied by (−1)ki. The sums (43)-(45) together with
their respective closed forms (46)-(48) have clearly defined patterns and can easily
be extended by the reader.

Let k = 2 and m = 0. Then for Wn = Fn (40) becomes

31933440
n−1�

i=1

L2(i+3)

F2iF2(i+1) · · ·F2(i+6)
= 1− 3991680

F2nF2(n+1) · · ·F2(n+5)
. (49)

Let k = 1 and m = 0. Then for Wn = Ln (40) becomes

33264
n−1�

i=1

5(−1)iFi+3

LiLi+1 · · ·Li+6
= −1− 16632(−1)n

LnLn+1 · · ·Ln+5
. (50)
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6. Sums that Belong to the Same Family as S (k, m, n)

Define the following sum, where the denominator of the summand consists of six
factors.

S6 (k,m, n) =
n−1�

i=1

(−1)ki

Wki+mWk(i+1)+m · · ·Wk(i+5)+m
. (51)

We have managed to find a closed form for (51). To present this closed form
succinctly we define three quantities ci = ci(k) as follows:

c0 = 1,
c1 = (−1)k+1VkV3k,

c2 =
(−1)k

�
V6k + V2k + 2(−1)k

�

2
.

Then

e2
W Uk · · ·U5k (S6(k,m, n)− S6(k,m, 2)) = (52)

Uk(n−2)

2�

i=0

ci

�
1

W(2+i)k+mW(n+i)k+m
+

1
W(6−i)k+mW(n+4−i)k+m

�
.

Indeed, numerical evidence suggests that a similar closed form exists for the
analogous sum S10 (k,m, n) with ten factors in the denominator of the summand,
and for the analogous sum S14 (k,m, n) with fourteen factors in the denominator of
the summand. Numerical evidence also suggests that similar closed forms exist for
analogous sums that have 18, 22, 26, . . . factors in the denominator of the summand.

Let k = 2 and m = 0. Then for Wn = Fn (52) becomes

27720
n−1�

i=1

1
F2iF2(i+1) · · ·F2(i+5)

− 1
144

= F2(n−2)

�
1

3F2n
− 27

4F2(n+1)

+
331

21F2(n+2)
− 54

55F2(n+3)

+
1

144F2(n+4)

�
. (53)

Let k = 1 and m = 0. Then for Wn = Ln (52) becomes

750
n−1�

i=1

(−1)i

LiLi+1 · · ·Li+5
+

125
2772

= Fn−2

�
1

3Ln
+

1
Ln+1

− 19
7Ln+2

+
4

11Ln+3
+

1
18Ln+4

�
. (54)
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7. Sums that Belong to the Same Family as X (k, m, n)

Define the following sum, where the denominator of the summand consists of eight
factors.

X8 (k,m, n) =
n−1�

i=1

1
Wki+mWk(i+1)+m · · ·Wk(i+7)+m

. (55)

We have managed to find a closed form for (55). In order to present this closed
form we define four quantities fi = fi(k) as follows:

f0 = 1,

f1 = −U3kV4k

Uk
,

f2 =
(−1)kU3k

�
V8k + (−1)kV2k + 1

�

Uk
,

f3 =
(−1)k+1V4k

�
V8k + V4k + 2(−1)kV2k + 2

�

2
.

Then

e3
W Uk · · ·U7k (X8(k,m, n)−X8(k,m, 2)) = (56)

(−1)mUk(n−2)

3�

i=0

fi

�
1

W(2+i)k+mW(n+i)k+m
+

1
W(8−i)k+mW(n+6−i)k+m

�
.

Numerical evidence suggests that similar closed forms exist for analogous sums
that have 12, 16, 20, . . . factors in the denominator of the summand.

Let k = 1 and m = 0. Then for Wn = Fn (56) becomes

3120
n−1�

i=1

1
FiFi+1 · · ·Fi+7

− 1
21

= Fn−2

�
1

Fn
− 7

Fn+1
− 30

Fn+2
+

70
Fn+3

− 45
4Fn+4

− 14
13Fn+5

+
1

21Fn+6

�
. (57)

8. Concluding Comments

We have discovered closed forms for variants of (8)-(10) that we do not present here.
For instance, we have discovered a closed form for

n−1�

i=1

(−1)kiUki+m

Wki+mWk(i+1)+mWk(i+2)+m
. (58)

Furthermore, in the spirit of Sections 5-7, we have discovered lengthier analogues
of these variants. The possibilities seem endless.
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