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Abstract

Catalan numbers arise in a family of persymmetric arrays with determinant 1. The demon-
stration involves a counting result for disjoint path systems in acyclic directed graphs. c© 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

The Catalan number cn is the number of all sequences 〈s1; s2; : : : ; s2n〉 such that
si ∈{−1; 1}, ∑i

j=1 sj¿0 for every i∈{1; 2; : : : ; 2n− 1}, and ∑2n
j=1 sj =0, in particular

c0 is the number of empty sequences so c0 = 1. A persymmetric matrix is a square
matrix with constant skew diagonals. In older literature, such matrices were called
orthosymmetric.
Let k; t be �xed integers with k¿1 and t¿0. Let Mt

k=(mij)
k
i; j=1 be the persymmetric

matrix with the sequence of consecutive Catalan numbers starting at ct being the �rst
row of Mt

k . Explicitly, we have then mij = ct+i+j−2, and

Mt
k =




ct ct+1 : : : ct+k−1
ct+1 ct+2 : : : ct+k
...

...
. . .

...
ct+k−1 ct+k : : : ct+2k−2


 :
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Consider the in�nite directed graph G with Z×Z as the set of vertices and directed
arcs from (i; j) to (i+1; j) and to (i; j+1), for every i; j∈Z. Let di denote the vertex
(i; i) in G; i∈Z. Note that the number of directed paths in G from di to dj, with j¿i,
is equal to the Catalan number cj−i. Let Qtk be the family consisting of all sets of k
pairwise vertex disjoint directed paths 
0; 
1; : : : ; 
k−1 in G such that 
i joins d−i with
dt+i ; i = 0; 1; : : : ; k − 1.
We are going to prove the following result.

Theorem 1. The determinant detMt
k is equal to the cardinality |Qtk |.

In particular, it is easy to see that |Q0k |=|Q1k |=1, so we have the following corollary.

Corollary 2. The determinants detM 0
k and detM

1
k are both equal to 1.

It is also easy to see that

detM 2
k = |Q2k |= k + 1

and (see Section 4)

detM 3
k = |Q3k |=

k+1∑
i=1

i2 =
(k + 1)(k + 2)(2k + 3)

6
:

Our proof of Theorem 1 will be based on a result of Gronau et al. [1] on disjoint
path systems in acyclic directed graphs. For the convenience of the reader we will
include the proof of that result. For t = 1, our main result also follows from the work
of Shapiro [2], who noted an LU factorization of M 1

k using an array he called a Catalan
triangle.

2. Disjoint path systems

Let G = (V; E) be an acyclic directed graph, where V is a �nite set of vertices and
E is a set of ordered pairs of vertices (directed edges of G). If e = (v; w)∈E, then v
is the tail of e and w is the head of e. The assumption that G is acyclic means that
there are no directed cycles in G, that is, there does not exist a sequence of vertices
v0; v1; : : : ; vk with (vi; vi+1 mod k)∈E for every i∈{0; 1; : : : ; k}, in particular, (v; v) 6∈E
for every v∈V . A source (sink) in G is a vertex of indegree 0 (outdegree 0), that is,
a vertex that is not a head (tail) of any edge. A path in G is a sequence v0; v1; : : : ; vk
of distinct vertices such that (vi; vi+1)∈E for every i∈{0; 1; : : : ; k − 1}. We say that
such a path leads from v0 to vk .
Let A= {a1; a2; : : : ; an} be a certain �xed set of sources, and B= {b1; b2; : : : ; bn} be

a �xed set of sinks in G. A path system in (G; A; B) is a set W = {w1; w2; : : : ; wn} of
paths in G such that there exist a permutation � = �(W )∈ Sn so that wi leads from
ai to b�(i) for every i∈{1; 2; : : : ; n}. We say that W is disjoint if for every i and
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j (16i¡ j6n) the paths wi and wj have disjoint sets of vertices. Let W be the set
of all (not necessarily disjoint) path systems in (G; A; B).

Theorem 3 (Gronau et al. [1]). Let pij be the number of paths leading from ai to bj
in G; let p+ be the number of disjoint path systems W in (G; A; B) for which �(W )
is an even permutation; and let p− be the number of such systems with for which
�(W ) is odd. Then det(pij) = p+ − p−.

Proof. If w is a path in G, then let E(w) be the set of edges used by w. If W =
(w1; w2; : : : ; wn)∈W, then let

E(W ) =
n⋃
i=1

E(wi):

Given a set of edges D⊆E and a permutation �∈ Sn, let
P(D; �) = {W ∈W: E(W ) = D and �(W ) = �}

and p(D; �) = |P(D; �)|.
Since

⋃
D⊆ E

P(D; �) = {W ∈W: �(W ) = �};

we have

∑
D⊆ E

p(D; �) =
n∏
i=1

pi�(i)

and so

p=
∑
�∈Sn

∑
D⊆ E

sgn(�)p(D; �) =
∑
�∈Sn

sgn(�)
∑
D⊆ E

p(D; �)

=
∑
�∈Sn

sgn(�)
n∏
i=1

pi�(i) = det(pij):

To complete the proof it remains to show that p= p+ − p−.
Let D1 be the set of all D⊆E such that D = E(W ) for some disjoint path system

W ∈W, let D2 be the set of all D⊆E such that D = E(W ) for some W ∈W that is
not disjoint, and let D3 be the set of all D⊆E such that D 6= E(W ) for any W ∈W.
Then we have

p=
∑
�∈Sn

∑
D⊆ E

sgn(�)p(D; �) =
∑
D⊆ E

∑
�∈Sn

sgn(�)p(D; �)

=
∑
D∈D1

∑
�∈Sn

sgn(�)p(D; �) +
∑
D∈D2

∑
�∈Sn

sgn(�)p(D; �)

+
∑
D∈D3

∑
�∈Sn

sgn(�)p(D; �):
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If D = E(W )∈D1, then W is the only path system in W with D = E(W ), implying
that

∑
�∈Sn

sgn(�)p(D; �) = sgn(�(W )):

Therefore,
∑
D∈D1

∑
�∈Sn

sgn(�)p(D; �) = p+ − p−:

Since obviously
∑
D∈D3

∑
�∈Sn

sgn(�)p(D; �) = 0;

the proof of the theorem will be complete when we show that

(∗)
∑
D∈D2

∑
�∈Sn

sgn(�)p(D; �) = 0:

Claim. If D∈D2 and

WD =
⋃
�∈Sn

P(D; �) = {W ∈W: E(W ) = D};

then there is a bijection f :WD → WD such that

(†) sgn(�(f(W ))) =−sgn(�(W ))
for every W ∈WD.

It is clear that the claim implies (∗). It remains to prove the claim.
Let D∈D2. If W = {w1; w2; : : : ; wn}∈WD, then let i∈{1; 2; : : : ; n} be the smallest

integer with wi having a common vertex with another path of W; let v be the �rst
vertex along wi that is also a vertex of another path of W , and let j∈{1; 2; : : : ; n}\{i}
be the smallest integer such that v is a vertex of wj. Let f(W ) = {w′

1; w
′
2; : : : ; w

′
n} be

a path system in WD such that w′
k =wk for k 6∈ {i; j} and w′

i ; w
′
j are obtained from wi

and wj respectively, by exchanging the segments leading from v to b�(i) and from v
to b�( j), where � = �(W ). Clearly (†) is satis�ed and since f ◦ f is the identity map
on WD, it follows that f is a bijection. Hence the proof of the claim, and thus of the
theorem, is complete.

3. Proof of the main result

In this section we are going to prove Theorem 1. Let k; t be positive integers with
k¿1, t¿0, and Gtk be the subgraph of the directed acyclic graph G (see Section 1)
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that is induced by the following set of vertices:

V tk = {(i; j)∈Z× Z: − k + 16i6t + k − 1 and i6j6t + k − 1}:

For example, the graph G23 looks as follows:

· → · → · → · → · → · → ·
↑ ↑ ↑ ↑ ↑ ↑ (4;4)

· → · → · → · → · → ·
↑ ↑ ↑ ↑ ↑ (3;3)

· → · → · → · → ·
↑ ↑ ↑ ↑ (2;2)

· → · → · → ·
↑ ↑ ↑ (1;1)

· → · → ·
↑ ↑ (0;0)

· → ·
↑ (−1;−1)

·
(−2;−2)

Note that for every i; j∈Z with

−k + 16i6j6t + k − 1;

the number of directed paths in Gtk from di to dj is the same as in G, and so it is
equal to the Catalan number cj−i.
Let Ak = {a1; a2; : : : ; ak} and Bk = {b1; b2; : : : ; bk} be k-element sets that are disjoint

from V tk and from each other. Let Htk be the directed acyclic graph obtained from
Gtk by adding Ak ∪ Bk to the set of vertices and adding new directed arcs from ai
to d−i+1 and from dt+i−1 to bi, i = 1; 2; : : : ; k. Then, for every i; j = 1; 2; : : : ; k, the
number of directed paths in Htk from ai to bj is equal to the Catalan number cr
with

r = (t + j − 1)− (−i + 1) = t + i + j − 2;

which is mij. Consider disjoint path systems in (Htk ; Ak ; Bk). It is easy to see that
for each such system W the permutation �(W ) is the identity permutation. See the
following picture for an example of such a system in H 23 (the vertices ai and bj are
not pictured).
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· → · → · → · → · → · → ·
↑ (4;4)

· · → · → · → · → ·
↑ ↑ (3;3)

· · · · → ·
↑ ↑ ↑ (2;2)

· · · → ·
↑ ↑ ↑ (1;1)

· · ·
↑ ↑ (0;0)

· ·
↑ (−1;−1)

·
(−2;−2)

Therefore, we have p+ = |Qtk | and p− = 0. It follows from Theorem 3 that

detMt
k = p

+ − p− = |Qtk |:

Thus the proof of Theorem 1 is complete.

4. Applications

Corollary 4. Consider the in�nite array A= {ai j} in which the rows are interpreted
as sequences satisfying the following properties:

1. ai j = ai−1 j for j62i − 2.
2. If j¿ 2i − 2; ai j satis�es

det




ai j−2i+2 : : : ai j−i ai j−i+1
...

. . .
...

...
ai j−i+2 : : : ai j−2 ai j−1
ai j−i+1 : : : ai j−1 ai j


= 1;

then a1 1; a1 2; a2 3; a2 4; a3 5; a3 6; : : : is the sequence of Catalan numbers.

The array de�ned by these properties is

N =




1 1 1 1 1 1 1 : : :
1 1 2 5 13 34 89 : : :
1 1 2 5 14 42 99 : : :
1 1 2 5 14 42 132 : : :
...
...
...
...

...
...

...
. . .



:
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This array is not persymmetric itself, of course, but i × i persymmetric arrays built
from any 2i − 1 successive elements of the ith row have determinant 1. Successive
rows of N may be interpreted as sequences that converge to the sequence of Catalan
numbers, in the sense that row i matches the Catalan sequence for the �rst 2i terms.
The 2× 2 determinants that determine the second row make it the sequence of every
other Fibonacci number.

Corollary 5. In the in�nite persymmetric array whose �rst row is the Catalan se-
quence

M =




1 1 2 5 14 : : :
1 2 5 14 42 : : :
2 5 14 42 132 : : :
...
...

...
...

...
. . .




any �nite square submatrix has positive determinant. Furthermore; the Catalan
sequence is the smallest sequence with this property; in the sense that among all
sequences of integers with this property it is lexicographically least.

Proof. Any square k × k submatrix of M is equal to the matrix Mt
k for some t¿0. It

follows from Theorem 1 that detMt
k ¿ 0.

To conclude the proof it remains to show that among all sequences of integers
with the stated property the Catalan sequence is lexicographically least. Suppose that
c′0; c

′
1; : : : has the stated property and is not the Catalan sequence. Let r be the smallest

integer such that cr 6= c′r . We need to show that cr ¡c′r . Obviously c
′
0; c

′
1¿1 so we can

assume that r¿2. There are integers k; t with k¿2 and t ∈{0; 1} such that r=t+2k−2.
Expanding the determinant with respect to the last row we get

0¡ det




c′t c′t+1 : : : c′t+k−1
c′t+1 c′t+2 : : : c′t+k
...

...
. . .

...
c′t+k−1 c′t+k : : : c′t+2k−2




= detMt
k + (c

′
2k−1 − c2k−1)detMt

k−1

= 1 + (c′2k−1 − c2k−1);

since detMt
k = detMt

k−1 = 1 by Corollary 2. Thus c2k−1¡c′2k−1, completing the
proof.

The corollaries provide novel characterizations of the Catalan sequence, somewhat
removed from the enumerative settings in which the sequence usually arises. In par-
ticular, Corollary 4 generates the Catalan sequence two terms at a time, as a limiting
sequence of a family of sequences, each given via linear recurrences of slow growing
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order. Corollary 5 speci�es a determinant property that many sequences may possess,
but for which the Catalan sequence is least in a natural order.
Finally, let us prove the following easy observation mentioned in Section 1.

Proposition 6. For every positive integer k we have

detM 3
k = |Q3k |=

k+1∑
i=1

i2 =
(k + 1)(k + 2)(2k + 3)

6
:

Proof. To see that |Q3k |=
∑k+1

i=1 i
2, partition Q3k into k +1 sets R0; R1; : : : ; Rk such that

Ri consists of those sets of paths {
0; 
1; : : : ; 
k−1}∈Q3k , where 
i joins d−i with dt+i,
that satisfy the extra condition that 
j goes through (−j; t+ j) for j= i; i+1; : : : ; k − 1
and through (−j + 1; t + j − 1) for j = 0; 1; : : : ; i − 1. For example, if k = 3, then R2
consists of the sets {
0; 
1; 
2}∈Q33 such that 
0 goes through (1; 2); 
1 goes through
(0; 3), and 
2 goes through (−2; 5); see the following picture where double arrows
denote arcs that have to be taken and single arrows denote possible arcs.

◦ ⇒ · ⇒ · ⇒ · ⇒ · ⇒ · ⇒ · ⇒ ·
⇑ (−2;5) (5;5)

· · · → · ⇒ · ⇒ · ⇒ ·
⇑ ↑ ↑ (4;4)

· · → ◦ → · → · ⇒ ·
⇑ ↑ ↑ (0;3) ↑ ↑ (3;3)

· · → · → ◦ → ·
⇑ ⇑ ↑ ↑ (1;2) (2;2)

· · · → ·
⇑ ⇑ ⇑ (1;1)

· · ·
⇑ ⇑ (0;0)

· ·
⇑ (−1;−1)

·
(−2;−2)

It is easy to see that |Ri|= (i + 1)2. For example, in the picture above there are three
possibilities for the paths 
0 and 
1 to reach vertices (1; 2) and (0; 3), respectively, and
three possibilities for the remaining parts of the paths, implying that |R2| = 32. Thus
the proof is complete.
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