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SUMS INVOLVING FIBONACCI AND PELL NUMBERS

R. Melham

1 – Introduction

Define the sequences {Un} and {Vn} for all integers n by

(1.1)







Un = pUn−1 + Un−2 , U0 = 0, U1 = 1 ,

Vn = p Vn−1 + Vn−2 , V0 = 2, V1 = p .

For p = 1 we write {Un} = {Fn} and {Vn} = {Ln}, which are the Fibonacci

and Lucas numbers respectively. Their Binet forms, obtained by using standard

techniques for solving linear recurrences, are

Fn =
αn − βn

α− β
and Ln = αn + βn ,

where α and β are the roots of x2 − x− 1 = 0.

For p = 2 we write

(1.2)







Pn = 2Pn−1 + Pn−2 , P0 = 0, P1 = 1 ,

Qn = 2Qn−1 +Qn−2 , Q0 = 2, Q1 = 2 .

Here {Pn} and {Qn} are the Pell and Pell–Lucas sequences respectively. Their

Binet forms are given by

Pn =
γn − δn

γ − δ
and Qn = γn + δn ,

where γ and δ are the roots of x2 − 2x− 1 = 0.

Further details about the Pell and Pell–Lucas numbers can be found in [3].
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Melham and Shannon [8], motivated by the striking result of D.H. Lehmer

[6],
∞
∑

i=1

tan−1
(

1

F2i+1

)

=
π

4
,

produced a host of similar sums, both finite and infinite, involving terms from

the sequences (1.1). They also obtained results involving the arctanh function.

Our first aim in this paper is to produce more results of a similar nature for the

Fibonacci and Lucas sequences and also for the Pell and Pell–Lucas sequences.

This is done in Section 2. The results involving Fn and Ln do not seem to have

counterparts for Pn and Qn, and vice-versa. We find this unusual.

Our second aim is to present an unpublished result of Mahon and to use it

to produce a finite sum involving Fibonacci and Lucas numbers. This is done in

Sections 3 and 4.

We require the following results which appear in [1] and [4]:

tan−1 x+ tan−1 y = tan−1
(

x+ y

1− x y

)

, if x y < 1 ,(1.3)

tan−1 x− tan−1 y = tan−1
(

x− y

1 + x y

)

, if x y > −1 ,(1.4)

tanh−1 x+ tanh−1 y = tanh−1
(

x+ y

1 + x y

)

,(1.5)

tanh−1 x− tanh−1 y = tanh−1
(

x− y

1− x y

)

,(1.6)

tanh−1 x =
1

2
loge

(

1 + x

1− x

)

, |x| < 1 .(1.7)

We also require

(1.8) F 2
n − Fn+k Fn−k = (−1)n−k F 2

k ,

which is the Catalan identity, and which generalizes the following Simson’s iden-

tity:

(1.9) F 2
n − Fn−1 Fn+1 = (−1)n−1 .
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2 – Sums for Fibonacci and Pell numbers

Our sums for the Fibonacci numbers stem from the following:

Lemma 1.

F 2
n+2 = Fn Fn+4 + (−1)n ,(2.1)

Fn+4 − Fn = Ln+2 ,(2.2)

Fn+4 + Fn = 3Fn+2 .(2.3)

Identity (2.1) is a direct consequence of (1.8), while (2.2) and (2.3) follow

from the recurrence relation for Fibonacci numbers, together with the fact that

Ln = Fn+1 + Fn−1.

As a consequence of (1.3)–(1.6) and Lemma 1 we have:

Theorem 1. If n is a positive integer, then

tan−1 Fn+4 − tan−1 Fn = tan−1
(

Ln+2

F 2
n+2

)

, n even ,(2.4)

tan−1
(

1

Fn

)

+ tan−1
(

1

Fn+4

)

= tan−1
(

3

Fn+2

)

, n odd ,(2.5)

tanh−1
(

1

Fn

)

+ tanh−1
(

1

Fn+4

)

= tanh−1
(

3

Fn+2

)

, n even, n > 2 ,(2.6)

tanh−1
(

1

Fn

)

− tanh−1
(

1

Fn+4

)

= tanh−1
(

Ln+2

F 2
n+2

)

, n odd, n > 1 .(2.7)

In (2.4)–(2.7) we replace n by k, k + 4, k + 8, ..., k + 4n − 4 to obtain sums

which telescope to yield respectively

n
∑

i=1

tan−1
(

Lk+4i−2

F 2
k+4i−2

)

= tan−1 Fk+4n − tan−1 Fk , k even ,(2.8)

n
∑

i=1

(−1)i−1 tan−1
(

3

Fk+4i−2

)

= tan−1
(

1

Fk

)

+ (−1)n−1 tan−1
(

1

Fk+4n

)

,

k odd ,
(2.9)
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n
∑

i=1

(−1)i−1 tanh−1
(

3

Fk+4i−2

)

= tanh−1
(

1

Fk

)

+ (−1)n−1 tanh−1
(

1

Fk+4n

)

,

k even, k > 2 ,
(2.10)

n
∑

i=1

tanh−1
(

Lk+4i−2

F 2
k+4i−2

)

= tanh−1
(

1

Fk

)

− tanh−1
(

1

Fk+4n

)

,

k odd, k > 1 .
(2.11)

The infinite sums which arise from (2.8)–(2.11) are respectively

∞
∑

i=1

tan−1
(

Lk+4i−2

F 2
k+4i−2

)

=
π

2
− tan−1 Fk , k even ,(2.12)

∞
∑

i=1

(−1)i−1 tan−1
(

3

Fk+4i−2

)

= tan−1
(

1

Fk

)

, k odd ,(2.13)

∞
∑

i=1

(−1)i−1 tanh−1
(

3

Fk+4i−2

)

= tanh−1
(

1

Fk

)

, k even, k > 2 ,(2.14)

∞
∑

i=1

tanh−1
(

Lk+4i−2

F 2
k+4i−2

)

= tanh−1
(

1

Fk

)

, k odd, k > 1 .(2.15)

The summations (2.14) and (2.15) can be expressed, using (1.7), as

∞
∏

i=1

Fk+4i−2 + (−1)i−1 3

Fk+4i−2 + (−1)i 3 =
Fk + 1

Fk − 1
, k even, k > 2 ,(2.16)

∞
∏

i=1

F 2
k+4i−2 + Lk+4i−2

F 2
k+4i−2 − Lk+4i−2

=
Fk + 1

Fk − 1
, k odd, k > 1 .(2.17)

The next lemma gives identities for the Pell and Pell–Lucas sequences which

do not have succinct counterparts for the Fibonacci and Lucas sequences or the

sequences (1.1). We use these identities to obtain summation identities involving

the Pell and Pell–Lucas numbers.

Lemma 2. For {Pn} and {Qn}

P 2
n + Pn−1 Pn+1 =

Q2
n

4
,(2.18)

Q2
n +Qn−1 Qn+1 = 16P 2

n .(2.19)

Proof: Use Binet forms.
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Now, using the same techniques as previously, we can prove the following with

the aid of Lemma 2:

Theorem 2. For {Pn}∞n=1 and {Qn}∞n=1,

tan−1
(

Pn−1

Pn

)

+ tan−1
(

Pn

Pn+1

)

= tan−1
(

Q2
n

8P 2
n

)

,(2.20)

tan−1
(

Qn−1

Qn

)

+ tan−1
(

Qn

Qn+1

)

= tan−1
(

8P 2
n

Q2
n

)

,(2.21)

tanh−1
(

Pn−1

Pn

)

+ tanh−1
(

Pn

Pn+1

)

= tanh−1
(

Qn

4Pn

)

,(2.22)

tanh−1
(

Qn−1

Qn

)

+ tanh−1
(

Qn

Qn+1

)

= tanh−1
(

2Pn
Qn

)

, n ≥ 2 .(2.23)

Identities (2.20)–(2.23) yield respectively

n
∑

i=1

(−1)i−1 tan−1
(

Q2
i

8P 2
i

)

= (−1)n−1 tan−1
(

Pn

Pn+1

)

,(2.24)

n
∑

i=1

(−1)i−1 tan−1
(

8P 2
i

Q2
i

)

=
π

4
+ (−1)n−1 tan−1

(

Qn

Qn+1

)

,(2.25)

n
∑

i=1

(−1)i−1 tanh−1
(

Qi

4Pi

)

= (−1)n−1 tanh−1
(

Pn

Pn+1

)

,(2.26)

n
∑

i=2

(−1)i tanh−1
(

2Pi
Qi

)

=
1

2
loge 2 + (−1)n tanh−1

(

Qn

Qn+1

)

.(2.27)

Each of (2.24)–(2.27) is an oscillating series which does not converge. If we

note that

lim
n→∞

Pn

Pn+1
= lim

n→∞

Qn

Qn+1
=
√
2− 1 and tan−1(

√
2− 1) =

π

8
,

we see that in (2.24) and (2.25) the length of each oscillation approaches π
4 .

Similar observations can be made about (2.26) and (2.27).

3 – An identity of Mahon

In this section we state and prove an identity of Mahon [7, ch. 4]. It is an

extension to third order sequences of Simson’s identity for the Fibonacci numbers.
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We have not seen the identity elsewhere in the literature, and we believe that

its statement and Mahon’s elegant proof deserve to be more widely known. In

the next section we use the identity to derive a finite sum involving Fibonacci

numbers, which we believe to be new.

Consider the third order recurrence

(3.1) Rn = a1 Rn−1 + a2 Rn−2 + a3 Rn−3 , a3 6= 0 ,

in which a1, a2 and a3 are complex numbers. Then using (3.1) we define the

sequence {rn} for all integers n by

(3.2) rn = a1 rn−1 + a2 rn−2 + a3 rn−3 , (r−1, r0, r1) = (0, 0, 1) .

If α1, α2 and α3 are the roots, assumed distinct, of x3− a1 x
2− a2 x− a3 = 0, we

have

(3.3) rn =
αn+1

1

(α1 − α2) (α1 − α3)
+

αn+1
2

(α2 − α1) (α2 − α3)
+

αn+1
3

(α3 − α1) (α3 − α2)
.

This can be found in Jarden [5], where it is stated differently due to a shift in

the initial values.

An important feature of {rn} is that it is an analogue of the Fibonacci

sequence for the recurrence (3.1). Indeed, the same can be said about the

two sequences generated by (3.1) whose initial values are (0, 1, 0) and (1, 0, 0).

An early reference which details properties of these sequences is Bell [2].

Following Shannon and Horadam [10], we define the matrix

A =





a1 a2 a3

1 0 0
0 1 0



 .

Interestingly, A also occurs as M1 in a sequence of matrices {Mn}∞−∞ defined

much earlier by Ward [12], who obtained properties of the solutions of (3.1) using

field extensions. We require the following, which occurs essentially as (4.1) in

[10]:

(3.4)





rn+k

rn+k−1

rn+k−2



 = An





rk
rk−1

rk−2



 .

Theorem 3 (Mahon). For the sequence {rn},

(3.5) r2
n − rn−1 rn+1 = an3 r−(n+1) .
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Proof:

r2
n − rn−1 rn+1 =

∣

∣

∣

∣

∣

∣

rn+1 rn+2 1
rn rn+1 0
rn−1 rn 0

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

An





r1
r0
r−1



 An





r2
r1
r0



 An ·A−n




r1
r0
r−1





∣

∣

∣

∣

∣

∣

from (3.4)

= |An|

∣

∣

∣

∣

∣

∣

r1 r2 r−n+1

r0 r1 r−n
r−1 r0 r−n−1

∣

∣

∣

∣

∣

∣

from (3.4)

= an3

∣

∣

∣

∣

∣

∣

1 a1 r−n+1

0 1 r−n
0 0 r−n−1

∣

∣

∣

∣

∣

∣

= an3 · r−(n+1) .

To construct this proof, Mahon adapted pioneering work of Waddill [11] for

second order sequences. Actually, the sequence which Mahon considered was a

special case of {rn}, but the proof translates immediately to {rn}. Our use of

(3.5) in the next section stems from the following simple observation:

(3.6)
n
∑

i=1

ai3 r−(i+1)

ri ri+1
=

n
∑

i=1

(

ri

ri+1
− ri−1

ri

)

=
rn

rn+1
.

4 – Another finite sum

The main result in this section, a finite sum involving Fibonacci numbers,

relies on the following:

Lemma 3. If k 6= 0 is an integer and {rn} is defined by

(4.1)
rn = 2Lk rn−1 −

(

L2k + 3 (−1)k
)

rn−2 + (−1)k Lk rn−3 ,

(r−1, r0, r1) = (0, 0, 1) ,

then

(4.2) rn =
(−1)k (Fk Ln+1

k − Fk(n+2))

Fk
.
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Proof: By substitution it is easy to check that the auxiliary equation associ-

ated with (4.1) has roots αk, βk and αk+βk, where α and β were defined earlier.

We now make use of (3.3), and the Binet forms for Fn and Ln, to obtain (4.2).

We are now in a position to state our finite sum. It is

(4.3)
n
∑

i=1

Lik Fk(i−1) + (−1)k(i+1) Fk

(Fk L
i+1
k − Fk(i+2)) (Fk L

i+2
k − Fk(i+3))

=
Fk L

n+1
k − Fk(n+2)

Fk(Fk L
n+2
k − Fk(n+3))

.

Proof of (4.3): We take a3 = (−1)k Lk and recall that F−n = (−1)n+1 Fn.

The result now follows if we use (4.2) to substitute into (3.6).

For k = 1 and k = 2 (4.3) becomes, respectively

n
∑

i=1

Fi−1 + (−1)i+1

(Fi+2 − 1) (Fi+3 − 1)
=

Fn+2 − 1

Fn+3 − 1

and
n
∑

i=1

3i F2i−2 + 1

(3i+1 − F2i+4) (3i+2 − F2i+6)
=

3n+1 − F2n+4

3n+2 − F2n+6
.

5 – Concluding comments

Our method of obtaining (4.3) is similar to the approach used in [9], where

third order sequences were also used to obtain reciprocal sums for second order

sequences. We remark that (4.3) also holds for the sequences (1.1). We simply

replace F by U and L by V . This becomes evident if we trace through the

arguments of Section 4.

Finally, since the sums in [8] and in section 2 of the present paper were inspired

by a result of D.H. Lehmer, we feel that it is appropriate to mention some of his

achievements. The following short account was kindly provided to me by the

referee. In 1931, D.H. Lehmer, son of the mathematician D.N. Lehmer (1867–

1938), proved that the Mersenne number M257 is not prime. He was the first

mathematician to find an even pseudoprime — the number 161 038 — in 1954.

He corrected a result announced by the Danish mathematician Bertelsen, in 1983,

that the number of primes below 109 was 50 847 478, showing that the correct

number is 50 847 534. In collaboration with Emma Lehmer, he found, in 1958,

that there are 152 892 pairs of twin primes less than 30 000 000.
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