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Fibonacci Numbers and Associated
Matrices

Ashley M. Meinke

1 Introduction

In this thesis, we approach the study of Fibonacci numbers using the theory
of matrices. Fibonacci numbers are widely studied and the formulas to derive them
are well-known. Such formulas include Binet�s formula,

fn =
1p
5

" 
1 +

p
5

2

!n
�
 
1�

p
5

2

!n#
;

and Cassini�s formula,

fn+1fn�1 � f 2n = (�1)n;
where fn is the nth Fibonacci number. What makes this approach unique is the use of
the theory of matrices to derive the Fibonacci numbers and in particular, the formulas
of Binet and Cassini. We use the theory of diagonalizing a matrix and examine the
eigenvalues of certain 2� 2 generating matrices to derive Binet-type formulas for the
Lucas, generalized Fibonacci and generalized weighted Fibonacci numbers. We de-
rive Cassini-type formulas for Lucas, generalized Fibonacci and generalized weighted
Fibonacci numbers by computing determinants of certain matrices. We extend these
results to Tribonacci and generalized Tribonacci numbers with a similar 3� 3 matrix
approach. In all cases, we do a thorough analysis of the recursive sequences versus
the derived Binet-type formulas. In fact, through numerical computations, we show
the results of the recursive sequences and the Binet-type formulas are the same.

Our approach places an emphasis on showing the connection between the
theory of matrices and the Fibonacci numbers. As with all mathematics, there are
many ways to arrive at the same result and our approach illustrates a non-standard
way to derive Fibonacci numbers and other related sequences. We begin with a
historical introduction, examining Fibonacci�s life and mathematical work and dis-
cuss the presence of these numbers even before Fibonacci�s time. We also provide a

1
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sampling of some of the interesting properties that Fibonacci numbers possess. We
delve into the necessary matrix theory in a later section.

1.1 Historical Background: Fibonacci and Hemachandra
Fibonacci (1170-1250), formally known as Leonardo of Pisa, was an Italian

mathematician during the Middle Ages. Fibonacci is best known for his �Fibonacci
numbers�, which will be described in detail in Section 1.2: Fibonacci Numbers. Fi-
bonacci�s mathematical background began during his many visits to North Africa,
where he was introduced to the early works of algebra, arithmetic and geometry. He
also traveled to countries located in the Mediterranean and studied the mathematical
systems that they were practicing. His travels led him to the realization that Europe
was lacking on the mathematical scene.

At the age of thirty, Fibonacci published his �rst book entitled Liber Abaci,
which means �Book of Calculation�or �Book of Counting�. It is said that the work
of Egyptian mathematician Abu Kamil inspired Fibonacci�s work in Liber Abaci.
The beginning of his book has a statement about the Hindu-Arabic number system:
�There are nine �gures of the Indians: 9 8 7 6 5 4 3 2 1 . With these nine �gures,
and with this sign 0...any number may be written, as will be demonstrated below.�
[2] The problems in the book were able to illustrate for the �rst time the advantages
of the new Hindu-Arabic numeral system. During Fibonacci�s time, Liber Abaci was
considered to be a complete source for arithmetical knowledge. The publication of
this book inspired additional research in algebra and arithmetic and continued to
serve as a key mathematics source for hundreds of years.

Other publications by Fibonacci include Practica Geometriae (1220), which
means �Practice of Geometry�, Flos (1225), which means �blossom� or ��ower�
and Liber Quadratorum (1225), which means �Book of Square Numbers.� Practica
Geometriae was a collection of geometry and trigonometry results. Flos, on the other
hand, was a small book that looked at a variety of indeterminate problems. One
such result in Flos was Fibonacci�s acceptance of a negative value as the solution
to a quadratic equation. The inspiration for Fibonacci to write Liber Quadratorum
came during the mathematical competitions held at the court of Emperor Frederick
II. Liber Quadratorum is devoted to second degree diophantine equations, which
are de�ned as indeterminate polynomial equations that allow only integer values as
solutions.

Fibonacci did not go beyond the work of the Arabic mathematicians before
him, but his work gave a new outlook on ancient problems and often times he was
able to give original proofs. His knowledge of the mathematics that existed before his
time was very apparent and provided him with a strong mathematical background.
Fibonacci�s ability to solve a wide variety of mathematical problems in a very imag-
inative, ingenious manner have hailed him as one of the greatest mathematician of
the Middle Ages.
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We now brie�y shift the discussion to Indian mathematicians and the role
they played in the �so-called�Fibonacci numbers. While the Fibonacci numbers are
named after Leonardo Fibonacci, who was described in detail above, it is interesting
to note that knowledge about these numbers actually occurred long before his time.
The sequence of numbers: 0, 1 ,2 ,3 ,5 ,8 ,13 ,..., are the �so-called�Fibonacci numbers
and they originated in ancient India. Singh claims that Indian mathematician �Ac�arya
P ingala was the �rst to possess knowledge of the Fibonacci numbers. It is speculated
that he lived sometime around 400 B.C. �Ac�arya V irah�anka, who lived between 600
and 800 A.D., is said to have been the �rst Indian mathematician to give a written
representation of the Fibonacci numbers. Another signi�cant �gure in the role of
Fibonacci numbers is Gop�ala, who was born sometime before 1135 A.D. He discusses
both the Fibonacci numbers themselves and V irah�anka�s explicit representation of
these numbers.

Singh states that �the concept of the sequence of these numbers in India is at
least as old as the origin of the metrical sciences of Sanskrit and Prakrit poetry.�[10]
The basis of Sanskrit poetry is the number ofm�atr�as, also called �mora�, which mean
�syllabic instant�or �measure.�Units having one matra are called laghu, meaning
�light�and units having two matras are called guru, meaning �heavy.� A laghu is
denoted by j and a guru is denoted by S: The symbols j and S are used in metric the
same as the numbers 1 and 2 are used in combinatorics. There are three types of
meters in Sanskrit and Prakrit poetry: varna-vrttas, m�atr�a-vrttas and gana-vrttas.
We will discuss the m�atr�a-vrttas and their relationship to the Fibonacci numbers.

�Mātrā-vrttas are meters in which the number of morae remains constant and
the number of letters is arbitrary.�[10] Table 1 shows the di¤erent combinations of
laghu and guru for n = 1; 2; 3; 4; 5 and 6 mora. Note that the variations of n mora
are obtained by taking the n� 2 column of mora and adding an S to each variation
and taking the n� 1 column and adding a j to each variation: Thus, the number of
meter variations having n m�atr�a is given by,

�(n) = �(n� 2) + �(n� 1); n � 2: (1)

1 mora 2 mora 3 mora 4 mora 5 mora 6 mora
j S j S S S j S S S S S S S jj

jj S j jj S S j S jj S S jj S jj
jjj j S j jjj S j S j S j S jjj

S jj S S j S jj S S jjjj
jjjj jj S j jjjj S jjjjjj

j S jj j S S j
S jjj S j S j
jjjjj jjj S j

Total 1 2 3 5 8 13
Table 1: Mora and the Fibonacci Numbers
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�Arch�arya Hemachandra, a great Jain writer, mentions the idea of the num-
ber of variations ofm�atr�a-vrttas in his writingChandonús�asana (c. 1150). Hemachan-
dra lived at Ahnilvad Patan in Gujratm, where he was supported by two kings. He
is known for contributing to Sanskrit and Prakrit literature and is claimed to have
written six books. Three of these books are said to be in existence today. In Chan-
donúsasana, his rule is translated and quoted from [9] as follows:

�Sum of the last and the last one but one numbers (of variations) is (the
number of variations) of the m�atr�a-vrttas coming afterwards.�

He continues,

�From amongst the numbers 1, 2, etc. those which are last and the last but
one, are added (and) the sum, kept thereafter, gives the number of variations of the
m�atr�a-vrttas. For example, the sum of 2 and 1, the last and the last but one, is 3
(which) is kept afterwards and is the number of variations (of metre) having 3m�atr�as.
The sum of 3 and 2 is 5 (which) is kept afterwards and is the number of variations
(of the metre) having 4 m�atr�as...Thus: 1, 2, 3, 5, 8, 13, 21, 34 and so on, also.�

Hence, the �so-called�Fibonacci numbers are born. The connection between
these numbers and their relationship to Indian poetry continued to be examined
even after Hemachandra�s time. Figure 1 displays sketches of Indian mathematician
�Arch�arya Hemachandra and Italian mathematician, Fibonacci.

Figure 1: �Arch�arya Hemachandra (left) and Fibonacci (right)
Sources: http ://www .ja inworld .com/literature/story28.htm

http ://www .�bonacci.nam e/ (F ib onacci)
(Hemachandra)
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1.2 Fibonacci Numbers
The Fibonacci sequence originated with Fibonacci�s famous �rabbit prob-

lem,�which was discussed in his book Liber Abaci. The problem was stated in his
book as follows:

�How pairs of rabbits will be produced each month, beginning with a single
pair, if every month each �productive�pair bears a new pair which becomes productive
from the second month on?�[4]

The problem assumes that the rabbits are immortal and that the young rabbit
pairs grow into adult rabbit pairs each month. Another important note is that the
rabbits are not productive until they are two months of age. Table 2 summarizes the
number of adult pairs, young pairs and the total number of rabbits each month.

Observe that each new adult entry is the previous adult entry plus the previ-
ous young adult entry. Each new young pair entry is the same as the previous adult
pair entry, since adult pairs produce one young pair each month. The numbers in the
total column are called the Fibonacci numbers and when continued forever, produce
what is known as the Fibonacci sequence.

The Fibonacci sequence is an example of a recursive sequence, which is de�ned
as a sequence in which �every term can be represented as a linear combination of
preceding terms.�[1] According to [1], the �rst known recursive sequence is in fact the
Fibonacci sequence. It is interesting to note that Fibonacci did not derive an explicit
formula for his special sequence, but it is speculated that the recursive behavior of
the sequence was known to him. In 1634, mathematician Albert Girard wrote the
formula for the Fibonacci sequence in his work L�Arithmetique de Simon Stevin de
Bruges. Eduoard Lucas, a French number theorist, rediscovered the sequence in the
late nineteenth century and is attributed to naming it the �Fibonacci sequence.�

The Fibonacci sequence begins with two seeds: f0 = 0 and f1 = 1: The
Fibonacci numbers are obtained by the sequence,

fn = fn�2 + fn�1 for n � 2: (2)

Using (2); we obtain the following sequence of numbers:

f0 = 0; f1 = 1; f2 = 1; f3 = 2; f4 = 3; f5 = 5; f6 = 8; f7 = 13; f8 = 21; :::
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Growth of Rabbit Colony
Months Adult Pairs Young Pairs Total
1 1 1 2
2 2 1 3
3 3 2 5
4 5 3 8
5 8 5 13
6 13 8 21
7 21 13 34
8 34 21 55
9 55 34 89
10 89 55 144
11 144 89 233
12 233 144 377

Table 2: Growth of Rabbit Colony [2]

The Fibonacci numbers have a multitude of interesting properties. Most
notably, the Fibonacci numbers hold a special relationship with the golden ratio, an
irrational number de�ned as 1+

p
5

2
: This number has been studied for centuries and will

be discussed in detail in Section 2.5: More About the Golden Ratio. The Fibonacci
numbers also hold many fascinating number theoretical properties. Looking at (2),
one can observe the following divisibility properties of fn : Every third Fibonacci
number is divisible by f3 = 2; every fourth Fibonacci number is divisible by f4 =
3, every �fth Fibonacci number is divisible by f5 = 5 and the pattern continues.
Theorem 1 is a generalization of this idea. To prove Theorem 1, we need a Fibonacci
Identity, given in Identity 1. We prove Identity 1 using matrix theory in Section 2.2.

Identity 1 fm+n = fmfn+1 + fm�1fn for m � 1 and n � 0:

Theorem 1 fm j fmn for m;n 2 N:

Proof of Theorem 1:
When n = 1 ; the statement is clearly true.
Assume fm j fmn holds for all k � n:
We want to show fm j fm(n+1):
Using Identity 1, we have fm(n+1) = fmn+m = fmnfm+1 + fmn�1fm:
Clearly, fm j fmn�1fm and by the induction hypothesis, fm j fmn:
Therefore, fm j fm(n+1); so the result holds for n+ 1:
Therefore, by the Principle of Mathematical Induction, Theorem 1 holds for all

n 2 N: �

An examination of the Fibonacci numbers will also show that �the units digit
of the Fibonacci numbers is cyclic with a periodicity of 60.�[3] This means that the
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units digit in f0 is the same as the units digit of f60; f120; f180; etc. The same result
is true for f1; f61; f121; etc. The Lucas numbers, which will be discussed at length
in Section 2.3 Lucas Numbers, share a similar property. In particular, the period of
the Lucas numbers is 12. Table 3 illustrates this idea for Fibonacci numbers and we
generalize this result with proof below.

n f60n Units digit is 0:
0 f0 0
1 f60 1548008755920
2 f120 5358359254990966640871840
3 f180 18547707689471986212190138521399707760

n f60n+1 Units digit is 1:
0 f1 1
1 f61 2504730781961
2 f121 8670007398507948658051921
3 f181 30010821454963453907530667147829489881

Table 3: Periodicity of the Units Digit of the Fibonacci Numbers

We now prove a more general result.

Theorem 2 f60n+i � fi (mod 10); where i; n � 0 are integers.

Proof of Theorem 2:
When n = 0 : fi � fi (mod 10) is clearly true.
Assume the result is true for all integers k � n:
Hence, f60n+i � fi (mod 10):
Observe from Table 2 that f60 � 0 (mod 10):
Also, since f59 = 956; 722; 026; 041 we have f59 � 1 (mod 10):
Then, f60(n+1)+i = f(60n+i)+60:
Replace n = k �m in Identity 1 to obtain fk = fmfk�m+1 + fm�1fk�m:
Let k = 60n+ i+ 60 and m = 60.
Then, f(60n+i)+60 = f60f60n+i+1 + f59f60n+i:
Using the fact that f60 � 0 (mod 10) and f59 � 1 (mod 10), we have that
f60f60n+i+1 + f59f60n+i � 0 � f60n+i+1 + 1 � fi (mod 10):
Therefore, f60(n+1)+i � fi (mod 10).
Theorem 2 holds for n+ 1:
Therefore, by the Principle of Mathematical Induction, Theorem 2 holds for all

n � 0: �

An interesting unsolved problem about Fibonacci numbers involves prime
Fibonacci numbers. It is unknown if there exist in�nitely many prime Fibonacci
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numbers; however, research gives some insight into this problem. Vajda shows that
the only nonprime n value for which fn is prime is n = 4. According to [3],
�For fn (n 6= 4) to be a prime it is necessary for n to be a prime.� This does not
mean, however, that every fn such that n is prime is a prime number. For instance,
f19 = 4181 = 37 � 113 shows that n = 19 is prime but f19 is not. However, this
statement shows that when examining prime Fibonacci numbers, we only need to
consider fn such that n is prime. Another interesting fact about Fibonacci numbers
is that they can be used to prove there exist in�nitely many prime numbers. We give
a nontraditional proof of this fact below. First, we need a theorem.

Theorem 3 If gcd(m;n) = 1; then gcd(fm; fn) = 1:
See Chapter 16 of [6] for a multitude of other divisibility properties and for proof

of this theorem.

Theorem 4 There exist in�nitely many prime numbers.

Proof of Theorem 4:
Suppose there exist a �nite number of primes.
Call these primes: p1; :::; pk:
Now consider the corresponding Fibonacci numbers: fp1 ; :::; fpk :
By Theorem 3, gcd(fpi ; fpj) = 1 for i 6= j:
Since there are only k primes, each fpi has exactly one prime factor, that is, each

is a prime.
However, this is a contradiction since f19 = 4181 = 37 � 113:
Therefore, there exist in�nitely many prime numbers. �

In addition, the Fibonacci numbers make appearances in nature and have
applications in other �elds besides mathematics. In nature, pinecones and sun�owers
have growth patterns that are Fibonacci numbers. The seeds of sun�owers occur in
spirals, one set of spirals going clockwise and one set going counterclockwise. Studies
show that the number of spirals of most sun�owers occur as consecutive Fibonacci
numbers. The most common number of spirals are 34 in one direction and 55 in the
other. Consecutive Fibonacci numbers also appear as the number of spirals formed
by the scales of pinecones. The Fibonacci numbers are also a driving force behind
the genealogy of bees, �ower petal patterns and the number of branches in certain
trees. Figure 2 has a collection of �owers whose petal amounts occur as Fibonacci
numbers.
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Calla Lily: 1 petal Euphorbia: 2 petals

Trillium: 3 petals Columbine: 5 petals

Bloodroot: 8 petals Black-eyed Susan: 13 petals

Shasta Daisy: 21 petals Field Daisies: 34 petals
Figure 2: Flower Petals and Fibonacci Numbers

Source: http ://britton .d isted .camosun.b c.ca/�bslide/jb�bslide.htm

Fibonacci numbers become useful in the �elds of computer science, optics
and music. In particular, the piano�s keyboard illustrates a beautiful example of how
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Fibonacci numbers and music are related. In music, an octave is an interval between
two pitches, each of which is represented by the same musical note. The di¤erence is
that the frequency of the lower note is half that of the higher note. On the piano�s
keyboard, an octave consists of �ve black keys and eight white keys, totaling 13 keys.
In addition, the black keys are divided into a group of two and a group of three keys.
Figure 3 exhibits the characteristics of a piano�s keyboard and its relation to the
Fibonacci numbers.

Figure 3: The Piano�s Keyboard
Source: http ://www .p layp iano.com/playnotes.htm (piano im age)

Numerous studies of Fibonacci numbers have been done since Fibonacci�s
time. The beauty of Fibonacci numbers can be admired by a wide variety of au-
diences, ranging from amateur to more experienced mathematicians. Other great
mathematicians who have made signi�cant progress in the study of Fibonacci num-
bers are German mathematical astronomer Johann Kepler, Jacques Binet, Gabriel
Lame and Eugene Catalan.



2 Linear Algebra and Fibonacci Numbers

We now begin our study of Fibonacci numbers from a matrix theory point
of view. We �rst examine the theory of diagonalizing a matrix, which plays a vital
role during this approach. We then use this theory to derive Binet and Cassini-type
formulas for the Fibonacci, Lucas, generalized Fibonacci and generalized weighted
Fibonacci. We then extend these results to the Tribonacci and generalized Tribonacci
numbers.

2.1 The Theory of Diagonalizing a Matrix
A common problem in linear algebra is the following: �For a square matrix

A, does there exist an invertible matrix S such that S�1AS is diagonal?� [7] The
simplicity of diagonal matrices and the useful properties they possess make them an
interesting class of matrices to study. We begin the section with some de�nitions
and then discuss restrictions on matrix A that guarantee it to be diagonalizable. We
use [5] as a reference for the de�nitions and theorems.

Let Mn denote the set of all n� n matrices with entries in C:

De�nition A matrix B 2 Mn is said to be similar to a matrix A 2 Mn if there
exists a nonsingular matrix S 2Mn such that B = S�1AS:

De�nition If the matrix A 2 Mn is similar to a diagonal matrix, then A is said
to be diagonalizable.

De�nition The Hermitian adjoint A� of A 2 Mn is de�ned by A� = A
T
; where

A is the component-wise conjugate.

De�nition A matrix U 2 Mn is said to be unitary if U�U = I; where I is the
n� n identity matrix.

De�nition The standard inner product of x; y 2 Cn is given by hx; yi = y�x:

In fact, not all matrices are diagonalizable. Schur�s Unitary Triangularization
Theorem, however, gives us a triangular matrix representation for all A 2Mn:

Theorem (Schur) Given A 2 Mn with eigenvalues �1; :::; �n in any prescribed
order, there is a unitary matrix U 2 Mn such that U�AU = T = [tij] is upper
triangular, with diagonal entries tii = �i; 1 � i � n: That is, every square matrix A is
unitarily equivalent to a triangular matrix whose diagonal entries are the eigenvalues
of A in any prescribed order. Furthermore, if A 2 Mn(R) and if all the eigenvalues
of A are real, then U may be chosen to be real and orthogonal.

11
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Proof of Schur�s Theorem:
Let �1; :::; �n be eigenvalues of the corresponding eigenvectors y1; :::; yn:
Let x1 =

y1
hy1;y1i1=2

be the normalized eigenvector corresponding to �1:

(i.e. Ax1 = �1x1)

The nonzero vector x1 may be extended to a basis x1; v2; :::; vn of Cn:
We apply the Gram-Schmidt orthonormalization process to the basis.
Let w2 = v2 � hv2; x1ix1 so that v2 is orthogonal to x1 and choose z2 = w2

hw2;w2i1=2

so that z2 is normalized and orthogonal to x1:
We continue this process.
If we assume that x1; z2; :::; zk�1 have been constructed,
we let wk = vk � hvk; zk�1i zk�1 � hvk; zk�2i zk�2 � � � � � hvk; x1ix1
be such that wk is orthogonal to x1; z2; :::; zk�1:
Then, normalize wk to obtain zk =

wk
hwk;wki1=2

:

We continue until we obtain the orthonormal basis x1;z2; :::; zn:

Construct a unitary matrix U1 2Mn by U1 =
�
j
x1
j

j
z2
j
� � �

j
zn
j

�
n�n

:

U�1AU1 =

26664
� x1�
� z2�
...

� zn�

37775A
�
j
x1
j

j
z2
j
� � �

j
zn
j

�
=

26664
� x1�
� z2�
...

� zn�

37775
�
�1

j
x1
j
� � � � �

�
=

�
�1 �
0 A1

�
;

where A1 2Mn�1 has eigenvalues �2; :::; �n:

Let x2 be a normalized eigenvector corresponding to �2: Choose a basis containing
x2 and repeat the Gram-Schmidt orthonormalization process to get the orthonormal
set x2; z03; :::; z

0
n which is a basis for A1:

Construct a unitary matrix U2 2Mn�1 s.t. U�2A1U2 =
�
�2 �
0 A2

�
n�1�n�1

:

Let V2 =
�
1 0
0U2

�
n�n

:

Claim: The matrices V2 and U1V2 are unitary.

Proof of Claim:

V �2 V2 =

�
1 0
0U�2

� �
1 0
0U2

�
=

�
1 0
0 In�1�n�1

�
= In�n:

Therefore, V2 is unitary.

(U1V2)
� U1V2 = V

�
2 U

�
1U1V2 = V

�
2 In�nV2 = V

�
2 V2 = In�n:
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Therefore, U1V2 is unitary, so the Claim holds.

Then (U1V2)
�AU1V2 = V

�
2 U

�
1AU1V2 = V

�
2

�
�1 �
0 A1

�
V2 =

24�1 � �
0 �2 �
0 0 A2

35 :
Continuing this process, we obtain unitary matrices Ui 2Mn�i+1; where
1 � i � n� 1 and unitary matrices Vj 2Mn ; where 2 � j � n� 1:

Then U�AU =

26664
�1 � � � � �
0 �2 � ...
... 0

. . . �
0 � � � 0 �n

37775, where U = U1V2V3 � � �Vn�1 is the desired unitary
matrix.

Note: Suppose all the eigenvalues of A are real. Then we can choose all corre-
sponding eigenvectors to be real and the above calculations will yield a unitary matrix
U that has real entries, which veri�es the �nal statement in the theorem. �
We can place certain restrictions on matrix A that will guarantee A to be diago-

nalizable. In particular, Theorem 5 illustrates the relationship between eigenvalues,
linearly independent vectors and diagonalization.

Theorem 5 Let A 2 Mn: Then A is diagonalizable if and only if there is a set of
n linearly independent vectors, each of which is an eigenvector of A:

Proof of Theorem 5:
Assume A is diagonalizable.
Then there exists S 2 Mn such that S is invertible and S�1AS = D; where D is

a diagonal matrix.
Let the diagonal entries of D be �1; :::; �n; where �i; 1 � i � n; are not necessarily

distinct.
Let s1; :::; sn be the column vectors of S:

Then SD =

"
j
s1
j
: : :

j
sn
j

#26664
�1 0 � � � 0
0 �2 0

...
... 0

. . . 0
0 � � � 0 �n

37775 :

SD =

"
�1

j
s1
j
: : : �n

j
sn
j

#
:

We know that S�1AS = D; so AS = SD:
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Then,

"
A

j
s1
j
: : : A

j
sn
j

#
=

"
�1

j
s1
j
: : : �n

j
sn
j

#
:

Therefore, Asi = �isi for each column vector si; 1 � i � n:
We know that S is invertible, so it has linearly independent column vectors.
Therefore, A has n linearly independent eigenvectors.
Conversely, assume A has n linearly independent eigenvectors.
Denote these eigenvectors by s1; :::; sn with corresponding eigenvalues �1; :::; �n:
Since each si is an eigenvector of A, we have Asi = �isi:

Then,

"
A

j
s1
j
: : : A

j
sn
j

#
=

"
�1

j
s1
j
: : : �n

j
sn
j

#
:

AS =

"
j
s1
j
: : :

j
sn
j

#26664
�1 0 � � � 0
0 �2 0

...
... 0

. . . 0
0 � � � 0 �n

37775 = SD:
Since si are linearly independent, S is invertible.
We have S�1AS = D:
Therefore, A is diagonalizable. �

Diagonalizing a matrix becomes a useful technique in later sections as we
derive the Fibonacci numbers. In particular, as in the above notation, we denote
an S matrix to be the �symmetrizer�matrix. This allows us to construct di¤erent
representations of the same matrix, yielding important results.

2.2 Using Matrices to Derive the Fibonacci Numbers
Then,
This section describes the construction of the Fibonacci numbers using a 2�2

matrix calculation. We also derive the well-known Binet and Cassini formulas in this
section.

Let F =
�
1 1
1 0

�
and de�ne xn;n+1 =

�
fn+1
fn

�
for n � 0:

Observe that,

Fx01 =

�
1
1

�
=

�
f2
f1

�
= x12;

Fx12 =

�
2
1

�
=

�
f3
f2

�
= x23; etc.
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We have Fxn;n+1 =
�
1 1
1 0

� �
fn+1
fn

�
=

�
fn+2
fn+1

�
.

Note that,

F n =

�
fn+1 fn
fn fn�1

�
for n � 1: (3)

Proof of (3):

When n = 1 : F =
�
fn+1 fn
fn fn�1

�
=

�
f2 f1
f1 f0

�
=

�
1 1
1 0

�
:

Assume F n =
�
fn+1 fn
fn fn�1

�
for all k � n:

Multiplying both sides by F , we obtain:

F n+1 =

�
1 1
1 0

� �
fn+1 fn
fn fn�1

�
=

�
fn+1 + fn fn + fn�1
fn+1 fn

�
=

�
fn+2 fn+1
fn+1 fn

�
:

Therefore, (3) holds for n + 1: By the Principle of Mathematical Induction, (3)
holds for all n � 1: �

In general,

F n
�
1
1

�
=

�
fn+2
fn+1

�
for n � 0: (4)

Proof of (4):

Using (3); we have F n
�
1
1

�
=

�
fn+1 fn
fn fn�1

� �
1
1

�
=

�
fn+2
fn+1

�
: �

We can now prove Identity 1.

Recall that Identity 1 states the following:
fm+n = fmfn+1 + fm�1fn for m � 1 and n � 0:
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Proof of Identity 1:

Using (3); we have that

Fm+n =

�
fm+n+1 fm+n
fm+n fm+n�1

�
=

�
fm+1 fm
fm fm�1

� �
fn+1 fn
fn fn�1

�
= FmF n:

We have,
�
fm+n+1 fm+n
fm+n fm+n�1

�
=

�
fm+1fn+1 + fmfn fm+1fn + fmfn�1
fmfn+1 + fm�1fn fmfn + fm�1fn�1

�
:

Setting corresponding entries equal, we obtain fm+n = fmfn+1 + fm�1fn: �

We now illustrate the relationship between the Fibonacci numbers and the
�golden ratio�, which has many applications in the arts and sciences. The golden
ratio, an irrational number, is de�ned as 1+

p
5

2
and has been a curiosity for many

throughout the centuries: Our matrix approach shows that the eigenvalues of F are
�1 =

1+
p
5

2
and �2 = 1�

p
5

2
: We continue our discussion of the golden ratio in Section

2.5: More About the Golden Ratio.

det(F � �I) =
����1� � 1
1 ��

���� = �2 � �� 1 = 0:
We have � = 1�

p
5

2
; so the spectrum of F is �(F ) =

n
�1 =

1+
p
5

2
; �2 =

1�
p
5

2

o
:

Table 4 contains a list of properties of �1 and �2 which are used throughout the
thesis.

�1 + �2 = 1

�1 � �2 =
p
5

�1�2 = �1
�1 + 1 = �

2
1

�2 + 1 = �
2
2

1p
5
(�1 + 2) = �1

�1p
5
(�2 + 2) = �2

2�1 � 1 =
p
5

1� 2�2 =
p
5

�21 � �1 � 1 = 0
�22 � �2 � 1 = 0

Table 4: Properties of �1 and �2

Next, we �nd eigenvectors for �1 and �2:�
1 1
1 0

� �
x1
x2

�
= �1

�
x1
x2

�
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Then, x1 + x2 = �1x1:
x1 = �1x2

Let x2 = 1:
Then x1 = �1 and �1 + 1 = �

2
1:

We have, �21 � �1 � 1 = 0 which is true from Table 4.

Thus, an eigenvector for �1 is
�
�1
1

�
:

Similarly, we obtain
�
�2
1

�
as an eigenvector for �2.

Next, to get another representation for the matrix F n; we diagonalize F n:

Let S =
�
�1 �2
1 1

�
be the symmetrizer matrix. Note that det(S) = �1 � �2 =

p
5:

S�1 = 1p
5

�
1 ��2
�1 �1

�
:

In general,

S�1F nS =

�
�n1 0
0 �n2

�
: (5)

Proof of (5):

Note that S�1F nS = (S�1FS) (S�1FS) � � � (S�1FS) (S�1FS) = (S�1FS)n :

Therefore, S�1F nS = (S�1FS)n =
�
�1 0
0 �2

�n
=

�
�n1 0
0 �n2

�
: �

From (5); we have that F n = S
�
�n1 0
0 �n2

�
S�1:

Then, F n = 1p
5

�
�1 �2
1 1

� �
�n1 0
0 �n2

� �
1 ��2
�1 �1

�
:
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We have,

F n =
1p
5

�
�n+11 � �n+12 �1�2(�

n
2 � �n1 )

�n1 � �n2 �1�2(�
n�1
2 � �n�11 )

�
: (6)

Matching entries of (6) and (3); which are both representations of F n; we have
the relations in (a)� (d) below.

a.) fn+1 =
1p
5
(�n+11 � �n+12 )

b.) fn =
1p
5
(�n1 � �n2 )

c.) fn =
1p
5
�1�2(�

n
2 � �n1 ) = � 1p

5
(�n2 � �n1 ) = 1p

5
(�n1 � �n2 )

d.) fn�1 =
1p
5
�1�2(�

n�1
2 � �n�11 ) = � 1p

5
(�n�12 � �n�11 ) = 1p

5
(�n�11 � �n�12 ):

Note: We also use the property that �1�2 = �1 from Table 4 in the calculations
above.

Therefore, fn = 1p
5
(�n1 � �n2 ) for n � 0: Recall,

Replacing �1 = 1+
p
5

2
and �2 = 1�

p
5

2
in the above equation, we obtain Binet�s

Formula:

fn =
1p
5

" 
1 +

p
5

2

!n
�
 
1�

p
5

2

!n#
for n � 0: (7)

An interesting historical note is that French mathematician De Moivre knew of
(7) in the year 1718. Jacques Philippe Marie Binet, another Frenchman, rediscovered
it in 1843.

We can also derive another well-known formula by calculating the determinant of
matrix F n:

We have det(F n) = fn+1fn�1 � f 2n = [det(F )]n = (�1)n:

Therefore,

fn+1fn�1 � f 2n = (�1)n for n � 1: (8)
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Equation (8) is known as Cassini�s Formula, named after Italian mathematician
Giovanni Domenico Cassini.

We verify that (2) and (7) give the same results up to n = 300 in Table 5:

n fn = fn�2 + fn�1; n � 2 fn =
1p
5

h�
1+
p
5

2

�n
�
�
1�
p
5

2

�ni
; n � 0

0 De�ne f0 = 0 0
1 De�ne f1 = 1 1
2 1
3 2
4 3
5 5
6 8
7 13
8 21
9 34
10 55
20 6765
30 832040
40 102334155
50 12586269025
100 354224848179261915075
200 280571172992510140037611932413038677189525
300 222232244629420445529739893461...

...909967206666939096499764990979600
Table 5: Generating Fibonacci Numbers Using (2) and (7)

2.3 Lucas Numbers
The Fibonacci sequence is not the only sequence that arises from two starting

seeds. Choosing di¤erent starting seeds will generate entirely di¤erent Fibonacci-like
sequences. In fact, Edouard Lucas, a French mathematician, investigated a sequence
that begins with the seeds l0 = 2 and l1 = 1:

The Lucas numbers are generated by the sequence,

ln = ln�2 + ln�1 for n � 2: (9)

Using (9); we obtain the following sequence of numbers:
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l2 = 3; l3 = 4; l4 = 7; l5 = 11; l6 = 18; l7 = 29; :::

As with the Fibonacci calculation, we use a 2� 2 matrix approach to derive
the Lucas numbers. The Lucas numbers and Fibonacci numbers are closely related
and have many interesting properties. The identities of the Lucas numbers given in
(10)� (12) are needed during the matrix calculation.

fn�1 + fn+1 = ln for n � 1: (10)

Proof of (10):
When n = 1 : f0 + f2 = 1 = l1:
Suppose (10) holds for all k � n:
Then, ln+1 = ln + ln�1 = fn�1 + fn+1 + fn�2 + fn = fn + fn+2:
Therefore, (10) holds for n+1: By the Principle of Mathematical Induction, (10)

holds for all n � 1: �

fn + ln = 2fn+1 for n � 0: (11)

Proof of (11):
Subtracting (10)� (2); we obtain: ln � fn+1 = fn+1 � fn:
Therefore, fn + ln = 2fn+1: �

ln+1 � fn+1 = 2fn for n � 0: (12)

Proof of (12):
Using (11); we have ln+1 � fn+1 = 2fn+2 � fn+1 � fn+1:
Then, ln+1 � fn+1 = 2(fn+2 � fn+1):
Using (2); ln+1 � fn+1 = 2(fn+1 + fn � fn+1):
Therefore, ln+1 � fn+1 = 2fn: �

Let L =
�
1 2
2�1

�
:

LF n =

�
1 2
2�1

� �
fn+1 fn
fn fn�1

�
=

�
fn+1 + 2fn fn + 2fn�1
2fn+1 � fn 2fn � fn�1

�
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Using (11) and (12); we can write,

LF n =

�
ln+1 ln
ln ln�1

�
for n � 1: (13)

Using the representation of F n in (6) and properties in Table 4, we have

LF n =

�
�n+11 + �n+12 �n1 + �

n
2

�n1 + �
n
2 �n�11 + �n�12

�
for n � 1: (14)

Matching entries of (13) and (14); the Lucas numbers are given by the sequence,

ln = �
n
1 + �

n
2 for n � 0: (15)

Observe that (15) is a Binet-type formula for the Lucas numbers:

We can also derive a Cassini-type formula for the Lucas numbers by computing
the determinant of the matrix LF n.

det(LF n) = det(L) det(F n)

We have,

����1 22�1
���� ����fn+1 fnfn fn�1

���� = ����ln+1 lnln ln�1

���� :
Therefore,

�5(�1)n = ln+1ln�1 � l2n for n � 1: (16)

We verify that (9) and (15) give the same results up to n = 300 in Table 6:
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n ln = ln�2 + ln�1; n � 2 ln = �
n
1 + �

n
2 ; n � 0

0 De�ne l0 = 2 2
1 De�ne l1 = 1 1
2 3
3 4
4 7
5 11
6 18
7 29
8 47
9 76
10 123
20 15127
30 1860498
40 228826127
50 28143753123
100 792070839848372253127
200 627376215338105766356982006981782561278127
300 4969264057837466763937914368824...

...68230898067489522034699520200002
Table 6: Generating Lucas Numbers Using (9) and (15)

2.4 Generalized Fibonacci Numbers
We now generalize to an additive sequence which begins with any two start-

ing seeds, g0 and g1: The generalized Fibonacci sequence is given by,

gn = gn�2 + gn�1 for n � 2: (17)

We derive a formula for the generalized Fibonacci numbers using 2� 2 matrices,
similar to the approach used in Sections 2.2 and 2.3.

Let G =
�
g1 g0
g0 g1 � g0

�
:

Observe that,
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GF n =

�
gn+1 gn
gn gn�1

�
for n � 1: (18)

Proof of (18):

When n = 1 : GF =
�
g1 g0
g0 g1 � g0

� �
1 1
1 0

�
=

�
g2 g1
g1 g0

�
:

Suppose (18) holds for all k � n:

Multiplying GF n on the right by F; we obtain:

GF n+1 =

�
gn+1 gn
gn gn�1

� �
1 1
1 0

�
=

�
gn+2 gn+1
gn+1 gn

�
:

Therefore, (18) holds for n+1: By the Principle of Mathematical Induction, (18)
holds for all n � 1: �

Now, use the representation of F n in (5) to calculate GF n:

GF n = 1p
5

�
g1 g0
g0 g1 � g0

� �
�n+11 � �n+12 �1�2(�

n
2 � �n1 )

�n1 � �n2 �1�2(�
n�1
2 � �n�11 )

�
Matching entries of the above matrix and representation of GF n in (18); we obtain

the relations in (a)� (d) below.

a.) gn =
1p
5
[g0
�
�n+11 � �n+12

�
+ (g1 � g0) (�n1 � �n2 )]

gn =
1p
5
[�n1 [g0�1 + (g1 � g0)] + �n2 [(g0 � g1)� g0�2]]

Observe that g0�1 + (g1 � g0) = g1 � g0�2
and (g0 � g1)� g0�2 = g0�1 � g1 .

Then gn = 1p
5
[(g1 � g0�2)�n1 + (g0�1 � g1)�n2 ]:

b.) gn�1 =
1p
5

�
g0�1�2(�

n
2 � �n1 ) + (g1 � g0)�1�2(�n�12 � �n�11 )

�
gn�1 =

1p
5

�
g0�

n
1 � g0�n2 + (g0 � g1)(�n�12 � �n�11 )

�
gn�1 =

1p
5
[�n�11 [g0�1 + (g1 � g0)] + �n�12 [(g0 � g1)� g0�2]]

gn�1 =
1p
5
[(g1 � g0�2)�n�11 + (g0�1 � g1)�n�12 ]:

c.) gn =
1p
5
[g1�1�2(�

n
2 � �n1 ) + g0�1�2(�n�12 � �n�11 )]
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gn =
1p
5
[g1�

n
1 � g1�n2 + g0�n�11 � g0�n�12 ]

gn =
1p
5
[�n�11 (g1�1 + g0)� �n�12 (g1�2 + g0)]

Using the fact that �1�2 = �1 ; it can be shown that
g1�1 + g0 = (g1 � g0�2)�1 and �(g1�2 + g0) = (g0�1 � g1)�2:

This allows us to rewrite gn = 1p
5
[(g1 � g0�2)�n1 + (g0�1 � g1)�n2 ]:

d.) gn+1 =
1p
5
[g1(�

n+1
1 � �n+12 ) + g0 (�

n
1 � �n2 )]

Using the same argument as in part (c), it can be shown that

gn+1 =
1p
5
[(g1 � g0�2)�n+11 + (g0�1 � g1)�n+12 ]:

The sequence for generalized Fibonacci numbers is given by:

gn =
1p
5
[(g1 � g0�2)�n1 + (g0�1 � g1)�n2 ] for n � 0: (19)

We now �nd the Cassini-type formula for the generalized Fibonacci numbers by
computing the determinant of the matrix GF n.

det(GF n) = det(G) det(F n)

This implies that

����g1 g0
g0 g1 � g0

���� ����fn+1 fnfn fn�1

���� = ����gn+1 gngn gn�1

���� :
Therefore,

(g21 � g0g1 � g20)(�1)n = gn�1gn+1 � g2n for n � 1: (20)

Using the starting seeds g0 = �1 and g1 = 3, we compute the generalized Fi-
bonacci numbers using both the recursive de�nition in (17) and the derived formula
in (19): We verify that (17) and (19) give the same results up to n = 300 in Table 7:
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n gn = gn�2 + gn�1; n � 2 gn =
1p
5
[(g1 � g0�2)�n1 + (g0�1 � g1)�n2 ]; n � 2

0 Let g0 = �1
1 Let g1 = 3
2 2
3 5
4 7
5 12
6 19
7 31
8 50
9 81
10 131
20 16114
30 1981891
40 243756479
50 29980065026
100 843751548703230576199
200 668310997804732606953150759954744089524274
300 529349653311098221157193908675...

...450769774300542076731827708328599
Table 7: Generating Generalized Fibonacci Using (17) and (19)

2.5 More About the Golden Ratio
The golden ratio, given by �1 = 1+

p
5

2
; has been called many names through-

out history. Some of these names include the golden number, golden proportion,
golden mean, golden cut, golden section, divine proportion, the Fibonacci number
and the mean of Phidias. Greek mathematicians de�ned it as the �division of a line
in mean and extreme ratio.� [4] Since ancient times, the golden ratio has been of
interest to many people in varying disciplines. The interest in the golden ratio goes
back to at least 2600 B.C. when the Egyptians were constructing the Great Pyramid.
Theories suggest that the Egyptians were aware of the golden ratio and used it during
the building of the Great Pyramid. Calculations show that the ratio between the
base and hypotenuse of the right triangle inside the Great Pyramid is approximately
0.61762 which is very close to the reciprocal of the golden ratio. Thousands of years
later in 1497, Italian mathematician Luca Pacioli wrote De Divina Proportione, which
is thought to be the �rst book written about the golden ratio.

The golden ratio can be used to construct what are called �golden rectangles,�
which are considered the most aesthetically-pleasing rectangles. What makes these
rectangles special is that the ratio of the length to the width is the golden ratio.
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The golden ratio has also appeared in Greek sculptures, paintings and pottery and
in ancient furniture and architectural design. Famous painters Georges Seurat and
Leonardo da Vinci were known to include golden rectangles and golden ratios in
their paintings. Architectural structures that used the golden rectangles include
the Parthenon in Athens, Greece, and the Cathedral of Chartes and Tower of Saint
Jacques in Paris, France. One can also construct �golden right angled triangles�
which are right triangles that have �1 as the hypotenuse and

p
�1 and 1 as side

lengths. Another fascinating fact is that certain proportions of human anatomy have
shown evidence of the golden ratio and golden rectangle. Ancient Greeks noted that
the human �head �ts nicely into a golden rectangle.�[6] In addition, the golden ratio
appears in the human hand and human bones. Because of these special relationships,
we sometimes refer to the golden ratio as �the number of our physical body.�[6]

We have shown that the eigenvalues of matrix F are �1 = 1+
p
5

2
and �2 = 1�

p
5

2
.

We have also shown that these values are used to derive the generalized Fibonacci
numbers. The relationship between the generalized Fibonacci numbers and the golden
ratio does not stop there. In fact, we will show that gn+1

gn
! �1 as n!1:

Let xn =
gn
gn+1

: Assume g0 � 0; g1 > 0: Then (xn) is well-de�ned.
For n � 1; xn = gn

gn+1
= gn

gn+gn�1
= 1

1+
gn�1
gn

= 1
1+xn�1

:

Consider xn � xn+1 = 1
1+xn�1

� 1
1+xn

:

Then, xn � xn+1 = xn�xn�1
(1+xn�1)(1+xn)

:

Since x0 =
g0
g1
� 0 and x1 = g1

g2
= g1

g0+g1
= c > 0; we show by induction that xn > 0

for all n � 1:
Assume that xn > 0 for all k � n:
Then, xn+1 = 1

1+xn
> 0:

Therefore, xn > 0 for all n � 1:
We conclude that, (1 + xn�1)(1 + xn) > 1 + c for n � 2:
Then, jxn � xn+1j < jxn�xn�1j

(1+c)
for all n � 2;

jx2 � x1j =
���g2g3 � g1

g2

��� = ��� g0+g1g0+2g1
� g1

g0+g1

��� = jg20+g0g1�g21j
(g0+2g1)(g0+g1)

= k > 0:

We begin our iteration.

jx2 � x3j < jx2�x1j
(1+c)

= k
(1+c)

;

jx3 � x4j < jx2�x3j
(1+c)

< k
(1+c)2

;
...
Then, jxn � xn+1j < k

(1+c)n�1 for n � 2 which we verify by induction.
Assume jxn � xn+1j < k

(1+c)n�1 for all k � n:
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Then, jxn+1 � xn+2j < jxn+1�xnj
(1+c)

< k
(1+c)n

:

Therefore, jxn � xn+1j < k
(1+c)n�1 for n � 2:

Finally, we estimate the di¤erence between arbitrary terms xm and xn:
For m < n;
jxm � xnj = j(xm � xm+1) + (xm+1 � xm+2) + � � �+ (xn�2 � xn�1) + (xn�1 � xn)j :
Then, jxm � xnj � jxm � xm+1j+jxm+1 � xm+2j+� � �+jxn�2 � xn�1j+jxn�1 � xnj :
Using jxn � xn+1j < k

(1+c)n�1 we obtain,

jxm � xnj � k
(1+c)m�1 +

k
(1+c)m

+ � � �+ k
(1+c)n�3 +

k
(1+c)n�2 ;

jxm � xnj <
k

(1+c)m�1

[1� 1
(1+c) ]

= k
c(1+c)m�2 :

If � > 0; choose N such that k
c(1+c)N�2 < �:

Then for all n > m � N; jxm � xnj < k
c(1+c)m�2 �

k
c(1+c)N�2 < �:

Thus, (xn) is Cauchy, so lim
n!1

xn = G exists.

Considering xn = 1
1+xn�1

and taking limits we obtain, G = 1
1+G

:

This yields G2 +G� 1 = 0 whose solutions are �1�
p
5

2
:

Since (xn) > 0 for all n � 1; we have G = �1+
p
5

2
> 0:

Therefore for n � 1; lim
n!1

gn+1
gn

= lim
n!1

1
gn

gn+1

= lim
n!1

1
xn
= 1

G
= 1+

p
5

2
= �1:

Therefore,

lim
n!1

gn+1
gn

=
1 +

p
5

2
: (21)

In this last step we used the following Theorem:

Theorem 6 If (yn) is a sequence of nonzero numbers converging to a nonzero limit

y; then
�
1
yn

�
converges to 1

y
:

Proof of Theorem 6:
First, de�ne � = 1

2
jyj > 0:

Since lim(yn) = y; there exists K1 2 N such that if n � K1; then jyn � yj < �:
Write jyj = jyn � y � ynj � jyn � yj+ jynj :
It follows that �� � jyn � yj � jynj � jyj for n � K1:

Then, we have 1
2
jyj = jyj � � � jynj for n � K1:

Then, 1
jynj �

2
jyj for n � K1:

We have the estimate,
��� 1yn � 1

y

��� = ���y�ynyny

��� = 1
jynyj jy � ynj �

2
jyj2 jy � ynj for n � K1:
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Now, given � > 0; there exists K2 2 N such that if n � K2 then jy � ynj < 1
2
� jyj2 :

Therefore, if K = supfK1; K2g; then
��� 1yn � 1

y

��� < �:
Since � > 0 is arbitrary, we have lim

�
1
yn

�
= 1

y
: �

Recall (19) is given by,

gn =
1p
5
[(g1 � g0�2)�n1 + (g0�1 � g1)�n2 ] for n � 0:

We now reprove (21) using (19):

lim
n!1

gn+1
gn

= lim
n!1

(g1 � g0�2)�n+11 + (g0�1 � g1)�n+12

(g1 � g0�2)�n1 + (g0�1 � g1)�n2

= lim
n!1

(g1 � g0�2)�1 + (g0�1 � g1)�2
�
�2
�1

�n
(g1 � g0�2) + (g0�1 � g1)

�
�2
�1

�n
= lim
n!1

(g1 � g0�2)�1 + (g0�1 � g1)�2
�
�2
�1

�n
(g1 � g0�2) + (g0�1 � g1)

�
�2
�1

�n
= lim
n!1

(g1 � g0�2)�1 + (�1)n (g0�1 � g1)�2
�
�1+

p
5

1+
p
5

�n
(g1 � g0�2) + (�1)n (g0�1 � g1)

�
�1+

p
5

1+
p
5

�n
Let a=�1 +

p
5: Then a+ 2 = 1 +

p
5 and 0 <

a

a+ 2
< 1:

Then; lim
n!1

gn+1
gn

= lim
n!1

(g1 � g0�2)�1 + (�1)n (g0�1 � g1)�2
�

a
a+2

�n
(g1 � g0�2) + (�1)n (g0�1 � g1)

�
a
a+2

�n ;

lim
n!1

gn+1
gn

= lim
n!1

(g1 � g0�2)�1 + (�1)n (g0�1 � g1)�2
�

a
a+2

�n
(g1 � g0�2) + (�1)n (g0�1 � g1)

�
a
a+2

�n :

Using the known theorem: If 0 < b < 1; then lim(bn) = 0;we have,

lim
n!1

gn+1
gn

= lim
n!1

(g1 � g0�2)�1 + (�1)n (g0�1 � g1)�2
�

a
a+2

�n
(g1 � g0�2) + (�1)n (g0�1 � g1)

�
a
a+2

�n :

Therefore, lim
n!1

gn+1
gn

= lim
n!1

(g1 � g0�2)�1
(g1 � g0�2)

= �1; provided g1 6= g0�2:
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Recall that we previously discussed the connection between the Fibonacci
numbers and the piano�s keyboard. The idea of a Fibonacci ratio can also be exam-
ined when looking at major sixths, which are six tones apart, and minor sixths, which
are 51

2
tones apart. The interval from the notes C to A is a major sixth. The note

C makes 264 vibrations per second and the note A makes 440 vibrations per second.
Note that 264

440
= 3

5
; which is a Fibonacci ratio. In particular, this is the reciprocal

of fn+1
fn

for n = 4: Also, the interval from E and C is a minor sixth. The ratio of

vibrations per second for each of these notes is 330
528
= 5

8
; which is the reciprocal of fn+1

fn
for n = 5: This shows that the golden ratio and Fibonacci ratios play an important
role in many areas and make appearances in some of the most unusual places.

2.6 Generalized Weighted Fibonacci Numbers
We describe the generalized weighted Fibonacci numbers and use a 2 � 2

matrix calculation to derive Binet and Cassini-type formulas. Begin with seeds g0,
g1 and weights a0, a1: Then the generalized weighted Fibonacci is constructed as
follows:
w0 = g0
w1 = g1
w2 = a0g0 + a1g1
w3 = a0g1 + a1(a0g0 + a1g1) = a0w1 + a1w2
w4 = a0(a0g0 + a1g1) + a1[a0g1 + a1(a0g0 + a1g1)] = a0w2 + a1w3
...
The generalized weighted Fibonacci sequence is de�ned as,

wn = a0wn�2 + a1wn�1 for n � 2: (22)

Let W =

�
a1 a0
1 0

�
and G =

�
a0g0 + a1g1 g1

g1 g0

�
:

Also, de�ne xn;n+1 =
�
wn+1
wn

�
for n � 0:

Observe that,

W n

�
w1
w0

�
=

�
wn+1
wn

�
for n � 1: (23)

We also have,
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W nG =

�
wn+2wn+1
wn+1 wn

�
for n � 0: (24)

Proof of (24):

When n = 1 : WG =
�
a1 a0
1 0

� �
a0g0 + a1g1 g1

g1 g0

�

WG =

�
a0g1 + a1(a0g0 + a1g1) a0g0 + a1g1

a0g0 + a1g1 g1

�

Then WG =
�
w3w2
w2w1

�
; which is true.

Suppose (24) holds for all k � n:

Then W n+1G =

�
a1 a0
1 0

� �
wn+2wn+1
wn+1 wn

�

W n+1G =

�
a0wn+1 + a1wn+2 a0wn + a1wn+1

wn+2 wn+1

�

W n+1G =

�
wn+3wn+2
wn+2wn+1

�
Therefore, (24) holds for n+1: By the Principle of Mathematical Induction, (24)

holds for all n � 1: �

We now diagonalize W n and follow the approach taken in the previous sections.

det(W � �I) =
����a1 � � a01 ��

���� = � 2 � a1� � a0 = 0:
We have � =

a1�
p
a21+4a0

2
, so �(W ) =

�
� 1 =

a1+
p
a21+4a0

2
; � 2 =

a1�
p
a21+4a0

2

�
:

Table 8 gives some properties of the eigenvalues � 1 and � 2:

� 1 + � 2 = a1
� 1� 2 = �a0

� 1 � � 2 =
p
a21 + 4a0

Table 8: Properties of �1 and �2
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We use the symmetrizer matrix S =
�
� 1 � 2
1 1

�
and S�1 = 1p

a21+4a0

�
1 �� 2
�1 � 1

�
to

diagonalize W n:

Since S�1WS =
�
� 1 0
0 � 2

�
, we have S�1W nS =

�
�n1 0
0 �n2

�
:

Then, W n = 1p
a21+4a0

�
� 1 � 2
1 1

� �
�n1 0
0 �n2

� �
1 �� 2
�1 � 1

�
:

W n = 1p
a21+4a0

�
�n+11 �n+12

�n1 �n2

� �
1 �� 2
�1 � 1

�

W n = 1p
a21+4a0

�
�n+11 � �n+12 � 1�

n+1
2 � �n+11 � 2

�n1 � �n2 � 1�
n
2 � �n1� 2

�
:

Then for n � 0,

W nG =
1p

a21 + 4a0

�
�n+11 � �n+12 � 1�

n+1
2 � �n+11 � 2

�n1 � �n2 � 1�
n
2 � �n1� 2

� �
a0g0 + a1g1 g1

g1 g0

�
: (25)

We now match entries of (24) and (25) to obtain the relations in (a)� (d) below.

a.) wn =
1p

a21+4a0
[g0(� 1�

n
2 � �n1� 2) + g1(�n1 � �n2 )]

wn =
1p

a21+4a0
[g0� 1�

n
2 � g0�n1� 2 + g1�n1 � g1�n2 ]

wn =
1p

a21+4a0
[(g1 � g0� 2)�n1 + (g0� 1 � g1)�n2 ]

b.) wn+1 =
1p

a21+4a0
[g0(� 1�

n+1
2 � �n+11 � 2) + g1(�

n+1
1 � �n+12 )]

wn+1 =
1p

a21+4a0
[(g1 � g0� 2)�n+11 + (g0� 1 � g1)�n+12 ]

c.) wn+1 =
1p

a21+4a0
[(a0g0 + a1g1)(�

n
1 � �n2 ) + g1(� 1�n2 � �n1� 2)]

wn+1 =
1p

a21+4a0
[a0g0�

n
1 � a0g0�n2 + a1g1�n1 � a1g1�n2 + g1� 1�n2 � g1�n1� 2]
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wn+1 =
1p

a21+4a0
[(a0g0 + a1g1 � g1� 2)�n1 + (g1� 1 � a0g0 � a1g1)�n2 ]

It can be shown that a0g0 + a1g1 � g1� 2 = (g1 � g0� 2)� 1

and g1� 1 � a0g0 � a1g1 = (g0� 1 � g1)� 2:

Then we can rewrite wn+1 = 1p
a21+4a0

[(g1 � g0� 2)�n+11 + (g0� 1 � g1)�n+12 ]:

d.) wn+2 =
1p

a21+4a0
[(a0g0 + a1g1)(�

n+1
1 � �n+12 ) + g1(� 1�

n+1
2 � �n+11 � 2)]

Using the same relationships as in part (c), we can show that

wn+2 =
1p

a21+4a0
[(g1 � g0� 2)�n+21 + (g0� 1 � g1)�n+22 ]:

The formula for the generalized weighted Fibonacci is given by,

wn =
1p

a21 + 4a0
[(g1 � g0� 2)�n1 + (g0� 1 � g1)�n2 ] for n � 2: (26)

Computing the determinant of W nG; we �nd a Cassini-type formula for the gen-
eralized weighted Fibonacci.

det(W )n det(G) = det(W nG)

We have

����a1 a01 0

����n ����a0g0 + a1g1 g1g1 g0

���� = ����wn+2wn+1wn+1 wn

���� :
Therefore,

(�a0)n[a0g20 + a1g0g1 � g21] = wnwn+2 � w2n+1 for n � 0: (27)

To illustrate the validity of the derived formula for the generalized weighted Fi-
bonacci in (26), we look at an example. We use the weights, a0 = 2 and a1 = 3; and
the starting seeds, w0 = 2 and w1 = 4: Then, for this example we have � 1 = 3+

p
17

2

and � 2 = 3�
p
17

2
: We verify that (22) and (26) give the same results up to n = 200 in

Table 9:
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n wn = a0wn�2 + a1wn�1 wn =
1p

a21+4a0
[(g1 � g0� 2)�n1 + (g0� 1 � g1)�n2 ]; n � 2

Let a0 = 2 and a1 = 3
0 Let w0 = 2
1 Let w1 = 4
2 16
3 56
4 200
5 712
6 2536
7 9032
8 32168
9 114568
10 408040
20 133997477672
30 44003833267308136
40 14450550680937703569320
50 4745459644705250022516171496
100 18123735678699424468880477782563575783512981141692125480
200 264354428422732511704387576225179757004...

...837752308984544225096629578073572658030565...
...018049633198075670267804834728

Table 9: Generating Generalized Weighted Fibonacci Using (22) and (26)

2.7 Tribonacci Numbers
A sequence related to the Fibonacci sequence can be constructed by begin-

ning with three seeds instead of two. This sequence derives the Tribonacci numbers
and is de�ned in the following manner. Begin with three seeds: a0 = 0; a1 = 0 and
a2 = 1:

The Tribonacci sequence is de�ned by,

an = an�3 + an�2 + an�1 for n � 3: (28)

We obtain the following sequence of numbers:

a0 = 0; a1 = 0; a2 = 1; a3 = 1; a4 = 2; a5 = 4; a6 = 7; a7 = 13; a8 = 24; :::

According to [6], this sequence was �rst studied in 1963 by M. Feinberg while he
was a freshman at Susquehanna Township Junior High School, located in Pennsylva-
nia.
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We now derive the Tribonacci numbers using a 3� 3 matrix calculation.

Let A =

240 1 00 0 1
1 1 1

35 and de�ne xn;n+1;n+2 =
24 an
an+1
an+2

35 for n � 0:
Observe that,

Ax012 =

240 1 00 0 1
1 1 1

352400
1

35 =
2401
1

35 =
24a1a2
a3

35 ;
Ax123 =

240 1 00 0 1
1 1 1

352401
1

35 =
2411
2

35 =
24a2a3
a4

35 ;etc.
We have Axn;n+1;n+2 =

240 1 00 0 1
1 1 1

3524 an
an+1
an+2

35 =
24an+1an+2
an+3

35 :
Note that,

An =

24an�1 an�2 + an�1 an
an an�1 + an an+1
an+1 an + an+1 an+2

35 for n � 2: (29)

Proof of (29):

When n = 2 : A2 =

240 0 11 1 1
1 2 2

35 =
24a1 a0 + a1 a2
a2 a1 + a2 a3
a3 a2 + a3 a4

35 :
Suppose (29) holds for all k � n:

Multiplying by A; we have

An+1 =

24an�1 an�2 + an�1 an
an an�1 + an an+1
an+1 an + an+1 an+2

35240 1 00 0 1
1 1 1

35 =
24 an an�1 + an an+1
an+1 an + an+1 an+2
an+2 an+1 + an+2 an+3

35 :
Therefore, (29) holds for n+1: By the Principle of Mathematical Induction, (29)

holds for all n � 2: �

In general,
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Anx012 =

24 an
an+1
an+2

35 = xn+1;n+2;n+3 for n � 1: (30)

Proof of (30):

Using (29); we have Anx012 =

24an�1 an�2 + an�1 an
an an�1 + an an+1
an+1 an + an+1 an+2

352400
1

35 =
24 an
an+1
an+2

35 : �

Next, we �nd the eigenvalues of A:

det(A� �I) =

������
�� 1 0
0 �� 1
1 1 1� �

������
det(A� �I) = ��

������ 1
1 1� �

����+ ���� 1 0�� 1

����
It follows that ��3 + �2 + �+ 1 = 0: Denote f(�) = ��3 + �2 + �+ 1 = 0:

Then,

�1 =
1
3

h
3
p
19 + 3

p
33 +

3
p
19� 3

p
33 + 1

i
� 1:839286755:::;

�2 = �1
6

h
3
p
19 + 3

p
33 +

3
p
19� 3

p
33� 2

i
+
p
3
6
i
h
3
p
19 + 3

p
33� 3

p
19� 3

p
33
i
;

and

�2 = �1
6

h
3
p
19 + 3

p
33 +

3
p
19� 3

p
33� 2

i
�

p
3
6
i
h
3
p
19 + 3

p
33� 3

p
19� 3

p
33
i

are the eigenvalues of A:

Table 10 lists some properties of the eigenvalues �1; �2 and �2:

�1 + �2 + �2 = 1

�1�2�2 = 1

�1�2 + �1�2 + �2�2 = �1
f(�) = ��3 + �2 + �+ 1 = 0 for � = �1; �2 and �2

Table 10: Properties of �1;�2 and �2
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Next, we �nd the eigenvectors for �1; �2 and �2:240 1 00 0 1
1 1 1

3524x1x2
x3

35 = �1
24x1x2
x3

35 :
x2 = �1x1
x3 = �1x2
x1 + x2 + x3 = �1x3
Let x1 = 1:
Then x2 = �1 and x3 = �

2
1:

This implies that ��31 + �21 + �1 + 1 = 0; which is true by Table 10.

Thus, the eigenvector for �1 is

24 1�1
�21

35 :
The other eigenvectors follow similarly.

We have

24 1�1
�21

35 ;
24 1�2
�22

35 and
24 1

�2

�2
2

35 as eigenvectors for �1; �2 and �2; respectively:
Next, we aim to diagonalize A:

Let S =

24 1 1 1

�1 �2 �2

�21 �
2
2 �2

2

35 be the symmetrizer matrix.
For ease of notation in the matrix calculations below, let a = �1; b = �2 and

c = �2:

Rewrite S =

24 1 1 1a b c
a2 b2 c2

35. It can be shown that det(S) = (a� b)(b� c)(c� a) = k
S�1 = 1

k
(adj(S))T

S�1 =

24 bc(c� b) �(c� b)(c+ b) (c� b)
�ac(c� a) (c� a)(c+ a) �(c� a)
ab(b� a) �(b� a)(b+ a) (b� a)

35

S�1AnS =

24an 0 00 bn 0
0 0 cn

35
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An = 1
k

24 1 1 1a b c
a2 b2 c2

3524an 0 00 bn 0
0 0 cn

3524 bc(c� b) �(c� b)(c+ b) (c� b)
�ac(c� a) (c� a)(c+ a) �(c� a)
ab(b� a) �(b� a)(b+ a) (b� a)

35

An =
1

k

24 an bn cn

an+1 bn+1 cn+1

an+2 bn+2 cn+2

3524 bc(c� b) �(c� b)(c+ b) (c� b)
�ac(c� a) (c� a)(c+ a) �(c� a)
ab(b� a) �(b� a)(b+ a) (b� a)

35 for n � 0:

(31)

Setting corresponding entries equal in (29) and the result of An in (31) above, we
have the relations in (a)� (g) below.

a.) an�1 =
1
k
[an�1(c� b)� bn�1(c� a) + cn�1(b� a)]

b.) an =
1
k
[an(c� b)� bn(c� a) + cn(b� a)] ; which is a repeated entry.

c.) an+1 =
1
k
[an+1(c� b)� bn+1(c� a) + cn+1(b� a)] ; which is a repeated entry.

d.) an+2 =
1
k
[an+2(c� b)� bn+2(c� a) + cn+2(b� a)]

Note that for (a)� (d) above, we use the fact that abc = 1 from Table 10.

e.) an + an+1 =
1
k
[�an+2(c� b)(c+ b) + bn+2(c� a)(c+ a)� cn+2(b� a)(b+ a)]

To show this relation holds, we�ll use (b) and (c) from above.

an + an+1 =
1
k
[an(c� b)� bn(c� a) + cn(b� a)] +

+ 1
k
[an+1(c� b)� bn+1(c� a) + cn+1(b� a)]

Then, an + an+1 = 1
k

�
�an+2(c� b)

�
� 1
a2
� 1

a

��
+

+ 1
k

�
bn+2(c� a)

�
� 1
b2
� 1

b

��
� 1

k

�
cn+2(b� a)

�
� 1
c2
� 1

c

��
:

It can be shown that the following hold:
i.) � 1

a2
� 1

a
= c+ b

ii.) � 1
b2
� 1

b
= c+ a

iii.) � 1
c2
� 1

c
= b+ a:

Using (i)� (iii), we have that
an + an+1 =

1
k
[�an+2(c� b)(c+ b) + bn+2(c� a)(c+ a)� cn+2(b� a)(b+ a)] ;

so (e) holds.

The relations in (f) and (g) follow similarly.

f.) an�1 + an =
1
k
[�an+1(c� b)(c+ b) + bn+1(c� a)(c+ a)� cn+1(b� a)(b+ a)]



38

g.) an�2 + an�1 =
1
k
[�an(c� b)(c+ b) + bn(c� a)(c+ a)� cn(b� a)(b+ a)]

We conclude that the sequence for the Tribonacci numbers for n � 0 is given by:

an =
1

(�1 � �2)
�
�2 � �2

� �
�2 � �1

� h�n1 (�2 � �2)� �n2 (�2 � �1) + �2n(�2 � �1)i :
(32)

Observe that (32) is a Binet-type formula for the Tribonacci numbers.

We can also derive a Cassini-type formula for the Tribonacci numbers by calcu-
lating det(An):

Note that det(An) = [det(A)]n = 1n = 1; and using (29) for n � 2; the determinant
condition becomes,

a3n + a
2
n�1an+2 + an�2a

2
n+1 � 2an�1anan+1 � an�2anan+2 = 1: (33)

Using a0 = 0; a1 = 0 and a2 = 1, we compute the Tribonacci numbers using both
the recursive de�nition in (28) and the derived formula in (32): We verify that (28)
and (32) give the same results up to n = 300 in Table 11:

n an = an�3 + an�2 + an�1; n � 3 Equation (32)
0 De�ne a0 = 0 0
1 De�ne a1 = 0 0
2 De�ne a2 = 1 1
3 1
4 2
5 4
6 7
7 13
8 24
9 44
10 81
20 35890
30 15902591
40 7046319384
50 3122171529233
100 53324762928098149064722658
200 15555116989073938986569525465884451018665640926743832
300 453751036586945692074245222930195738533...

...5193230814796219118584076403940718845682
Table 11: Generating Tribonacci Numbers Using (28) and (32)



39

2.8 Generalized Tribonacci Numbers

This section describes how to generate the generalized Tribonacci numbers
which use any three starting seeds, t0, t1 and t2: The generalized Tribonacci sequence
is given by,

tn = tn�3 + tn�2 + tn�1 for n � 3: (34)

Let T =

24�t0 � t1 + t2 t1 � t0 t0
t0 t2 � t1 t1
t1 t0 + t1 t2

35 :

TAn =

24tn�1 tn�2 + tn�1 tn
tn tn�1 + tn tn+1
tn+1 tn + tn+1 tn+2

35 for n � 2: (35)

Proof of (35):

When n = 2 : TA2 =

24�t0 � t1 + t2 t1 � t0 t0
t0 t2 � t1 t1
t1 t0 + t1 t2

35240 0 11 1 1
1 2 2

35 =
24t1 t0 + t1 t2
t2 t1 + t2 t3
t3 t2 + t3 t4

35
Assume (35) holds for all k � n:

Right multiplying by A; we have

TAn+1 =

24tn�1 tn�2 + tn�1 tn
tn tn�1 + tn tn+1
tn+1 tn + tn+1 tn+2

35240 1 00 0 1
1 1 1

35 =
24 tn tn�1 + tn tn+1
tn+1 tn + tn+1 tn+2
tn+2 tn+1 + tn+2 tn+3

35 :
Therefore, (35) holds for n+1: By the Principle of Mathematical Induction, (35)

holds for all n � 2: �

Using the representation of An in (31) to calculate TAn and setting corresponding
entries equal to those in (35); we obtain the formula for the generalized Tribonacci
numbers:
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tn =
1

(�1 � �2)
�
�2 � �2

� �
�2 � �1

� [�n1 (�2 � �2) �(�t0 � t1 + t2) + (t1 � t0)�1 + t0�21�
��n2 (�2 � �1)

�
(�t0 � t1 + t2) + (t1 � t0)�2 + t0�22

�
+�n2 (�2 � �1)

h
(�t0 � t1 + t2) + (t1 � t0)�2 + t0�22

i
] ; (36)

where t0, t1 and t2 are the starting seeds and n � 4:

To illustrate the validity of the derived formula in (36); let�s look at an example.
Using the starting seeds t0 = 1; t1 = 2 and t2 = 3, we compute the generalized
Tribonacci numbers using both the recursive de�nition in (34) and the derived formula
in (36): We verify that (34) and (36) give the same results up to n = 300 in Table
12:

n tn = tn�3 + tn�2 + tn�1; n � 3 Equation (36)
0 Let t0 = 1
1 Let t1 = 2
2 Let t2 = 3
3 6
4 11
5 20
6 37
7 68
8 125
9 230
10 423
20 187427
30 83047505
40 36797729645
50 16304799367867
100 278475910993686935750658203
200 81232904494794246768797269284791756917949548058614301
300 236960703319503932041285575095163188455...

...36560140699700060753168831467675844811847
Table 12: Generating Generalized Tribonacci Numbers Using (34) and (36)



2.9 The Limit of the Ratio of Consecutive Tribonacci Num-
bers
We observed in Section 2.5: More About the Golden Ratio that the limit

of the ratio of two consecutive generalized Fibonacci numbers was the positive eigen-
value associated with the appropriate matrix. The same relationship occurs for the
generalized Tribonacci numbers.

De�ne the sequence xn =
tn+1
tn

for n � 0 and let lim
n!1

xn = L exist:

Assume t0; t1; t2 � 0:

Using (34); we can rewrite xn =
tn�2+tn�1+tn

tn
= tn�2

tn
+ tn�1

tn
+ 1

Then, xn =
tn�1
tn�1

tn�2
tn
+ 1

tn
tn�1

+ 1:

xn =
1

tn�1
tn�2

1
tn

tn�1
+ 1

tn
tn�1

+ 1

xn =
1

xn�2
1

xn�1
+ 1

xn�1
+ 1

Taking the limit of both sides of the above sequence (assuming the limit exists),
we obtain L = 1

L2
+ 1

L
+ 1:

Then L3 � L2 � L� 1 = 0:

We know that sequence values of (tn) are real-valued and positive. Therefore,
from Table 10 we know that

L = 1
3

h
3
p
19 + 3

p
33 +

3
p
19� 3

p
33 + 1

i
� 1:839286755; which is the real-valued

eigenvalue of the matrix A.

Therefore,

lim
n!1

tn+1
tn

=
1

3

�
3

q
19 + 3

p
33 +

3

q
19� 3

p
33 + 1

�
� 1:839286755::: (37)

41



3 Conclusion

This thesis aims to provide the reader with an alternate way to derive Fi-
bonacci numbers and other related sequences. The recursive de�nitions of Fibonacci
numbers commonly appear in mathematics curriculum and studies done on these de-
�nitions have been extensive. This thesis, on the other hand, uses the theory of
matrices to derive explicit formulas for the Fibonacci, Lucas, generalized Fibonacci,
generalized weighted Fibonacci, Tribonacci and generalized Tribonacci numbers given
any integer, n.

We began with a historical introduction which examined the works of math-
ematicians Fibonacci and Hemachandra. While Fibonacci gets credit for developing
the �so called� Fibonacci numbers, we note that Indian mathematicians such as
Hemachandra played a role in their development before Fibonacci�s time. We also
looked at some of the number theoretical properties that Fibonacci numbers posses
and mentioned a few of the ways they appear in real life settings.

We then dove into the theory of matrices and developed formulas for the
Fibonacci, Lucas, generalized Fibonacci, generalized weighted Fibonacci, Tribonacci
and generalized Tribonacci numbers by diagonalizing associated matrices and exam-
ining their eigenvalues. We tabulated numerical results comparing both the recursive
and derived formulas. It is known that these results can be extended further. In
fact, generalizations can be made for the n� n case.

Fibonacci numbers are fascinating and their impact on the �eld of math-
ematics has been great. In 1963, The Fibonacci Association was established and
is devoted to the study of Fibonacci numbers and other related sequences. The
Fibonacci Association prints articles on these topics in their publication called The
Fibonacci Quarterly. Countless other publications have been written about these
numbers. Their appearance in di¤erent areas of mathematics and in other unusual
places make Fibonacci numbers even more special. For this reason, their beauty can
be appreciated by a wide range of mathematicians and even non-mathematicians.
There is no doubt that Fibonacci numbers will continue to remain a curiosity to
many for centuries to come.
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