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Abstract

Sobolev orthogonal polynomials have been studied extensively in the past quarter-century. The
research in this field has sprawled into several directions and generates a plethora of publications.
This paper contains a survey of the main developments up to now. The goal is to identify main ideas
and developments in the field, which hopefully will lend a structure to the mountainous publications
and help future research.
c⃝ 2014 Elsevier GmbH. All rights reserved.
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1. Introduction

If ⟨·, ·⟩ is an inner product defined on the linear space of polynomials, then orthogonal
polynomials {pn}n≥0 with respect to the inner product are those polynomials satisfying
⟨pn, pm⟩ = 0 if n ≠ m. We call them ordinary orthogonal polynomials if ⟨ f, g⟩
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=


R f (x)g(x)dµwith respect to a nonnegative Borel measure dµ supported on an infinite
subset of the real line. They are called Sobolev orthogonal polynomials when the inner
product involves derivatives.

Sobolev orthogonal polynomials were first considered in the early 60s of the last century.
In the past 25 years, the field has seen a rapid development that leads to a large amount
of publications. A rough count shows around four hundred publications in the past two
decades. For a new comer, as the second author was at the beginning of this project, the
size of the literature is daunting and worse still is the disarray of the literature.

The theory of ordinary orthogonal polynomials is well established and documented. One
essential tool in the theory is the three-term recurrence relation that orthogonal polynomials
satisfy, which holds if the multiplication operator is symmetric with respect to the inner
product, that is, if ⟨xp, q⟩ = ⟨p, xq⟩. In the Sobolev setting, however, the multiplication
operator is no longer symmetric and, consequently, the three-term relation no longer holds.
The deprival of this fundamental tool cannot be easily compensated. Different and ad
hoc methods have been developed for dealing with different Sobolev inner products. The
result is a theory of Sobolev orthogonal polynomials that appears fragmented and lack of
uniformity.

The purpose of this paper is to provide an updated survey for the current state of the
theory of Sobolev orthogonal polynomials. Several surveys on specific topics within the
field appeared in the nineties or at the turn of the century [72,84,86,91], they were far
more restrictive in their scope and need update by now. This project was initiated when
the first author, who has worked extensively on the subject, led the second author, who
works in several variables where Sobolev orthogonal polynomials have only been studied
recently, through the literature. After intensive reading and discussion, we decided to trace
the development of the subject, identify main ideas and developments, and provide some
structure to the literature so that it can be more accessible for new comers and researchers
interested in this field. The organization of the paper follows roughly the progress of this
collective learning process, the first part of which more or less correlates with the historical
development of the field.

We will limit our scope to Sobolev orthogonal polynomials with respect to those inner
products that are defined by integrals with at most finite additional discrete mass points.
The main Sobolev inner product that we consider can be written as

⟨ f, g⟩ =


R

f (x)g(x)dµ0 +

m
k=1


R

f (k)(x)g(k)(x)dµk,

where dµk, k = 0, 1, . . . ,m, are positive Borel measures on R. There are essentially three
types of such inner products in this paper:

I. dµ0, dµ1, . . . , dµm have continuous support.

II. dµ0 has continuous support and dµ1, . . . , dµm are supported on finite subsets.

III. dµm has continuous support and dµ0, . . . , dµm−1 are supported on finite subsets.

In the second and the third cases, we sometimes also consider mixed discrete part, for
example, in the second case,
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⟨ f, g⟩ =


R

f (x)g(x)dµ0 +


f (0), f ′(0), . . . , f (m)(0)


M


g(0), g′(0), . . . , g(m)(0)
T

with M being an (m + 1) × (m + 1) matrix. We will not consider Sobolev orthogonal
polynomials that involve discrete orthogonal polynomials, q-orthogonal polynomials, and
complex valued orthogonal polynomials, including those on the unit circle, since the survey
is already long and the ideas and methods used in these settings are often parallel to those
discussed in this paper.

The list of references at the end of the paper is compiled strictly according to the ma-
terials covered in the paper. It is by no means inclusive or complete. We no doubt missed
many papers that should be cited and we apologize to those authors whose work we should
have cited.

The paper is organized as follows. After a brief introduction of ordinary orthogonal
polynomials in Section 2, we recall the history and early results of Sobolev orthogonal
polynomials in Section 3. The early results wer essentially established by the method of
integration by parts, which is discussed in Section 4. The topic went into a long dormant
a decade after its beginning and was awakened only when the notion of coherent pair was
introduced. The main idea of coherent pair and its various extensions are expounded in
a lengthy Section 5. Classical orthogonal polynomials, the Jacobi, Laguerre and Hermite
polynomials, play an important role in the development and they are Sobolev orthogonal
polynomials themselves for appropriately defined inner products, which will be explained
in Section 6. Sobolev orthogonal polynomials for the inner products of the second type,
those with derivatives appear only in the point evaluations, are discussed in Section 7. In the
literature they are called either Sobolev type or discrete Sobolev orthogonal polynomials.
Some of these polynomials satisfy differential equations, which and other results concern-
ing differential equations are presented in Section 8. Two important properties of Sobolev
orthogonal polynomials, zeros and asymptotics, are addressed in Section 9 and Section 10,
respectively. More recently, prompted partly by problems in numerical solution of partial
differential equations, Sobolev orthogonal polynomials in several variables have come into
being. What is known up to date in this direction is reported in Section 11. Finally, in
Section 12, we discuss Fourier expansions in Sobolev orthogonal polynomials. The lack
of Christoffel–Darboux formula for Sobolev orthogonal polynomials, consequence of the
lack of three-term recurrence relation, deprives an important tool for studying convergence
and summability of Fourier orthogonal expansions. As a consequence, except for certain
inner product of the second type and some numerical experiments, the convergence of
Fourier expansions in Sobolev orthogonal polynomials has not been resolved. We consider
this deficiency one of the major open problems that deserves to be studied intensively. This
call of action seems a fitting point to end our survey.

2. Orthogonal polynomials

In this section, we introduce notation and basic background concerning the general struc-
ture of orthogonal polynomials. Although the results in this section are mostly classical, it
is necessary to fix notations and recall results that will be essential in our discussion.
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2.1. General properties of orthogonal polynomials

All functions encounter in this paper are real valued. Let Π denote the linear space of
polynomials with real coefficients on the real line and, for n = 0, 1, . . . , let Πn denote the
linear subspace of polynomials of degree at most n.

We consider orthogonal polynomials on the real line. Let ⟨·, ·⟩ be a symmetric bilinear
form defined on Π × Π . It is an inner product if ⟨p, p⟩ > 0 for all nonzero polynomial
p ∈ Π . A sequence of polynomials {Pn}n≥0 is called orthogonal with respect to ⟨·, ·⟩ if
deg Pn = n and

⟨Pn, Pm⟩ = 0, n ≠ m.

Pn is said to be monic if Pn(x) = xn
+ an,n−1xn−1

+ · · · . For n = 0, 1, 2, . . . , let

Mn :=


⟨1, 1⟩ ⟨1, x⟩ · · · ⟨1, xn

⟩

⟨x, 1⟩ ⟨x, x⟩ · · · ⟨x, xn
⟩

· · · · · ·
. . . · · ·

⟨xn, 1⟩ ⟨xn, x⟩ · · · ⟨xn, xn
⟩

 .
If ⟨·, ·⟩ is an inner product, then Mn is positive definite i.e. det Mn > 0 for every n ∈ N0.

If det Mn ≠ 0 for all n ∈ N0, then a sequence of monic orthogonal polynomials exists. In
fact, the monic orthogonal polynomials are P0(x) = 1 and, for n ≥ 1,

Pn(x) =
1

det Mn−1
det


Mn−1

⟨1, xn
⟩

⟨x, xn
⟩

...

⟨xn−1, xn
⟩

1, x, . . . , xn−1 xn

 . (2.1)

Let µ be a positive Borel measure supported on the real line such that all its moments,
R xndµ with n = 0, 1, 2, . . . , are finite. For such a measure,

⟨ f, g⟩dµ :=


R

f (x)g(x)dµ

defines an inner product. We can define bilinear forms from linear functionals. Indeed, let
U : Π → R be a linear functional and denote its action on p ∈ Π by ⟨U , p⟩. Associated
to U we define a bilinear form

⟨ f, g⟩ := ⟨U , f g⟩.

Definition 2.1. The linear functional U is called quasi-definite if det Mn ≠ 0 for all
n ∈ N0, and it is called positive definite if det Mn > 0 for all n ∈ N0.

When U is quasi-definite, orthogonal polynomials with respect to the bilinear form
defined by U exist, which shall be called orthogonal polynomials with respect to U . When
U is positive definite, the bilinear form is an inner product given by ⟨·, ·⟩dµ for a positive
Borel measure µ.
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Let ∂ denote the derivative ∂ f (x) := f ′(x) and let q be a fixed polynomial in Π . For a
linear functional U , the linear functionals ∂U and q U are defined, respectively, by

⟨∂U , p⟩ := −⟨U , ∂p⟩ and ⟨q U , p⟩ := ⟨U , qp⟩, ∀p ∈ Π .

For a ∈ R, the delta functional δa is defined by ⟨δa, p⟩ = p(a) for all p ∈ Π .
For a quasi-definite linear functional U , monic orthogonal polynomials {Pn}n≥0 are

characterized by the three-term recurrence relation

x Pn(x) = Pn+1(x)+ bn Pn(x)+ cn Pn−1(x), n ≥ 0

where cn ≠ 0 for n ≥ 1. The three-term recurrence relation plays an important role
in the study of ordinary orthogonal polynomials. It is equivalent, in particular, to the
Christoffel–Darboux formula,

n
k=0

Pk(x)Pk(y)

hk
=

1
hn

Pn+1(x)Pn(y)− Pn+1(y)Pn(x)

x − y
,

where hk =
√

⟨Pk, Pk⟩. For orthogonal polynomials with respect to an inner product, the
three-term relation holds if an only if ⟨·, ·⟩ satisfies

⟨xp, q⟩ = ⟨p, xq⟩, p, q ∈ Π

i.e. the multiplication operator is a symmetric operator with respect to the above inner
product. This property, however, does not hold for Sobolev inner product in general as we
will show in the sequel.

2.2. Classical orthogonal polynomials

These polynomials are associated with the following weight functions

(1) Hermite: w(x) = e−x2
on (−∞,∞);

(2) Laguerre: wα(x) = xαe−x on (0,∞),−α ∉ N;
(3) Jacobi: wα,β(x) = (1 − x)α(1 + x)β on (−1, 1),−α ∉ N,−β ∉ N,−α − β ∉ N.

We denote the corresponding linear functional by H,Lα , and Jα,β , respectively. These
linear functionals are quasi-definite for all ranges of their parameters. Moreover, H is
positive definite, Lα is positive definite if α > −1 and Jα,β is positive definite if α > −1
and β > −1.

In the positive definite case, the orthogonal polynomials for these weight functions are
called classical. They are the Hermite polynomials Hn , the Laguerre polynomials L(α)n , and
the Jacobi polynomials P(α,β)n , which are defined in terms of hypergeometric functions as
follows,

Hn(x) = (2x)n2 F0


−

n

2
,−

n + 1
2

−

; −
1

x2


,

L(α)n (x) =
(α + 1)n

n! 1
F1


−n
α + 1

; x


,
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P(α,β)n (x) =
(α + 1)n

n!
2 F1


−n, n + α + β + 1

α + 1
;

1 − x

2


.

The Gegenbauer polynomial Cλ
n is a constant multiple of the Jacobi polynomial when

α = β = λ− 1/2

Cλ
n (x) =

(2λ)n
(λ+

1
2 )n

P
(λ− 1

2 ,λ−
1
2 )

n (x), λ > −
1
2
.

There are several characterizations of classical orthogonal polynomials. If we consider
only orthogonal polynomials with respect to a real inner product, then polynomials in
each classical family are eigenfunctions of a second order linear differential operator with
polynomial coefficients; moreover, up to a real linear change of variables, they are the
only orthogonal polynomials that satisfy this property. Let U be one of the classical linear
functionals. Then U satisfies the Pearson equation

∂(φU) = ψU , degφ ≤ 2 and degψ = 1;

more precisely, for −α ∉ N,−β ∉ N, and −α − β ∉ N,

∂H = −2x H, ∂(x Lα) = (−x + α + 1)Lα,

∂((x2
− 1)Jα,β) = ((α + β + 2)x + α − β)Jα,β .

Furthermore, up to a linear change of variables, the only other family of linear functionals
that satisfy the Pearson equation corresponds to the Bessel polynomials, and the linear
functional is defined by an integral along a curve of the complex plane surrounding the
origin and complex weight

wα(z) =

∞
k=0

1
(α + 1)k

(−2/z)k,

where (a)n = a(a + 1) . . . (a + n − 1), n ≥ 1, and (a)0 = 1 denotes the Pochhammer
symbol (see [26]).

3. History and earlier results

The starting point of the Sobolev orthogonal polynomials can be traced back to the
paper [67] by Lewis, who asked the following question: Let α0, . . . , αp be monotonic,
non-decreasing functions defined on [a, b] and let f be a function on [a, b] that satisfies
certain regularity conditions. Determine a polynomial Pn of degree ≤n that minimizes

p
k=0

 b

a
| f (k)(x)− P(k)n (x)|2dαk(x).

Lewis did not use Sobolev orthogonal polynomials and gave a formula for the reminder
term of the approximation as an integral of the Peano kernel. The first paper on Sobolev
orthogonal polynomials was published by Althammer [9], who attributed his motivation to
Lewis’s paper.
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The Sobolev orthogonal polynomials considered in [9] are orthogonal with respect to
the inner product

⟨ f, g⟩S =

 1

−1
f (x)g(x)dx + λ

 1

−1
f ′(x)g′(x)dx, λ > 0. (3.1)

These Sobolev–Legendre polynomials were systematically studied in [9]. Some of the
results in [9] were simplified and further extended by Schäfke in [98]. These earlier works
already demonstrated several characteristic features of Sobolev orthogonal polynomials.
Let Sn(·; λ) denote the orthogonal polynomial of degree n with respect to the inner product
⟨·, ·⟩S , normalized so that Sn(1; λ) = 1, and let Pn denote the nth Legendre polynomial.
The following properties hold for Sn(·; λ):

(1) {Sn(·; λ)}n≥0 satisfies a differential equation

λS′′
n (x; λ)− Sn(x; λ) = An P ′

n+1(x)+ Bn P ′

n−1(x),

where An and Bn are constants that can be given by explicit formulas.
(2) {Sn(·; λ)}n≥0 satisfies a recursive relation

Sn(x; λ)− Sn−2(x; λ) = an(Pn(x)− Pn−2(x)), n = 1, 2, . . . .

(3) Sn(·; λ) has n real simple zeros in (−1, 1).

For a more detailed account on the development of these results, we refer to the original
articles or to [91], which contains a nice survey of early history of Sobolev orthogonal
polynomials. The Sobolev–Legendre polynomials were also studied by Gröbner, who
established a version of the Rodrigues formula for in [48], which states that, up to a
constant factor cn ,

Sn(x; λ) = cn
∂n

1 − λ∂2


(x2

− x)n − αn(x
2
− x)n−1


where αn are real numbers explicitly given in terms of λ and n. Furthermore, in [25],
Cohen proved that the zeros of Sn(·; λ) interlace with those of the Legendre polynomial
Pn−1 if λ ≥ 2/n, and he also established the sign of the connecting coefficients of Sn(·; λ)

expanded in terms of the sequence {Sm(·;µ)}m≥0 for λ ≠ µ.
In [9], Althammer also gave an example in which he replaced dx in the second integral

in ⟨·, ·⟩S by w(x)dx with w(x) = 10 for −1 ≤ x < 0 and w(x) = 1 for 0 ≤ x ≤ 1, and
made the observation that S2(x; λ) for this new inner product has one real zero outside of
(−1, 1).

Another earlier paper is [20], in which Brenner considered the inner product

⟨ f, g⟩ :=


∞

0
f (x)g(x)e−x dx + λ


∞

0
f ′(x)g′(x)e−x dx, λ > 0,

and obtained results similar to those of Althammer.
An important paper in the early development of the Sobolev orthogonal polynomials

is [99], in which Schäfke and Wolf considered a family of inner products

⟨ f, g⟩S =

∞
j,k=0

 b

a
f ( j)(x)g(k)(x)v j,k(x)w(x)dx, (3.2)
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where w and (a, b) are one of the three classical cases, Hermite, Laguerre and Jacobi, and
the functions v j,k are polynomials that satisfy v j,k = vk, j , j, k = 0, 1, 2, . . . , and permit
writing the inner product (3.2) as

⟨ f, g⟩S =

 b

a
f (x)Bg(x)w(x)dx with Bg := w−1

∞
j,k=0

(−1) j∂ j (wv j,k∂
k)g (3.3)

through integration by parts. Under further restrictions on v j,k , they narrowed down to
eight classes of Sobolev orthogonal polynomials, which they call simple generalization of
classical orthogonal polynomials. These cases are given by

A1. v j,k = 0, with | j − k| > 1, v j, j = (1 − x2) j (b j x + c j ), v j, j−1 = d j (1 − x2) j .

A2. v j,k = 0, with | j − k| > 2, v j, j = (1 − x2) j (b j (1 − x2) + c j ), v j, j−1 = d j x
(1 − x2) j , j ≥ 1, v j, j−2 = e j (1 − x2) j , j ≥ 2.

A3. v j,k = 0, with | j − k| > 1, v0,0 = c0, v j, j = (1 + x) j (1 − x) j−1(b j x + c j ), v j, j−1 =

d j (1 + x) j (1 − x) j−1, j ≥ 1.

A4. v j,k = 0, with | j − k| > 2, v0,0 = c0, v j, j = (1 − x2) j−1(b j (1 − x2)+ c j ), v j, j−1 =

d j x(1 − x2) j−1, j ≥ 1, v j, j−2 = e j (1 − x2) j−1, j ≥ 2.

B1. v j,k = 0, with | j − k| > 1, v j, j = x j (b j x + c j ), v j, j−1 = d j x j .

B2. v j,k = 0, with | j − k | > 1, v0,0 = c0, v j, j = x j−1(b j x + c j ), v j, j−1 = d j x j−1, j ≥

1.

C1. v j,k = 0, with | j − k| > 1, v j, j = b j x + c j , v j, j−1 = d j .

C2. v j,k = 0, with | j − k| > 2, v j, j = b j x2
+ c j , v j, j−1 = d j x, j ≥ 1, v j, j−2 = e j ,

where the real constants b j , c j , d j , and e j are subject to additional conditions for the
positive-definiteness of (3.2) and so that formula (3.3) is true. The main results in [99]
extended all earlier results on Sobolev orthogonal polynomials. Let {Sn}n≥0 denote a
sequence of Sobolev orthogonal polynomials with respect to ⟨·, ·⟩S in (3.2) and let {Tn}n≥0
denote a sequence of ordinary orthogonal polynomials with respect to the inner product

⟨ f, g⟩ =

 b

a
f (x)g(x)u(x)w(x)dx,

where u is a polynomial of degree at most 2, which is known explicitly in each class. It was
shown in [99] that, under appropriate normalizations of Sn and Tn , there exists a sequence
of real numbers {an}n≥0 such that

Sn+r − Sn = an+r uTn+r−k,

where r = 1 or r depending on the case, k equals the degree of u and an+r is a constant,
and the differential operator B satisfies

B Sn = bn(anTn+s − an+r Tn+s−r ),

where s = 0, 1, or 2, depending on the class. Furthermore, sufficient conditions were given
in [99] for Sn to have all simple zeros in (a, b). The paper, however, is not easy to digest.
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Except the theorem on zeros, results were not stated in theorems and it is no small task to
figure out the exact statement for each individual class.

The primary tool in the early study of Sobolev orthogonal polynomials is integration
by parts. Schäfke and Wolf explored when this tool is applicable and outlined potential
Sobolev inner products. It is remarkable that their work appeared in such an early stage
of the development of Sobolev orthogonal polynomials. However, instead of stirred to
action by [99], the study of Sobolev orthogonal polynomials unexpectedly became largely
dormant for nearly two decades, from which it reemerged only when a new ingredient,
coherent pairs, was introduced by Iserles, Koch, Nørsett and Sanz-Serna in [54].

4. Method of integration by parts

In this section, we explain the method of integration by parts in the study of Sobolev
orthogonal polynomials by considering the inner product that involves only first order
derivative,

⟨ f, g⟩S := ⟨ f, g⟩ + λ⟨ f ′, g′
⟩ with ⟨ f, g⟩ :=

 b

a
f (x)g(x)dµ(x), (4.1)

where we assume that dµ = u(x)dx and u satisfies the relation

∂(φ(x)u(x)) = ψ(x)u(x), (4.2)

in which φ and ψ are fixed polynomials, with φ monic and degψ ≥ 1, and we assume that
φ or u vanish on the end points of the interval (a, b), under limit if a = −∞ or b = ∞, so
that integration by parts can be carried out.

In the case of the Laguerre weight function wα(x) = xαe−x , φ(x) = x and ψ(x) = α+

1−x . In the case of the Gegenbauer weight functionwλ(x) = (1−x2)λ−
1
2 , φ(x) = (1−x2)

and ψ(x) = −(2λ+ 1)x .
Associated with the inner product (4.1), the following differential operator is useful,

F := φ(x)I − λF0, F0 := [u(x)]−1φ(x)∂ [u(x)∂] ,

where I denotes the identity operator. Applying (4.2) allows us to write F0 as

F0 = φ(x)∂2
+ [ψ(x)− φ′(x)]∂.

Proposition 4.1. Assume that u(x)F0 is zero when x = a and x = b. Then, for f, g ∈ Π ,

(1) ⟨φ f, g⟩S = ⟨ f,F g⟩.
(2) F is self-adjoint; that is, ⟨F f, g⟩S = ⟨ f,F g⟩S .

Proof. Integration by parts shows immediately that ⟨(φ f )′, g′
⟩ = −⟨φ f,F0g⟩, from which

(1) follows readily. Furthermore, it shows that

⟨(F0 f )′, g′
⟩ = −

 b

a
F0 f (x)(g′(x)u(x))′dx

= −

 b

a
( f ′(x)u(x))′F0g(x)dx = ⟨ f ′, (F0g)′⟩,
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where the integration by parts is justified since u(x)F0 is zero when x = a or x = b, which
can then be used to verify (2). �

Let again {Sn(·; λ)}n≥0 be the sequence of monic Sobolev polynomials and let {Pn}n≥0
be the sequence of monic polynomials orthogonal with respect to ⟨·, ·⟩.

Proposition 4.2. Assume that φ is of degree s and ψ is of degree at most s − 1. Then, for
n ≥ s,

(i) φ(x)Pn(x, dµ) = Sn+s(x; λ)+
n+s−1

j=n−s a j,n(λ)Sn+ j (x; λ),

(ii) F Sn(x; λ) = Sn+s(x; λ)+
n+s−1

j=n−s b j,n(λ)Sn+ j (x; λ).

Proof. The additional assumptions on φ and ψ show that F0 : Πn → Πn+s−2, so that F :

Πn → Πn+s . By (1) of the previous proposition, ⟨φPn(·; dµ), g⟩S = ⟨Pn(·; dµ),F g⟩ = 0
either if F g ∈ Πn−1 or if g ∈ Πn−s−1, which implies (i). The same argument proves (ii)
as well. �

The relation in (i) is the recursive relation and (ii) is the difference–differential equation
satisfied by the Sobolev orthogonal polynomials. The constants a j,n and b j,n can be
explicitly determined in the case of the classical Laguerre weight wα and the Gegenbauer
weight wλ.

Take the Laguerre weight wα as an example. The monic Laguerre polynomial of degree
n is Pn(x) := n!(−1)n L(α)n (x). By the property of the Laguerre polynomial and its
derivative, we have

Q′
n(x) = n Pn−1(x), where Qn(x) := Pn(x)+ n Pn−1(x). (4.3)

It follows readily that ⟨Qn, q⟩S = 0 if q ∈ Πn−2, which implies immediately that

Qn(x) = Sn(x; λ)+ dn−1(λ)Sn−1(x; λ) (4.4)

for some constant dn−1(λ). Both the differential relation and the recursive relation in
Proposition 4.2 can be made explicit using the constant dn(λ). For example, using the
three-term relation for the monic Laguerre polynomial and (4.4), the recurrence relation (i)
becomes

x Pn(x) = Sn+1(x; λ)+ [n + α + dn(λ)]Sn(x; λ)+ [(n + α)dn−1(λ)]Sn−1(λ; x).

Finally, the value of dn−1(λ) can be deduced recursively.

Proposition 4.3. For n = 2, 3, . . . ,

dn(λ) =
(n + 1)(n + α)

(λ+ 2)n + α − dn−1(λ)
with d1(λ) :=

2(α + 1)
λ+ α + 1

.

Proof. Using the relation (4.4) for both Sn+1(·; λ) and Sn(·; λ), it follows that

0 = ⟨Sn+1, Sn⟩S = ⟨Qn+1, Qn⟩S − dn(λ)⟨Qn, Qn⟩S + dn(λ)dn−1(λ)⟨Qn−1, Qn⟩S .

Evaluating the inner products in the right hand side by using (4.3), this gives the stated
recursive relation. �
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The recurrence relation shows that dn(λ) is a rational function of λ. In particular, if
we express it as dn(λ) = (n + 1)(n + λ)qn−1(λ)/qn(λ), then qn(λ) satisfies a three-term
recurrence relation and qn(λ) is related to the Pollaczek polynomials.

The monic Gegenbauer polynomial Pλn (x) satisfies the relation

Pλn (x) =
1

n + 1
d

dx
Pλn+1(x)−

λ− 1
4(n + λ− 1)(n + λ)

d

dx
Pλn−1(x).

Using the parity of the Gegenbauer polynomials, the above procedure for the Laguerre
weight can be carried out for the Sobolev orthogonal polynomials associated with the
Gegenbauer weight wλ.

The above analysis shows how the classical work of Althammer for the Legendre weight
and Brenner for e−x , the Laguerre weight with α = 0, can be worked out. This streamlined
analysis was carried out in [77,78], which already incorporated the idea of the coherent pair
that will be addressed in the next section. The method of integration by parts is applicable
to Sobolev inner products involving derivatives of higher order, which gives an indication
how the general setting of Schäfke and Wolf in [99] can be developed. It is no longer clear,
however, if the finer results that hold for the Laguerre and the Gegenbauer weights can be
established in the general setting of [99].

5. Coherent pairs

The notion of coherent pair was first introduced in [54] and it has become an important
tool and a source of new development. Its appearance coincides with the revival of the field
of Sobolev orthogonal polynomials, which has flourished ever since. This section explains
this notion and its various generalizations.

5.1. Coherent pairs

The coherent pair introduced in [54] is defined for the inner product

⟨ f, g⟩λ =

 b

a
f (x)g(x)dµ0(x)+ λ

 b

a
f ′(x)g′(x)dµ1(x), (5.1)

where −∞ ≤ a < b ≤ ∞, µ0 and µ1 are positive Borel measures on the real line with
finite moments of all orders. Let Pn(·; dµi ) denote the monic orthogonal polynomial of
degree n with respect to dµi .

Definition 5.1. The pair {dµ0, dµ1} is called coherent if there exists a sequence of nonzero
real numbers {an}n≥1 such that

Pn(·; dµ1) =
P ′

n+1(·; dµ0)

n + 1
+ an

P ′
n(·; dµ0)

n
, n ≥ 1. (5.2)

If [a, b] = [−c, c] and dµ0 and dµ1 are both even, then {dµ0, dµ1} is called a symmetri-
cally coherent pair if

Pn(·; dµ1) =
P ′

n+1(·; dµ0)

n + 1
+ an

P ′

n−1(·; dµ0)

n − 1
, n ≥ 2. (5.3)

In the case of dµ1 = dµ0, we call dµ0 self-coherent.
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For the classical orthogonal polynomials, it is easy to see that the following examples
are coherent pairs:

Example 5.2. The Laguerre measure dµ = xαe−x dx, α > −1, is an example of a self-
coherent pair. The Gegenbauer measure dλ = (1 − x2)λ−1/2, λ > 0, is an example of
a symmetrically self-coherent pair. The Jacobi weight yields a natural coherent pair; for
α, β > −1

dµ0 = (1 − x)α(1 + x)β and dµ1 = (1 − x)1+α(1 + x)1+β .

Let {Sn(·; λ)}n≥0 denote the sequence of monic Sobolev orthogonal polynomials with
respect to ⟨·, ·⟩λ. Then Sn(·; λ) is given by the determinant expression (2.1). It is easy to
see that

Λn(x) := lim
λ→∞

Sn(x; λ)

defines a monic polynomial Λn(x) of degree n which satisfies the following properties

Λ′
n(x) = n Pn−1(x; dµ1) and


R

Λn(x)dµ0 = 0, n ≥ 1. (5.4)

Theorem 5.3. If {dµ0, dµ1} is a coherent pair, then

Sn(x; λ)+ bn−1(λ)Sn−1(x; λ) = Pn(x; dµ0)+an−1 Pn−1(x; dµ0), (5.5)

wherean−1 = nan/(n − 1) and bn−1(λ) =an−1∥Pn−1(·; dµ0)∥
2
dµ0
/∥Sn−1(·; λ)∥

2
λ.

Proof. By (5.2) and (5.4), we see that

Λn(x) = Pn(x; dµ0)+an−1 Pn−1(x; dµ0). (5.6)

For 0 ≤ j ≤ n − 2, it follows from (5.4) that

⟨Λn, S j (·; λ)⟩λ = ⟨Λn, S j (·; λ)⟩dµ0 + n⟨Pn−1(·; dµ1)S
′

j (·; λ)⟩dµ1 = 0,

which implies, considering the expansion of Λn in S j (·; λ), that

Λn(x) = Sn(x; λ)+ bn−1(λ)Sn−1(x; λ), where bn−1(λ) =
⟨Λn, Sn−1(·; λ)⟩λ

∥Sn−1(·; λ)∥
2
λ

.

The formula of bn−1(λ) follows from ⟨Λ′
n, S′

n−1(·; λ)⟩dµ1 = 0 as well as from the fact that
both Pn−1(·; dµ0) and Sn−1(·; λ) are monic. �

Since bn−1(λ) depends only on Sn−1(·; λ), the identity (5.5) can be used to compute
Sn(·; λ) inductively. Furthermore, it implies the expansion

Sn(x; λ) = Pn(x; dµ0)+

n−1
k=0

 n−1
j=k+1

b j (λ)

(ak − bk(λ))Pk(x; dµ0),

where we adopt the convention that
n−1

j=n b j (λ) = 1.
In [54], a different normalization of Sobolev orthogonal polynomials is chosen. Let

Pn = Pn(·; dµ0). Define
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Sn(x; λ) :=
1

n−1
k=1

∥Pk∥
2
dµ0

det


⟨P1, P1⟩λ ⟨P1, P2⟩λ . . . ⟨P1, Pn⟩λ

⟨P2, P1⟩λ ⟨P2, P2⟩λ . . . ⟨P2, Pn⟩λ

. . . . . .
. . . . . .

⟨Pn−1, P1⟩λ ⟨Pn−1, P2⟩λ . . . ⟨Pn−1, Pn⟩λ

P1(x) P2(x) . . . Pn(x)

 .
With this normalization, the identity (5.5) becomesSn(x; λ)−Sn−1(x; λ) = an(λ)(Pn(x; dµ0)− Pn−1(x; dµ0))

and the coefficients αk(λ) in the expansion

Sn(x; λ) =

n−1
k=1

αk(λ)Pk(x; dµ0)+ an(λ)Pn(x; dµ0)

depend only on k. Moreover, αk(λ) is a polynomial of degree k in the variable λ such
that αk(0) = 0. Furthermore, let Rk(λ) := αk+1(λ)/λ; then the sequence of polynomials
{Rk}k≥0, for which deg Rk = k, satisfies a three-term relation and, as a consequence, is a
sequence of orthogonal polynomials with respect to a positive Borel measure. In the case
of the Laguerre weight dµ0(x) = dµ1(x) = xαe−x dx on [0,∞), the Rk(λ) are, up to a
multiple constant, Pollaczek polynomials.

In [89], it was observed that the zeros of Λn interlace with those of Pn−1(·; dµ0) and
with those of Pn(·; dµ0). Consequently, if λ is large enough, then Sn(·; λ) has n simple,
real zeros that interlace with the zeros of Pn−1(·; dµ0) and with those of Pn−1(·; dµ1).

Using (5.5) and the three-term relation for Pn(·; dµ0), it is possible to derive a
recurrence relation for {Sn(·; λ)}, as observed in [29]. When {Λn}n≥0 is a sequence of
orthogonal polynomials, which holds, by (5.4), if dµ1 is classical, the recurrence relation
is just the three-term recurrence relation of {Λn}n≥0 written in Sn(·; λ) by (5.6).

5.2. Determination of coherent pairs

Because of their applications in Sobolev orthogonal polynomials, an immediate question
is to identify all coherent pairs. For this purpose, the more general notion of orthogonality
in terms of linear functionals is often considered. The notion of coherent pair can be
extended to the linear functionals {U0,U1}, if the relation (5.2) holds with Pn(·; dµi )

replaced by Pn(·; Ui ). For classical orthogonal polynomials, we allow the parameters in
L(α) and J (α,β) to be negative real numbers but not negative integers.

The first step of identifying all coherent pairs was taken in [79], where the coherent
pairs were identified when either U0 or U1 is classical in the extended sense. Since the
derivative of a classical orthogonal polynomial is again a classical orthogonal polynomial
(with different parameter), (5.2) reduces to

Qn = Pn + cn Pn−1, n ≥ 1,

where either {Qn}n≥0 or {Pn}≥0 is a sequence of classical orthogonal polynomials. Com-
paring the coefficients of the three-term relations satisfied by {Qn}n≥0 and {Pn}n≥0 in the
above identity, all coherent pairs when one of the measures is classical in the extended
sense were found in [79].
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The next important step is [77], which shows that if {U0,U1} is a coherent pair, then

n
Pn(x; U0)

∥Pn(·; U0)∥
2
U0

U0 = ∂(Qn U1), n ≥ 1, (5.7)

where, with an being the coefficient in (5.2),

Qn(x) := an
Pn(x; U1)

∥Pn(·; U1)∥
2
U1

−
Pn−1(x; U1)

∥Pn−1(·; U0)∥
2
U0

.

The final step at identifying all coherent pairs was taken in [92], where the following
theorem was established.

Theorem 5.4. If {U0,U1} is a coherent pair, then at least one of them has to be classical
in the extended sense.

The proof in [92] started with the observation that the relation (5.7) with n = 1 and
n = 2 implies the existence of polynomials φ of degree at most 3, χ of degree at most 2
and ψ of degree exactly 2, such that

φ∂U1 = χU1, φU0 = ψU1, χU0 = ψ∂U1, (5.8)

where φ, χ and ψ can be given explicitly in terms of P1(·; U0), P2(·; U0), Q1 and Q2. In
particular, ψ = Q1 Q′

2 − Q′

1 Q2. The polynomial ψ has two zeros. If the two zeros coincide
at the point ξ , then ψ ′(ξ) = 0 and, as a result, Q1(ξ) = 0, which can be used to show that
φ(ξ) = 0. Writing φ(x) = (x − ξ)φ(x), it can then be shown, by eliminating ∂U1 in (5.8),
that φ0 U0 = c(x − ξ)U1, where c is a constant, from which it follows that U0 satisfies the
Pearson equation ∂(φU0) = ηU0, where η is a polynomial of degree 1. As the solution of
the Pearson equation, U0 has to be classical. When the two zeros of ψ are different, U1 can
be shown to be classical; the analysis in this case, however, is more involved.

Together, [79,92] give a complete list of coherent pairs. In the case of U0 and U1 are
positive definite linear functionals associated with measures dµ0 and dµ1, these cases are
given as follows:

Laguerre case

(1) dµ0(x) = (x − ξ)xα−1e−x dx and dµ1(x) = xαe−x dx , where if ξ < 0 then α > 0,
and if ξ = 0 then α > −1.

(2) dµ0(x) = xαe−x dx and dµ1(x) =
xα+1e−x

x−ξ
dx + Mδξ , where if ξ < 0, α > −1 and

M ≥ 0.
(3) dµ0(x) = e−x dx + Mδ0 and dµ1(x) = e−x dx , where M ≥ 0.

Jacobi case

(1) dµ0(x) = |x − ξ |(1 − x)α−1(1 + x)β−1dx and dµ1(x) = (1 − x)α(1 + x)βdx , where
if |ξ | > 1 then α > 0 and β > 0, if ξ = 1 then α > −1 and β > 0, and if ξ = −1 then
α > 0 and β > −1.

(2) dµ0(x) = (1 − x)α(1 + x)βdx and dµ1(x) =
1

|x−ξ |
(1 − x)α+1(1 + x)β+1dx + Mδξ ,

where |ξ | > 1, α > −1 and β > −1, and M ≥ 0.
(3) dµ0(x) = (1 + x)β−1dx + Mδ1 and dµ1(x) = (1 + x)βdx , where β > 0 and M ≥ 0.
(4) dµ0(x) = (1− x)α−1dx + Mδ−1 and dµ1(x) = (1− x)αdx , where α > 0 and M ≥ 0.
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The similar analysis was also carried out for symmetrically coherent pairs in the work
cited above. They lead to the following list of symmetrically coherent pairs.

Hermite case

(1) dµ0(x) = e−x2
dx and dµ1(x) =

1
x2+ξ2 e−x2

dx , where ξ ≠ 0.

(2) dµ0(x) = (x2
+ ξ2)e−x2

dx and dµ1(x) = e−x2
dx , where ξ ≠ 0.

Gegenbauer case

(1) dµ0(x) = (1 − x2)α−1dx and dµ1(x) =
1

x2+ξ2 (1 − x2)αdx , where ξ ≠ 0 and α > 0.

(2) dµ0(x) = (1 − x2)α−1dx and dµ1(x) =
1

ξ2−x2 (1 − x2)αdx + Mδξ + Mδ−ξ , where
|ξ | ≥ 1, α > 0 and M ≥ 0.

(3) dµ0(x) = (x2
+ ξ2)(1 − x2)α−1dx and dµ1(x) = (1 − x2)αdx , where α > 0.

(4) dµ0(x) = (ξ2
− x2)(1 − x2)α−1dx and dµ1(x) = (1 − x2)αdx , where |ξ | ≥ 1 and

α > 0.
(5) dµ0(x) = dx + Mδ1 + Mδ−1 and dµ1(x) = dx , where M ≥ 0.

5.3. Generalized coherent pairs

We deduced the identity (5.5) from the definition (5.2) of the coherent pair. In the reverse
direction, however, (5.2) does not follow from the identity (5.5), as observed in [56]. We
restate (5.5) below,

Sn(x; λ)+ bn−1(λ)Sn−1(x; λ) = Pn(x; dµ0)+an−1 Pn−1(x; dµ0), n ≥ 1. (5.5′)

For convenience, we let Sn(x) denote the left hand side of (5.5′). Clearly S′
n can be

expanded in terms of {Pk(·; dµ1)},

S′
n(x) = n Pn−1(x; dµ1)+

n−2
k=0

dk,n Pk(x; dµ1), dk,n =
⟨S′

n, Pk(·; dµ1)⟩dµ1

∥Pk(·; dµ1)∥
2
dµ1

.

For 0 ≤ j ≤ n − 2, it follows directly from the definition of Sn that ⟨Sn, Pj (·; dµ1)⟩λ = 0
and it follows from (5.5) that ⟨Sn, Pj (·; dµ1)⟩dµ0 = 0. Consequently, by the definition
of ⟨·; ·⟩λ, we must have ⟨S′

n, Pj (·; dµ1)⟩dµ1 = 0 for 0 ≤ j ≤ n − 2, which implies that
dk,n = 0 if 0 ≤ k ≤ n − 2. Hence,

S′
n(x) = P ′

n(x; dµ0)+an−1 P ′

n−1(x; dµ0)

= n Pn−1(x; dµ1)+ dn−2,n Pn−2(x; dµ1).

Recall thatan = (n + 1)an/n. Setting bn−2 = dn−2,n/n and shifting the index from n to
n + 1, we conclude the following relation between {Pn(·; dµ0)} and {Pn(·; dµ1)},

Pn(x; dµ1)+ bn−1 Pn−1(x; dµ1) =
P ′

n+1(x; dµ0)

n + 1
+ an

P ′
n(x; dµ0)

n
, n ≥ 1.

(5.9)

Thus, in the reverse direction, (5.5) leads to (5.9) instead of (5.2).
Evidently, (5.9) is a more general relation than that of (5.2). This suggests the following

definition.
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Definition 5.5. The pair {dµ0, dµ1} is called a generalized coherent pair if (5.9) holds for
all n ≥ 1, and this definition extends to the linear functionals {U0,U1}.

Theorem 5.6. Let U0,U1 be two linear functionals. Then {U0,U1} is a generalized
coherent pair if and only if (5.5) holds.

Proof. We have already established that (5.5) implies (5.9). Assume now that (5.9) holds.
Let Tn+1(x) := Pn+1(x; U0)+an Pn(x; U0), wherean = (n +1)an/n. For any polynomial
pn−1 of degree at most n−1, it follows directly from the definition that ⟨Tn+1, pn−1⟩U0 = 0
and it follows from (5.9) that ⟨T′

n+1, p′

n−1⟩U1 = 0. Consequently, ⟨Tn+1, pn−1⟩λ = 0.
Hence, expanding Tn+1 in terms of Sn(x; λ), we see that

Tn+1(x) = Sn+1(x; λ)+ bn(λ)Sn(x; λ), n ≥ 0,

which is precisely (5.5) with n replaced by n + 1. �

Two examples of generalized coherent pairs were given in [16,15] when U0 is a
polynomial perturbation of degree 1 of the Laguerre or Jacobi linear functional.

Example 5.7. In these examples, {dµ0, dµ1} is not a coherent pair but a generalized
coherent pair. For the first example, α, β > −1 and |ξ0|, |ξ1| ≥ 1,

dµ0 = (1 − x)α(1 + x)βdx, dµ1 =
x − ξ0

x − ξ1
(1 − x)α+1(1 + x)β+1dx + Mδξ1 .

For the second example, α > −1 and ξ ≤ 0,

dµ0 = xαe−x dx dµ1 =
x − ξ0

x − ξ
xα+1e−x dx + Mδξ .

As in the case of coherent pairs, one can ask the question of identifying all generalized
coherent pairs. If U0 is a classical linear functional, then the answer to this question was
given in [4]. The complete identification was achieved in [34], which states that either U0
or U1 must be a semiclassical linear functional.

Definition 5.8. Let s be a nonnegative integer. A linear functional U is called semiclassical
of class s if there exist polynomials φ and ψ such that s = max{degφ− 2, degψ − 1} and
∂(φU) = ψU .

An in-depth study of orthogonal polynomials with respect to a semiclassical linear
functional is given in [83], which contains the following theorem.

Theorem 5.9. For a semiclassical linear functional U of class s, the following are equiv-
alent:

1. {Pn}n≥0 is a sequence of monic orthogonal polynomials with respect to U ;
2. There exists a monic polynomial φ such that ⟨φU , P ′

n Q⟩ = 0 for all Q ∈ Πn−s−1.
3. There exists a monic polynomial φ of degree r and constants an, j such that

φ(x)P ′

n+1(x) =

n+r
j=n−s

an, j Pj (x), where an,n−s ≠ 0.
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Every semiclassical linear functional of class 0 is classical. The next case, semiclassical
of class 1, is used to characterize the generalized coherent pairs. The main result in [34] is
the following theorem.

Theorem 5.10. If {U0,U1} is a generalized coherent pair, then at least one of them has to
be semiclassical of class at most 1.

The proof is based on the observation that if {U0,U1} is a generalized coherent pair, then
there are polynomials Qn of degree n and Rn+1 of degree at most n + 1, such that

∂(Qn U1) = Rn+1 U0, n ≥ 1,

which is an analogue of (5.7). This relation with n = 1 and n = 2 is used to deduce the
existence of polynomials φ of degree at most 4, χ of degree at most 3 and ψ of degree
exactly 2, such that

φ∂U1 = χU1, φU0 = ψU1, χU0 = ψ∂U1, (5.10)

where φ, χ and ψ can be given explicitly in terms of R1, R2, Q1 and Q2. In particular,
ψ = R1 R′

2 − R2. This is an analogue of (5.8) for the coherent pair, in which the degrees of
φ and χ are increased by 1. The polynomial ψ has two zeros. If the two zeros coincide, say
at ξ , then it can be shown that φ(x) = (x − ξ)φ(x) and U0 satisfies ∂(φU0) = ηU0, where
η is a polynomial of degree at most 2. This shows, by Theorem 5.9, that U0 is semiclassical
of class at most 1. In the case of that ψ has two distinct zeros, a more involved analysis
shows that φ vanishes at one of the zeros, say ξ , so that φ(x) = (x − ξ)φ(x), which can be
used to show that U1 has to be semiclassical of class at most 1. Furthermore, in the latter
case, U0 is determined by φU0 = (x − ξ)U1, where ξ is either one of the two zeros of ψ .

The complete identification of generalized coherent pairs can be worked out by examin-
ing all possible φ. Up to a linear change of variables, if degφ = 3, it has three canonical
forms, φ(x) = x3, x2(x − 1), or x(x − 1)(x −λ); if degφ = 2, it has two canonical forms,φ(x) = x2 or x(x − 1); if degφ = 1, then φ(x) = x . The arduous work of analyzing all
cases was carried out meticulously in [34], where the complete list of generalized coherent
pairs can be found in two long tables.

5.4. (M, N ) coherent pairs

The generalized coherent pair suggests immediately further generalization of coherent
pair by extending (5.9).

Definition 5.11. Let M, N and m, n be nonnegative integers. A pair of linear functional
{U0,U1} is said to be a (M, N )-coherent pair of order (m, n) if, for k ≥ 0,

P(m)k+m(x,U0)

(k + 1)m
+

M
i=1

ai,k
P(m)k−i+m(x,U0)

(k − i + 1)m
=

P(n)k+n(x,U1)

(k + 1)n
+

N
i=1

bi,k
P(n)k−i+n(x,U1)

(k − i + 1)n
,

where ai,k and bi,k are complex numbers such that aM,k ≠ 0 if k ≥ M, bN ,k ≠ 0 if k ≥ N ,
and ai,k = bi,k = 0 if i > k.

In this definition, the coherent pair is the (1, 0)-coherent pair of order (1, 0). The gen-
eralized coherent pair is (1, 1)-coherent pair of order (1, 0). The (2, 0)-coherent pair of
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order (1, 0) was considered in [63] and the (M, 0)-coherent pair of order (1, 0) was called
M-coherent pair and studied in [73]. The general setting of (M, N )-coherent pairs of order
(m, n) was studied more recently in [31,32,30].

Let a0,k := 1 for 0 ≤ k ≤ N − 1 and b0,k := 1 for 0 ≤ k ≤ M − 1. Set

AN :=


a0,0 · · · · · · aM,M ⃝

a0,1 · · · · · · aM,M+1
. . . · · ·

. . .

⃝ a0,N−1 . . . aM,M+N−1

 ,

BM :=


b0,0 · · · · · · bN ,N ⃝

b0,1 · · · · · · bN ,N+1
. . . · · ·

. . .

⃝ b0,M−1 . . . bN ,M+N−1

 , L M+N :=


AN
BM


.

Then AN is a matrix of size N × (M + N ), BM is a matrix of size M × (M + N ), and
L M+N is a square matrix of size (M + N )× (M + N ).

Theorem 5.12. Let {U0,U1} be a (M, N )-coherent pair of order (m, n) with m ≥ n and
assume that L M+N is a non-singular matrix. Then there exist polynomials QM+n+k of
degree M + n + k and RN+m+k of degree at most N + m + k, such that

∂m−n(QM+n+k U1) = RN+m+k U0, k ≥ 0. (5.11)

Furthermore, the following classification holds
(1) If m = n, then U0 is semiclassical if and only if U1 is semiclassical.
(2) If m > n, then U0 and U1 are both semiclassical.

Eq. (5.11) is an extension of (5.7). This theorem was established in [30] and it extends
the results in [31,32,75].

The connection between these extended coherent pairs and the Sobolev orthogonal poly-
nomials is illustrated in the case of (M, N )-coherent pair of order (m, 0), which is called
(M, N )-coherent pair of order m. Assume that U0 and U1 are positive definite and repre-
sented by dµ0 and dµ1, respectively. Fix m ∈ N and define the Sobolev inner product by

⟨ f, g⟩λ :=


R

f (x)g(x)dµ0 + λ


R

f (m)(x)g(m)(x)dµ1, λ > 0.

Let {Sn(·; λ)} denote the corresponding sequence of monic orthogonal polynomials.

Theorem 5.13. Let {µ0, µ1} be a (M, N )-coherent pair of order m. If n < m, then
Sn(x; λ) = Pn(x; dµ1) and, for n ≥ 0,

Pn+m(x; dµ0)

(n + 1)m
+

M
i=1

ai,n
Pn−i+m(x; dµ0)

(n − i + 1)m

=
Sn+m(x; λ)

(n + 1)m
+

max{M,N }
j=n+1

c j,n(λ)
Sn− j+m(x; λ)

(n − j + 1)m
,

where c j,n(λ) are constants that can be determined recursively.



326 F. Marcellán, Y. Xu / Expo. Math. 33 (2015) 308–352

This theorem was also established in [30], where an algorithm is given for computing
c j,n(λ) and the Fourier coefficients of the orthogonal expansion in Sn(·; λ).

As in the case of coherent or generalized coherent pairs, one can consider the problem
of identifying all coherent pairs. The problem, however, is open in all cases beyond the
two cases that we have discussed. At the time of this writing, the (M, N )-coherent pairs of
order (m, n) are still under study.

6. Classical orthogonal polynomials as Sobolev orthogonal polynomi-
als

The classical orthogonal polynomials are Sobolev orthogonal polynomials themselves,
since derivatives of a classical orthogonal polynomial are classical orthogonal polynomials
of the same type. Indeed, for the Hermite polynomials Hn, H ′

n(x) = 2nHn−1(x), so that
{Hn}n≥0 is also the sequence of orthogonal polynomials with respect to the Sobolev inner
product

⟨ f, g⟩H :=

m
k=0

λk


R

f (k)(x)g(k)(x)e−x2
dx, m = 1, 2, . . . , (6.1)

where λ0 > 0 and λk ≥ 0 for k = 1, . . . ,m, which we assume for the two cases below as
well. For the Laguerre polynomials L(α)n , d

dx L(α)n (x) = −L(α+1)
n−1 (x), so that {L(α)n }n≥0 is

also the sequence of orthogonal polynomials with respect to the Sobolev inner product

⟨ f, g⟩Lα :=

m
k=0

λkb(α+k)


∞

0
f (k)(x)g(k)(x)xα+ke−x dx, m = 1, 2, . . . , (6.2)

where b(α) := 1/Γ (α + 1) and α > −1. For the Jacobi polynomials P(α,β)n , it is known
that d

dx P(α,β)n (x) =
n+α+β+1

2 P(α+1,β+1)
n−1 (x), so that {P(α,β)n }n≥0 is also the sequence of

the orthogonal polynomials with respect to the Sobolev inner product

⟨ f, g⟩J α,β :=

m
k=0

λkb(α+k,β+k)
 1

−1
f (k)(x)g(k)(x)(1 − x)α+k(1 + x)β+kdx, (6.3)

where m = 1, 2, . . . and b(α,β) := Γ (α + β + 2)/(2α+β+1Γ (α + 1)Γ (β + 1)), and
α, β > −1.

For arbitrary α ∈ R, the Laguerre polynomials can be defined by the explicit formula
[101, (5.1.6)]

L(α)n (x) =

n
ν=0

(α + ν + 1)n−ν

(n − ν)!

(−x)ν

ν!
, n ≥ 0,

which turns out to be orthogonal with respect to a Sobolev inner product. For k ∈ N, define
a matrix M(k) by

M(k) =

mi, j (k)

k
i, j=0 := Q(k)Q(k)T , Q(k) :=


(−1) j−i


k − i

j − i

k

i, j=0
,

where we assume that
 a

b


= 0 if b < 0. Then M(k) is positive definite.
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Theorem 6.1. For α ∈ R, let k := max{0, ⌊α⌋}. Then the sequence of Laguerre polynomi-
als {Lαn }n≥0 is orthogonal with respect to the inner product

⟨ f, g⟩Lα :=


∞

0


f (x), f ′(x), . . . , f (k)(x)


M(k)

×


g(x), g′(x), . . . , g(k)(x)

T
xα+ke−x dx .

Moreover, if −α ∈ N, then k = −α and one can write, by integration by parts,

⟨ f, g⟩L−k =
1
2

k−1
i=0

i
j=0

mi, j (k)


f (i)(0)g( j)(0)+ f ( j)(0)g(i)(0)


+


∞

0
f (k)(x)g(k)(x)e−x dx .

This theorem was proved in [95]. The case −α ∈ N was proved in [64]. In the case of
−α ∈ N, the result can be deduced directly with the help of the relation

L(−k)
n (x) = (−x)k

(n − k)!

n!
L(k)n−k(x), n ≥ k, (6.4)

which shows, in particular, that L(−k)
n and its up to (k − 1)th derivatives vanish at x = 0,

so that the orthogonality follows immediately from d
dx L(α)n (x) = −L(α+1)

n−1 (x).
In the Jacobi case, it is known that if −α,−β,−α − β ∈ R \ N, then the Jacobi

polynomials are orthogonal with respect to some Sobolev inner product of the form

⟨ f, g⟩ =


R

f (x)g(x)dµ0(x)+


R

f ′(x)g′(x)dµ1(x),

where µ0 and µ1 are real, possibly signed, Borel measure on R. In the case of α = −k, k ∈

N, and −β − k ∈ R \ N, more can be said since

n

k


P(−k,β)

n (x) =


n + β

k


x − 1

2

k

P(k,β)n−k (x), (6.5)

and an analogous expression for P(α,−k)
n follows from P(α,β)n (x) = (−1)n P(β,α)n (−x). It

follows that the P(−k,β)
n and its up to (k − 1)th derivatives vanish at x = 1. Furthermore,

dk

dxk P(−k,β)
n (x) = cP(0,β+k)

n−k (x). These relations can be used to derive a Sobolev
orthogonality of the Jacobi polynomials. Let Λ(k) = diag{λ1, . . . , λk} with λ j > 0.
Define

M(k) = Q(k)−1Λ(k)(Q(k)−1)T , Q(k) =


∂ j P(−k,β)

i


(1)
k−1

i, j=0
.

Theorem 6.2. For k ∈ N and β ∈ R such that −(k + β) ∉ N, the sequence of Jacobi
polynomials {P(−k,β)

n }n≥0 is orthogonal with respect to the inner product
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⟨ f, g⟩J −k,β :=

 1

−1
f (k)(x)g(k)(x)(1 + x)k+βdx

+


f (1), f ′(1), . . . , f (k−1)(1)


M(k)


g(1), g′(1), . . . , g(k)(1)

T
.

An analogue result can be stated for α ∈ R and −(α + k) ∉ N, where the point
evaluations need to be at −1. This theorem was proved in [8], which contains an analogue
result for the Laguerre polynomials L(−k)

n that is more general than the corresponding result
in Theorem 6.1. These results extend several special cases appeared early in the literature
(see, for example, [65]).

Similar results also hold for the Jacobi polynomials with α = −k, β = −l with k, l ∈ N,
where the orthogonality is defined with respect to the bilinear form

⟨ f, g⟩ =

 1

−1
f (k+l)(x)g(k+l)(x)(1 − x)l(1 + x)kdx + ⟨ f, g⟩D,

where ⟨ f, g⟩D is defined via point evaluations of f and g and their derivatives up to
(k − 1)th order at 1 and up to (l − 1)th order at −1 [2,10]. In this case, the Jacobi poly-
nomial P(−k,−l)

n vanishes identically for max{k, l} ≤ n < k + l and has reduced degree if
(k + l)/2 ≤ n < max{k, l}, so that it is necessary to define the Jacobi polynomials with
such indexes. There are several ways to redefine these polynomials. Let P(α,β)n denote the
usual monic Jacobi polynomial of degree n. In [2], the monic Jacobi polynomials P(k,−l)

n
are defined by

P(k,−l)
n (x) =

1
2


lim
α→−k

P(α,−l)
m (x)+ lim

β→−l
P(−k,β)

m (x)


,

where m = k + l − n − 1 if (k + l)/2 ≤ n < max{k, l} and m = n otherwise.
It is worth mentioning that the Jacobi polynomials with negative indexes have been

used extensively in the spectral theory for solving differential equations. See, for example,
[49,68,69,100] and the references therein. In the spectral theory, orthogonal expansions
and approximation by polynomials in Sobolev spaces are used, so that Sobolev orthogonal
polynomials are needed, although they often appear implicitly.

7. Sobolev type orthogonal polynomials

As stated in the introduction, an inner product is called a Sobolev type inner product if
the derivatives appear only on function evaluations on a finite discrete set. More precisely,
such an inner product takes the form

⟨ f, g⟩S :=


R

f (x)g(x)dµ0 +

m
k=1


R

f (k)(x)g(k)(x)dµk, (7.1)

where dµ0 is a positive Boreal measure supported on an infinite subset of the real line and
dµk, k = 1, 2, . . . ,m, are positive Borel measures supported on finite subsets of the real
line. Let δc denote the delta measure supported at the point c ∈ R, that is, δc f (x) = f (c).
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In most cases considered below, dµk = Akδc or dµk = Akδa + Bkδb, where Ak and Bk
are nonnegative numbers.

Orthogonal polynomials for such an inner product are called either Sobolev type or-
thogonal polynomials or discrete Sobolev orthogonal polynomials. The first study was car-
ried out for the classical weight functions. The Laguerre case was studied in [57] with
dµ0 = xαe−x dx, α > −1, and dµk = Mkδ0, k = 1, 2, . . . ,m; the nth Sobolev orthogo-
nal polynomial, Sn , is given by

Sn(x) =

min{n,m+1}
k=0

(−1)k Ak Lα+k
n−k (x),

in which Ak are constants determined by a linear system of equations. The Gegenbauer
case was studied in [13,14] with dµ0 = (1 − x2)λ−1/2dx + A(δ−1 + δ1), λ > −1/2, and
m = 1, dµ1 = B(δ−1 + δ1); the nth Sobolev orthogonal polynomial is given by

Sn(x) =

2
k=0

ak,n xkCλ+k
n−k (x)

where a0,n, a1,n, a2,n are appropriate constants. In both cases, the Sobolev orthogonal poly-
nomials satisfy higher (than three) order recurrence relations that expands q(x)Sn(x) as a
sum of Sm . For the Laguerre case, q(x) = xm+1 and the order is 2m + 3; for the Gegen-
bauer case, either q(x) = (1 − x2)2 and the order is 9 or q(x) = x3

− 3x and the order is
7. Furthermore, in both cases, the polynomial Sn satisfies a second order linear differential
equation with polynomial coefficients, whose degree does not depend on n.

When Mk = 0, k = 1, 2, . . . ,m−1, and dµm = Mmδc, the inner product (7.1) becomes

⟨ f, g⟩m :=


R

f (x)g(x)dµ0 + Mm f (m)(c)g(m)(c), (7.2)

where c ∈ R and Mm ≥ 0. This case was studied in [80]. Let {Pn}n≥0 and {Sn}n≥0
denote the sequences of monic orthogonal polynomials with respect to dµ0 and ⟨·, ·⟩m ,
respectively. For i, j ∈ N0, define

K (i, j)
n−1 (x, y) :=

n−1
l=0

P(i)l (x)P( j)
l (y)

∥Pl∥
2
dµ0

.

Notice that K (0,0)
n−1 is the reproducing kernel of the (n − 1)th partial sum of orthogonal

expansion with respect to dµ0. It was shown in [80] that

Sn(x) = Pn(x)−
Mm P(m)n (c)

1 + Mm K (m,m)
n−1 (c, c)

K (0,m)
n−1 (x, c), (7.3)

which extends the expression for m = 0 in [62]. From this relation, one deduces immedi-
ately that

Sn+1(x)+ an Sn(x) = Pn+1(x)+ bn Pn(x), n ≥ 0,
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where an and bn are constants that can be easily determined. This shows a structure similar
to (5.5) that one derives for the Sobolev orthogonal polynomials in the case of coherent
pair. The Sobolev polynomials Sn also satisfy a higher order recurrence relation

(x − c)m+1Sn(x) =

n+m+1
j=n−m−1

cn, j S j (x), (7.4)

where cn,n+m+1 = 1 and cn,n−m−1 ≠ 0.
Orthogonality of a sequence of polynomials is determined by the three term recurrence

relations that it satisfies, the precise statement is known as the Favard theorem. One
may ask if there is a similar theorem for polynomials satisfying higher order recurrence
relations. There are two types of results in this direction, both related to Sobolev orthogonal
polynomials.

The first one gives a characterization of an inner product ⟨·, ·⟩ for which orthogonal
polynomials satisfy the recurrence relation of the form (7.4), which holds if the operator
of multiplication by Mm,c := (· − c)m+1 is symmetric, i.e., ⟨Mm,c p, q⟩ = ⟨p,Mm,cq⟩.
It was proved in [39] that if ⟨·, ·⟩ is an inner product such that Mm,c is symmetric and
it commutes with the operator M0,c, i.e., ⟨Mm,c p,M0,cq⟩ = ⟨M0,c p,Mm,cq⟩, then there
exists a nontrivial positive Borel measure dµ0 and a real, positive semi-definite matrix A
of size m + 1, such that the inner product is of the form

⟨p, q⟩ =


R

p(x)q(x)dµ0

+


p(c), p′(c), . . . , p(m)(c)


A


q(c), q ′(c), . . . , q(m)(c)
T
. (7.5)

Necessary and sufficient conditions for A being diagonal were also given in [39]. Further-
more, a connection between such Sobolev orthogonal polynomials and matrix orthogonal
polynomials was established in [41], by representing the higher order recurrence relation as
a three term recurrence relation with matrix coefficients for a family of matrix orthogonal
polynomials defined in terms of the Sobolev orthogonal polynomials.

The second type of Favard type theorem was given in [42], where it was proved that the
operator of multiplication by a polynomial h is symmetric with respect to the inner product
(7.1) if and only if dµk, k = 1, 2, . . . ,m, are discrete measures whose supports are related
to the zeros of h and their derivatives. Consequently, higher order recurrence relations for
Sobolev inner products appear only in Sobolev inner product of the second type.

For the inner product (7.5), a sequence of Sobolev orthogonal polynomials can be
constructed using an extension of the method used to obtain (7.1). A more useful approach
is to use the monic orthogonal polynomials, Pn , with respect to the measure dµ∗

0 =

(x − c)pdµ0, where p = 2⌊m/2⌋ + 2, which leads to [42]

Sn(x) =

p
k=0

dn,k Pn−k(x), n ≥ p, (7.6)

where dn,0 = 1 and dn,p ≠ 0. The above relation means that the sequence {Sn}n≥0 is
quasi-orthogonal with respect to the positive Borel measure dµ∗

0, a fact that plays a central
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role in the analysis of zeros and asymptotics of these polynomials. If the point c is located
outside the support of the measure dµ0, it is enough to consider dµ∗

0 = (x − c)m+1dµ0,
in which case, (7.6) is satisfied with m + 1 instead of p and the formula has the minimal
length. If c belongs to the support of the measure dµ0 and m is an even integer, then
(x − c)m+1dµ0 becomes a signed measure, which does not warrant the existence of
orthogonal polynomials. This is the reason behind the definition of p in (7.6). Let H be
the banded matrix that defines the higher order recurrence relation for {Sn}n≥0. Then H
can be derived from the Jacobi matrix J associated with the sequence {Pn}n≥0 of monic
orthogonal polynomials. Indeed, consider the decomposition (J − cI )p

= U L , where
U is an upper triangular matrix and L is a lower triangular matrix with 1 as its diagonal
entries, then H = LU [36]. This gives a direct connection between Sobolev orthogonal
polynomials of discrete type and the iteration of the canonical Geronimus transformation
of the measure dµ∗

= (· − c)dµ.

8. Differential equations

Classical orthogonal polynomials are solutions of a second order linear differential equa-
tion of the form

α2(x)y
′′

+ α1(x)y
′
= −λn y, n = 0, 1, . . . , (8.1)

where α2 and α1 are real-valued functions and λn are real numbers, called eigenvalues. The
equation is called admissible if λn ≠ λm whenever n ≠ m. For Eq. (8.1) to have a system
of polynomial solutions, it is necessary that α2 is a polynomial of degree at most 2 and α1
is a polynomial of degree at most 1. For n = 0, 1, . . . , the Hermite polynomials Hn satisfy
the equation

DH y := y′′
− 2xy′

= −2ny. (8.2)

For α > −1 and n = 0, 1, . . . , the Laguerre polynomials L(α)n satisfy the equation

Dα
L y := xy′′

+ (α + 1 − x)y′
= −ny. (8.3)

For α, β > −1 and n = 0, 1, . . . , the Jacobi polynomials P(α,β)n satisfy the equation

Dα,β

J y := (1 − x2)y′′
− (α − β + (α + β + 2)x)y′

= −n(n + α + β + 1)y. (8.4)

The characterization of Bochner [17] shows that these are essentially the only systems
of orthogonal polynomials with respect to a positive definite inner product ⟨ f, g⟩dµ =

R f (x)g(x)dµ that satisfy (8.1). For the quasi-definite linear functional, the condition for
the Laguerre family can be relaxed to −α ∈ R \ N, and the condition for the Jacobi family
can be relaxed to −α,−β,−(α+β+1) ∈ R\N, and, up to a complex change of variables,
the only other system of orthogonal polynomials that satisfies (8.1) is the system of Bessel
polynomials.

Eq. (8.1) have solutions that are Sobolev orthogonal polynomials, since classical or-
thogonal polynomials are Sobolev orthogonal polynomials themselves. One may ask the
question if there are other system of Sobolev orthogonal polynomials that are solutions
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of (8.1). In [65], the system of polynomials that are solutions of admissible (8.1) and are
orthogonal with respect to the bilinear form

⟨ f, g⟩ =


R

f (x)g(x)dµ0(x)+


R

f ′(x)g′(x)dµ1(x)

is characterized when dµ0 and dµ1 are real, possibly signed, Borel measures on the real
line. The classical orthogonal polynomials and those obtained above through limiting pro-
cess are the only systems of polynomials in the positive definite case. In the Laguerre case,
the limit is

lim
α→−1

1
Γ (α + 1)


∞

0
f (x)xαe−x dx = f (0),

which holds if f is bounded on (0,∞) and continuous at x = 0, and it follows that the
system of polynomials P0(x) = 1 and Pn(x) := L(−1)

n (x) for n ≥ 1 is orthogonal with
respect to the Sobolev inner product

⟨ f, g⟩L−1 = λ0 f (0)g(0)+

m
k=1

λkb(k−1)


∞

0
f (k)(x)g(k)(x)xk−1e−x dx,

where λ0, λ1 > 0 and λk ≥ 0 for 2 ≤ k ≤ m, b(k−1) is as in formula (6.2), and these
polynomials are solutions of the differential equation D−1

L y = −ny. In the Jacobi case, the
limits are

lim
α→−1

(α + 1)
 1

−1
f (x)(1 − x)αdx = f (1),

lim
β→−1

(β + 1)
 1

−1
f (x)(1 + x)βdx = f (−1),

which hold if f is bounded on (−1, 1) and continuous at x = 1 or x = −1, respec-
tively, and it follows that, for β > −1, the system of polynomials P0(x) = 1 and
Pn(x) := P(−1,β)

n (x) for n ≥ 1 is orthogonal with respect to the Sobolev inner product

⟨ f, g⟩J −1,β = λ0 f (1)g(1)

+

m
k=1

λkb(k−1,β)
 1

−1
f (k)(x)g(k)(x)(1 − x)k−1(1 + x)β+kdx,

where λ0, λ1 > 0 and λk ≥ 0 for 2 ≤ k ≤ m, b(k−1,β) is as in formula (6.3), and these
polynomials are solutions of the differential equation D−1,β

J y = −n(n + β)y. A similar
result holds for α > −1 and β = −1. The characterization in [65] was carried out for the
quasi-definite case, which shows that, up to a complex linear change of variables, the only
systems are those listed above but with parameters being real numbers, except negative
integers, and Bessel polynomials.

Essentially, solutions of the second order differential equation (8.1) do not lead to new
families of Sobolev orthogonal polynomials; see [8,65] for further results.
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In [58], R. Koekoek initiated a search for differential operators whose solutions are the
Sobolev–Laguerre polynomials with respect to the inner product

⟨ f, g⟩ =
1

Γ (α + 1)


∞

0
f (x)g(x)xae−x dx + M f (0)g(0)+ N f ′(0)g′(0),

where α > −1,M ≥ 0 and N ≥ 0. These Sobolev orthogonal polynomials were found
in [60] and they satisfy differential equations of the form

M
∞

i=0

ai (x)y
(i)(x)+ N

∞
i=0

bi (x)y
(i)(x)

+ M N
∞

i=0

ci (x)y
(i)(x)+ xy′′(x)+ (α + 1 − x)y′(x) = −ny,

where ai (x), bi (x) and ci (x) are polynomials, independent of n, of degree at most i . In the
case of M = 0 and N > 0, the differential equation is of order 2α+ 8 if α is a nonnegative
integer and of infinite order otherwise. Furthermore, if M > 0 and N > 0, then the differ-
ential equation is of order 4α + 10 if α is a nonnegative integer and of infinite order other-
wise. For α = 0, 1, 2, this was established in [58] and the general case was proved in [59].

This result has been extended more recently to the Sobolev orthogonal polynomials with
respect to the bilinear form

⟨ f, g⟩ =


∞

0
f (x)g(x)xα−me−x dx

+


f (0), f ′(0), . . . , f (m−1)(0)


M


g(0), g′(0), . . . , g(m−1)(0)
T
,

where m = 2, 3, . . . , and M is an m × m matrix. For m = 2, the differential operator was
found in [53] and for α ∈ N and α ≥ m, the differential operator was constructed in [40].

9. Zeros

It is well known that the zeros of orthogonal polynomials with respect to a probability
measure supported on the real line are real, simple, interlace and are located in the interior
of the convex hull of the support of the measure. In the Sobolev setting, some of the
above properties are lost. We will specify the behavior of zeros for two types of Sobolev
orthogonal polynomials.

9.1. Sobolev type inner products

Here we consider the Sobolev inner product defined in (7.5), which we state again as

⟨p, q⟩ =


I

p(x)q(x)dµ0

+


p(c), p′(c), . . . , p(m)(c)


A


q(c), q ′(c), . . . , q(m)(c)
T
, (9.1)

where I is an interval in R, and we denote by Sn a Sobolev orthogonal polynomial of
degree n with respect to this inner product.
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We start with zeros of Sobolev orthogonal polynomials for the inner product

⟨ f, g⟩S =

 a

0
f (x)g(x)dµ0(x)+ M1 f (r)(0)g(r)(0)+ M2 f (s)(0)g(s)(0), r < s,

studied in [28], where it was shown that the polynomial Sn of degree n has exactly n − 2
real and simple zeros in (0, a), and if s = r + 1, then Sn has a pair of conjugate complex
zeros α ± iβ with α < 0 and β ≠ 0, whereas if s > r + 1, then there is a real number
G such that if min{M1,M2} > G, then Sn has either a pair of conjugate complex zeros as
above or two real zeros in (−∞, 0).

These results illustrate that the behavior of the zeros of Sobolev orthogonal polynomials
for the inner product (9.1) is sensitive to small changes in the parameters of the inner
product.

Next we describe the results for the simplest case of m = 1 in (9.1). If A = diag{A0, A1}

and m = 1, the polynomial Sn is quasi-orthogonal of order 2 with respect to the measure
(x − c)2dµ0; that is,


I Sn(x)p(x)(x − c)2dµ0 = 0 for all polynomials p of degree at

most n − 3. The zeros of Sn were analyzed in [5], where it was proved that the zeros of
Sn are real, simple, and at least n − 1 of them belong to the interval I of the support of
dµ0, when c is an end point of the interval I . More precisely, let the zeros be denoted
by zk,n, k = 1, 2, . . . , n, and they are arranged in increasing order with zn,n being the
largest one. If c = sup I and neither Sn(c) > 0 nor S′

n(c) > 0, then the largest zero
satisfies c ≤ zn,n < c +

c−z1,n
n−1 and |zn,n − c| < |zn−1,n − c|. Moreover, if A0 ≠ 0, then

zn,n − c < 1
2 (A1/A0)

1/2. Making a change of variable x → −x in the inner product, the
same analysis applies to the case of c = inf I .

The case when c is outside of the convex hull of the support of dµ0 was analyzed in [76]
under the assumption that A0 = 0. In this case, Sn again has real, simple zeros and at
least n − 1 of them belong to I . If I is a bounded interval, then for n large enough and
c > sup I, Sn has a zero at the right hand side of c. This zero converges to c when n tends
to infinity, that is, c becomes an attractor of this exceptional zero. Furthermore, the zeros
of Pn−1(·; dµ0) interlace with the zeros of Sn . Finally, it was proved that every zero of Sn
is an increasing and bounded function of N .

When the matrix A in (9.1) is a non-diagonal matrix, the case m = 1 was studied in
[6]. Assuming that A is positive definite, it was shown that if I is a bounded interval and
c > sup I , then there exists a positive integer n0 such that, for n ≥ n0, the zeros of Sn are
real, simple, all except the largest one are located in (inf I, c), whereas the largest zero is
greater than c. Furthermore, if the non-diagonal entry A0,1 is positive, then more can be
said on the distance from the largest zero to c,

(1) If A0,0 A1,1 ≥ 2A2
0,1, then zn,n − c < A1,1

2(A0,0 A1,1−A2
0,1)

1/2 .

(2) If A2
0,1 ≥ A0,0 A1,1 ≥ 2A2

0,1, then zn,n − c < A0,1/A0,0.

If m > 1 and A is a diagonal matrix, the zeros of Sn were studied in [3]. In this case,
Sn is quasi-orthogonal of order m + 1 with respect to the measure (x − c)m+1dµ0 as in
(7.6). If c does not belong to the interior of the interval I that supports dµ0, Sn has at least
n − m − 1 zeros with odd multiplicity in the interior of I , whenever n ≥ m + 1. More
generally, let B(µ0) denote the support of the measure dµ0 and let ∆ denote the convex
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hull of B(µ0). If n̄ denote the number of terms in the discrete part of (9.1) whose order
of derivative is less than n, then Sn has at least n − n̄ changes of sign in the interior of
∆. Furthermore, if Cα denote the open connected components of Int∆ \ B(µ0), then, for
n > m + 1, the number of zeros of the polynomial Sn located in each component Cα is
less than or equal to either m + 1 or m + 2, when m is even or odd, respectively. Further
refined results on the locations of zeros in Cα can be found in [3].

9.2. Continuous Sobolev inner products

Zeros of Sobolev orthogonal polynomials with respect to the inner product

⟨ f, g⟩S =


R

f (t)g(t)dµ0 +


R

f ′(t)g′(t)dµ1 (9.2)

were studied in the very beginning of Sobolev orthogonal polynomials. In [9], Althammer
proved that the zeros of Sn are real, simple and are located in the interval [−1, 1] when
dµ0 = dx and dµ1 = λdx , both supported on the interval [−1, 1]. Similar results
were established by Brenner [20] for dµ0 = e−x dx and dµ1 = λe−x dx , both supposed
on [0,∞). As already mentioned in Section 2, Althammer gave an example that shows
the zeros of a Sobolev orthogonal polynomials of degree 2 can have a zero outside the
support of the measures. An interesting example in this regard appears in [90], for which
dµ0 = dx on [−1, 3], dµ1(x) = λ on [−1, 1] and dµ1(x) = 1 on [1, 3], where λ > 0.
For λ sufficiently large, it was shown that S2n has exactly two real zeros, one in (1, 3) and
one in (−3,−1), and S2n+1 has exactly one real zero, located in (1, 3). The example was
generalized to the situation that dµ0 has at least one point of increasing in (1, a], where
a > 1, dµ1 = λdµ0 on [−1, 1] and dµ1 = dµ0 on [1, a], with µ′

2(x) ≥ c > 0 on (−1, 1).
Zeros of Sobolev orthogonal polynomials are fairly well understood when (dµ0, dµ1)

is a coherent pair. In this paragraph, we follow the notation in Section 5.1. For the inner
product ⟨·, ·⟩λ in (5.1), we denote the Sobolev orthogonal polynomials by Sn(·; λ) and
denote the ordinary orthogonal polynomial with respect to dµi by Pn(·; dµi ). Let I0 denote
the support of the measure dµ0. It was proved in [93] that Sn(·; λ) has n real, simple zeros
and at most one of them is outside I0. Furthermore, if (zλk,n)

n
k=1 and (xk,n(dµ j ))

n
k=1, denote

the zeros of Sn(·; λ) and Pn(·; dµ j ), respectively, then

(1) zλ1,n < x1,n(dµ0) < zλ2,n < ·· < zλn,n < xn,n(dµ0),

(2) zλ1,n < x1,n−1(dµ j ) < zλ2,n < ·· < xn−1,n−1(dµ j ) < zλn,n, j = 0, 1.

Interlacing property between the zeros of two consecutive Sobolev orthogonal polynomi-
als, that is,

zλ1,n < zλ1,n−1 < zλ2,n < ·· < zλn−1,n−1 < zλn,n,

holds when dµ0 and dµ1 are both Laguerre weight or both Jacobi weights.
If {dµ0, dµ1} is a generalized coherent pair (see Section 5), however, few results on

zeros of Sobolev orthogonal polynomials are known. The case of (2, 0) coherent pairs of
order (1, 0) was analyzed in [29], where it was shown that if λ is large enough, then the
zeros of Sn(·; λ) are real, simple and interlace with the zeros of Pn(·; dµ j ), j = 0, 1, when
I0 = I1; furthermore, at most two of the zeros are outside I0. In [94] an illustrative example
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of (0, 2) coherent pair of order (1, 0) associated with Freud weights was studied, in which
the zeros of Sn(·, λ) are shown to be real, simple and enjoy a separation property.

For the inner product (9.2), potential theoretic method was used in [45] to study
asymptotic distribution of zeros and critical points Sobolev orthogonal polynomials. Under
the assumption that the support I j of the measure dµ j is compact and regular for the
Dirichlet problem in C \ I j for j = 0, 1 and further regularity assumption, it was proved
that the critical points, or zeros of the derivative of Sn , have a canonical asymptotic
distribution supported on the real line; that is, their counting measure converges weakly
to the equilibrium measure of the union Σ = I0 ∪ I1. For the zeros of Sn , it was shown
that the weak* limit of a subsequence of their counting measure is supported on a subset
of Σ ∪ V̄ , where V = ∪r>0 Vr and Vr denotes the union of those components of {z ∈ C :

gC̄\Σ (z; ∞) < r} having empty intersection with I0, in which gA(z; ∞) denotes the Green
function of the set A with pole at infinity. Further result on the weak* limit was given in
the notion of balayage of a measure on the compact set K := ∂V ∪ (Σ \ V ). If K = Σ ,
then the weak* limit of the counting measure of the zeros is the equilibrium measure on Σ .

For Sobolev inner products (7.1), asymptotic distributions of zeros of Sobolev orthog-
onal polynomials and their derivatives were studied in [37] in the setting that dµk(x) =

xγ e−ϕk (x)dx , where ϕk are functions having polynomial growth at infinity or iterative ex-
ponential functions, on [0,∞), which includes the Freud weights as special cases.

In another direction concerning zeros of Sobolev orthogonal products with respect to
the inner product (7.2), global distribution of the zeros is related to the boundedness of the
multiplication operator f → x f in the norms associated with the inner product in [24].
More precisely, if this operator is bounded, that is, there exists a positive real number
M such that ⟨x f, x f ⟩S ≤ M⟨ f, f ⟩S , then the set of zeros of the Sobolev orthogonal
polynomials is contained in the ball centered at the origin with radius M and the vector of
measures (dµ0, . . . , dµm) has compact support. The paper also contains other qualitative
results on the zeros. Notice, however, that this approach does not give analytic properties,
such as real, simple, interlacing, of the zeros.

10. Asymptotics

For ordinary orthogonal polynomials, three different types of asymptotics are consid-
ered: strong asymptotics, outer ratio asymptotics and nth root asymptotics. All three have
been considered in the Sobolev setting and we summarize most relevant results in this
section.

10.1. Sobolev type inner products

The first work on asymptotics for Sobolev orthogonal polynomials was carried out
in [81] for the inner product

⟨ f, g⟩S =

 1

−1
f (x)g(x)dµ(x)+ M1 f ′(c)g′(c),

where c ∈ R,M1 > 0 and the measure dµ0 belongs to the Nevai class M(0, 1). Using
the outer ratio asymptotics for the ordinary orthogonal polynomials Pn(·; dµ0) and the
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connection formula between Pn(·; dµ0) and the Sobolev orthogonal polynomials Sn , as in
(7.6), it was shown that, if c ∈ R \ suppµ0, then

lim
n→∞

Sn(z)

Pn(z, dµ0)
=
(Φ(z)− Φ(c))2

2Φ(z)(z − c)
, Φ(z) := z +


z2 − 1,

locally uniformly outside the support of the measure, where
√

z2 − 1 > 0 when z > 1.
Furthermore, if the measure belongs to the Szegő class, then the outer strong asymptotics
for Sn can be deduced in a straightforward way. If c ∈ suppµ0, then limn→∞

Sn(z)
Pn(z;dµ0)

= 1
outside the support of the measure. By comparing the corresponding polynomials, such
results can be deduced in a similar manner if a mass point is added to the measure.

The first extension of the above results was carried out in [6] for the Sobolev inner
product (9.1) with a 2 × 2 matrix A. Under the same conditions on the measure, it was
proved that

lim
n→∞

Sn(z)

Pn(z, dµ0)
=


(Φ(z)− Φ(c))2

2Φ(z)(z − c)

r

, r := rank A,

locally uniformly outside the support of the measure. The second extension appears in [70]
for the inner product

⟨ f, g⟩ =


f (x)g(x)dµ0(x)+

N
j=1

N j
k=0

f (k)(c j )L j,k(g; c j ),

where dµ0 ∈ M(0, 1), {ck}
N
k=1 are real numbers located outside the support of the measure,

and L j,k(g; c j ) is the evaluation at c j of the ordinary differential operator L j,k acting on
g such that L j,N j is not identically zero for j = 1, 2, . . . , N . Assuming that the inner
product is quasi-definite so that a sequence of orthogonal polynomials exist, then on every
compact subset in C \ suppdµ0,

lim
n→∞

S(ν)n (z)

P(ν)n (z, dµ0)
=

m
j=1


(Φ(z)− Φ(c))2

2Φ(z)(z − c)

I j

,

where I j is the dimension of the square matrix obtained from the matrix of the coefficients
of L j,N j after deleting all zero rows and columns. The key idea for the proof is to reduce the
Sobolev orthogonality in this setting to ordinary quasi-orthogonality, so that the polynomial
Sn(x) can be expressed as a short linear combination of polynomials Pm(x; dµ0) and then
consider the behavior of the coefficients in the linear combination.

If both the measure dµ0 and its support ∆ are regular, then techniques from potential
theory were used in [71] to derive the nth root asymptotics of the Sobolev orthogonal
polynomials,

lim sup
n→∞

∥S( j)
n ∥

1/n
∆ = C(∆), j ≥ 0,

where ∥ · ∥∆ denotes the uniform norm in the support of the measure and C(∆) is its
logarithmic capacity.
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When the support of the measure in the inner product (9.1) is unbounded, the analysis
has been focused on the case of the Laguerre weight function. The first study in [11]
considered the case that c = 0 and A is a 2 × 2 diagonal matrix (see also [74] for a
survey on the unbounded case). Assuming that the leading coefficient of Sn is normalized
to be (−1)n

n!
, the following results on the asymptotic behavior of Sn were established:

(1) (Outer relative asymptotics) limn→∞
Sn(z)

L(α)n (z)
= 1 uniformly on compact subsets of the

exterior of the positive real semiaxis.
(2) (Outer relative asymptotics for scaled polynomials) limn→∞

Sn(nz)

L(α)n (nz)
= 1 uniformly on

compact subsets of the exterior of [0, 4].
(3) (Mehler–Heine formula) limn→∞

Sn(z/n)
nα = z−α/2 Jα+4(2

√
z) uniformly on compact

subsets of the complex plane, assuming that rankA = 2.
(4) (Inner strong asymptotics)

Sn(x)

nα/2
= c3(n)e

x/2x−α/2 Jα+4


2

(n − 2)x


+ O


n− min{α+5/4,3/4}


on compact subsets of the positive real semiaxis, where limn→∞ c3(n) = 1.

The case that rank A = 1 is also studied, we only state the results when A has full rank for
sake of simplicity. Finally, if the point c is a negative real number, then the following outer
relative asymptotics was established in [82],

lim
n→∞

Sn(z)

L(α)n (z)
=

√
−z −

√
−c

√
−z +

√
−c

r

, r = rankA,

uniformly on compact subsets of the exterior of the real positive semiaxis.
When c = 0 and A is a non-singular diagonal matrix of size m + 1, the following

asymptotic properties of the Sobolev orthogonal polynomials with respect to the inner
product (9.1) were obtained in [7],

(1) (Outer relative asymptotics) For every ν ∈ N, limn→∞
S(ν)n (z)

(L(α)n )(ν)(z)
= 1 uniformly on

compact subsets of the exterior of the positive real semiaxis.
(2) (Mehler–Heine formula) limn→∞

(−1)n

n!

Sn(z/n)
nα = (−1)m+1z−α/2 Jα+2m+2(2

√
z)

uniformly on compact subsets of the complex plane.

It should be pointed out that the above Mehler–Heine formula cannot be directly deduced
from the connection formula (7.6). As an interesting consequence of the Mehler–Heine
formula and the Hurwitz Theorem, the local behavior of zeros of these Sobolev orthogonal
polynomials can be deduced.

10.2. Continuous Sobolev inner products

We first consider the case of coherent pairs. Let {µ0, µ1} be a coherent pair of measures
and suppµ0 = [−1, 1]. Then the outer relative asymptotic relation for the Sobolev orthogo-
nal polynomials with respect to (9.2) in terms of orthogonal polynomials Pn(·; dµ1) is [87]

lim
n→∞

Sn(z)

Pn(z; dµ1)
=

2
Φ′(z)

, Φ(z) := z +


z2 − 1,
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where
√

z2 − 1 > 0 when z > 1, uniformly on compact subsets of the exterior of the inter-
val [−1, 1]. The key idea of the proof is to show that the coefficient bn(λ) in (5.5) satisfies
limn→∞ bn(λ) = 0, which is a consequence of the inequality

πn + λn2τn−1 ≤ ∥Sn(·, λ)∥
2
λ ≤ πn + â2

n−1πn−1 + λn2τn−1,

where πn := ∥Pn(·, dµ0)∥
2
dµ0

and τn := ∥Pn(·, dµ1)∥
2
dµ1

, on the weighted L2 norms.
When the measures µ0 and µ1 are absolutely continuous and belong to the Szegő class,

the Bernstein–Szegő theory is applied in [85] to derive the outer relative asymptotics
limn→∞

Sn(z)
Pn(z,dµ1)

=
2

Φ′(z) locally uniformly outside [−1, 1]. As a straightforward con-
sequence, the strong outer asymptotics follows. If µ0 is any finite Borel measure supported

in [−1, 1] in [85], then the outer relative asymptotics limn→∞
S′

n(z)
n Pn−1(z,dµ1)

= 1 holds,
which illustrates the role of the measure involved in the nonstandard part of the Sobolev
inner product.

An extension of the above results for the inner product (7.2) was carried out in [88],
where dµm is assumed to be absolutely continuous and belongs to the Szegő class, whereas
other measures are assumed to be positive and supported in [−1, 1]. When the supports of
the measures involved in the Sobolev inner product satisfy certain nesting property and the
measure dµ0 is regular, the n-root asymptotic behavior is established. More specifically,
for every nonnegative integer number j ,

(1) lim supn→∞ |S( j)
n (z)|1/n

= C(∆)eg∆(z,∞) for every z ∈ C up to a set of capacity zero;

(2) limn→∞ |S( j)
n (z)|1/n

= C(∆)eg∆(z,∞) uniformly on each compact subset of the
complex plane outside the disk centered at the origin with radius defined in terms of
the Sobolev norm of the multiplication operator,

where g∆(0,∞) is the Green function of ∆ with the infinite as a pole [71].
For measures of coherent pairs that have unbounded support, asymptotic properties

of the corresponding Sobolev orthogonal polynomials have been extensively studied in
the literature (see [74] for an overview). The outer relative asymptotics, the scaled outer
asymptotics as well as the inner strong asymptotics of such polynomials have been
considered for all families of coherent pairs and symmetrically coherent pairs. It should
be pointed out that the outer relative asymptotics involves the parameter λ in the inner
product (5.1), which does not appear in the case of bounded supports. Nevertheless, the
technicalities in the unbounded case are similar to those in the bounded case, the main
difficulty is on estimates for the coefficients that appear in the relations between Sobolev
and ordinary orthogonal polynomials.

For instance, in the case of symmetrically coherent Hermite case, that is, when either
dµ0 = e−x2

and dµ1 =
1

x2+ξ2 e−x2
or dµ0 = x2

+ ξ2e−x2
and dµ1 = e−x2

, it holds,
respectively,

(1) limn→∞
Sn(z,λ)
Hn(z)

= θ(λ) uniformly on compact subsets outside the real line;

(2) limn→∞ ⌊
n
2 ⌋

1/2 Sn(z,λ)
Hn(z)

= θ(λ)(∓z + |ξ |), if z ∈ C±, uniformly on compact subsets of
the half planes C± = {x ± iy, y > 0}, respectively,

where θ(λ) :=
Φ(2λ+1)

Φ(2λ+1)−1 , as shown in [74].
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The case dµ0 = dµ1 = e−x4
of the inner product (5.1), or the (2, 0) self-coherent

pair with Freud weight, was studied in [21], where the connection between Sobolev and
ordinary orthogonal polynomials is given by Pn(x; dµ) = Sn(x; λ)+ cn−2(λ)Sn−2(x; λ).
In order to deduce its outer relative asymptotics, it is necessary to estimate the values
of cn(λ) for n sufficiently large. It turns out that limn→∞ n−1/2cn(λ) =

1
6
√

3
, which

leads to, in a straightforward way, limn→∞
Sn(z,λ)

Pn(z,dµ0)
=

3
2 uniformly on compact subsets

outside the real line. The outer relative asymptotics, with appropriate scaling, was also
obtained in [21], taking into account the Rakhmanov–Mhaskar–Saff constant for these
Freud polynomials.

For asymptotics, few examples of generalized coherent pairs of measures have been
considered in the literature. The Freud–Sobolev case considered above motivated further
study of Sobolev inner products with exponential weights. Let W (x) = e−Q(x), where Q is
a continuous even function in R such that Q′′ is continuous in (0,∞) and Q′ > 0 in (0,∞),
and α ≤

x Q′′(x)
Q′(x) ≤ β for some β > α > 0. The asymptotic behavior of Sobolev orthogonal

polynomials for the inner product (9.2) with dµ0(x) = (ψ(x)W (x))2dx and dµ1(x) =

λW 2(x)dx , where ψ ∈ L∞(R), was studied in [47]. The derivative of the orthonormal
Sobolev polynomials sn behaves as λ−1/2 pn−1(.; W 2), the orthonormal polynomials with
respect to the measure W 2(x)dx , in the sense of the L2 asymptotics, that is, ∥s′

n(·) −

λ−1/2 pn−1(·; W 2)∥W 2dx = O( an
n ), where an is the Mhaskar–Rakhmanov–Saff number

for Q. On the other hand, a uniform bound for the corresponding scaled polynomials
is also deduced with the help of a simple Nikolskii inequality. As in the bounded case,
the measure dµ1 plays a key role in the asymptotic behavior of the Sobolev orthonormal
polynomials.

11. Sobolev orthogonal polynomials of several variables

In contrast to one variable, Sobolev orthogonal polynomials of several variables are
studied only recently. In this section we report what has been done in this direction.

11.1. Orthogonal polynomials of several variables

For x ∈ Rd and α ∈ Nd
0 , the (total) degree of the monomial xα is, by definition, |α| :=

α1 + · · · + αd . Let Π d
n denote the space of polynomials of total degree at most n in

d-variables. It is known that dim Π d
n =


n+d

n


. Let Π d denote the space of all polynomials

in d-variables. Let ⟨·, ·⟩ be an inner product defined on Π d
× Π d . A polynomial P ∈ Π d

n
is orthogonal if ⟨P, q⟩ = 0 for all q ∈ Π d

n−1. For n ∈ Nd
0 , let V d

n denote the space of

polynomials of total degree n. Then dim V d
n =


n+d−1

n


. In contrast to one-variable, the

space V d
n can have many different bases when d ≥ 2. Moreover, the elements in V d

n may
not be orthogonal to each other.

For the structure and properties of orthogonal polynomials in several variables, we refer
to [38]. In the following, we describe briefly two families of orthogonal polynomials as
examples.
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Example 1. For i = 1, 2, let wi be weight functions defined on an interval [ai , bi ] of
the real line and let pn(wi ; ·) be the orthogonal polynomial of degree n with respect to
wi . With respect to the weight function W (x, y) := w(x)w(y) on [a1, b1] × [a2, b2], one
family of mutually orthogonal basis of V 2

n (W ) is given by

Pn
k (x, y) = pk(w1; x)pn−k(w2; y), 0 ≤ k ≤ n. (11.1)

Because Π d
n is defined in terms of total degree, which is different from the tensor product

Πn × Πn , every element of V 2
n is of total degree n.

For our second example, we need the definition of spherical harmonics. Let P d
n denote

the space of homogeneous polynomials of degree n in d-variables. A polynomial Y is a
spherical harmonic of degree n if Y ∈ P d

n ∩ ker ∆, where ∆ is the Laplacian operator,

∆ =
∂2

∂x2
1

+ · · · +
∂2

∂x2
n

. Let Hd
n denote the space of spherical harmonics of degree n. It is

known that

ad
n := dim Hd

n =


n + d − 1

n


−


n + d − 3

n − 2


.

The elements of Hd
n are orthogonal to lower degree polynomials with respect to the inner

product

⟨ f, g⟩Sd−1 :=


Sd−1

f (ξ)g(ξ)dσ(ξ),

where dσ denotes the surface measure on Sd−1. An orthonormal basis can be constructed
explicitly in terms of the Gegenbauer polynomials in spherical coordinates. For properties
of harmonic polynomials and their relations to orthogonal polynomials, we refer to [27,38]
and references therein.

Example 2. For µ > −1, letϖµ(x) = (1 −∥x∥
2)µ−1/2 be the weight function defined on

the unit ball Bd
= {x ∈ Rd

: ∥x∥ ≤ 1}, where ∥x∥ denotes the Euclidean norm of x ∈ Rd .
Orthogonal polynomials with respect toϖµ can be given in several different formulations.
We give one basis of V d

n (ϖµ) in terms of the Jacobi polynomials and spherical harmonics
in the spherical coordinates x = rξ , where 0 < r ≤ 1 and ξ ∈ Sd−1

= {x : ∥x∥ = 1}. For
0 ≤ j ≤ n/2 and 1 ≤ j ≤ ad

n−2 j , define

Pn
j,ν(x) := P

(µ,n−2 j+ d−2
2 )

j (2 ∥x∥
2
− 1) Y n−2 j

ν (x), (11.2)

where {Y n−2 j
ν : 1 ≤ ν ≤ ad

n−2 j } is an orthonormal basis of Hd
n−2 j . Then the set {Pµ,nj,ℓ (x) :

0 ≤ j ≤
n
2 , 1 ≤ ℓ ≤ ad

n−2 j } is a mutually orthogonal basis of V d
n (ϖµ). The elements of

V d
n are eigenfunctions of a second order differential operator Dµ. More precisely, we have

DµP = −(n + d)(n + 2µ)P, ∀P ∈ V d
n (ϖµ), (11.3)

where

Dµ := ∆ −

d
j=1

∂

∂x j
x j


2µ+

d
i=1

xi
∂

∂xi


.
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11.2. Sobolev orthogonal polynomials on the unit ball

At the moment of this writing, we know more about Sobolev orthogonal polynomials on
the unit ball than on any other domain.

The first work in this direction deals with the inner product [102]

⟨ f, g⟩∆ :=


Bd

∆

(1 − ∥x∥

2) f (x)

∆

(1 − ∥x∥

2)g(x)


dx,

which arises from the numerical solution of the Poisson equation [12]. The geometry of
the ball and (11.2) suggests that one can look for a mutually orthogonal basis of the form

q j (2∥x∥
2
− 1)Y n−2 j

ν (x), Y n−2 j
ν ∈ Hd

n−2 j , (11.4)

where q j is a polynomial of degree j in one variable. Such a basis was constructed in [102]
for the space V d

n (∆) with respect to ⟨·, ·⟩∆. As a result, it was shown that

V d
n (∆) = Hd

n ⊕ (1 − ∥x∥
2)Vn−2(ϖ2).

The next inner product considered on the ball, which should be, in retrospect, the first
one being considered, is defined by

⟨ f, g⟩−1 := λ


Bd

∇ f (x) · ∇g(x)dx +


Sd−1

f (ξ)g(ξ)dσ(ξ),

where λ > 0. An alternative is to replace the integral over Sd−1 by f (0)g(0). A basis of
the form (11.4) was constructed explicitly in [103] for the space V d

n (∆) with respect to
⟨·, ·⟩−1, from which it follows that

V d
n (ϖ−1) = Hd

n ⊕ (1 − ∥x∥
2)Vn−2(ϖ1). (11.5)

The main part of the base, those in (1 − ∥x∥
2)Vn−2(ϖ1), can be given in terms of the

Jacobi polynomials P(−1,b)
n of negative index, which explains why we used the notation

ϖ−1. Another interesting aspect of this case is that the polynomials in V d
n (ϖ−1) are

eigenfunctions of the differential operator D−1, the limiting case of (11.3).
For k ∈ N, the equation D−kY = λnY of (11.3) was studied in [97], where a complete

system of polynomial solutions was determined explicitly. For k ≥ 2, however, it is not
known if the solutions are Sobolev orthogonal polynomials. Closely related to the case of
k = 2 is the following inner product

⟨ f, g⟩−2 := λ


Bd

∆ f (x)∆g(x)dx +


Sd−1

f (x)g(x)dσ, λ > 0.

An explicit basis for the space V d
n (ϖ−2) of the Sobolev orthogonal polynomials with

respect to ⟨·, ·⟩−2 was constructed in [97], from which it follows that

V d
n (ϖ−2) = Hd

n ⊕ (1 − ∥x∥
2)Hd

n−2 ⊕ (1 − ∥x∥
2)2 V d

n−4(ϖ2). (11.6)
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The main part of the base, those in (1 − ∥x∥
2)2 Vn−2(ϖ2), can be given in terms of the

Jacobi polynomials P(−2,b)
n of negative index.

It turns out that the Sobolev orthogonal polynomials for the last two cases can be used in
the study of the spectral method for the numerical solution of partial differential equations.
This connection was established in [69], where, for s ∈ N, the following inner product in
the Sobolev space W s

p(Bd) is defined,

⟨ f, g⟩−s := ⟨∇
s f,∇s g⟩Bd +

⌈
ϱ
2 ⌉−1
k=0

λk⟨∆k f,∆k g⟩Sd−1 , (11.7)

where λk, k = 0, 1 . . . , ⌈ϱ2 ⌉ − 1, are positive constants, and

∇
2m

:= ∆m and ∇
2m+1

:= ∇∆m, m = 1, 2, . . . .

For s > 2, the space V d
n (ϖ−s) associated with ⟨·, ·⟩−s cannot be decomposed as in (11.5)

and (11.6). Nevertheless, an explicit mutually orthogonal basis was constructed in [69],
which requires considerable effort, and the basis uses extension of the Jacobi polynomials
P(α,β)n for α, β ∈ R that avoids the degree reduction when −α − β − n ∈ {0, 1, . . . , n}.
The main result in [69] establishes an estimate for the polynomial approximation in the
Sobolev space W s

p(Bd), the proof relies on the Fourier expansion in the Sobolev orthogonal
polynomials associated with (11.7).

Another Sobolev inner product considered on the unit ball is defined by

⟨ f, g⟩ =


Bd

∇ f (x) · ∇g(x)Wµ(x)dx + λ


Bd

f (x)g(x)Wµ(x)dx,

which is an extension of the Sobolev inner product of the coherent pair in the case of the
Gegenbauer weight of one-variable. A mutually orthogonal basis was constructed in [96],
which has the form of (11.4) but the corresponding q j is orthogonal with respect to a rather
involved Sobolev inner product of one variable.

11.3. Sobolev orthogonal polynomials on the simplex

Let T d be the simplex of Rd defined by

T d
:= {x ∈ Rd

: x1 ≥ 0, . . . , xd ≥ 0, 1 − |x | ≥ 0},

where |x | := x1 + · · · + xd . The classical weight function on T d is defined by

ϖγ (x) := xγ1
1 · · · xγd

d (1 − |x |)γd+1 , x ∈ T d , (11.8)

where γi are real numbers, usually assumed to satisfy γi > −1 to ensure the integrability

of ϖγ on T d . Let cγ = 1


T d ϖγ (x)dx denote the normalization constant. We consider

the inner product

⟨ f, g⟩γ := cγ


T d

f (x)g(x)ϖγ (x)dx .



344 F. Marcellán, Y. Xu / Expo. Math. 33 (2015) 308–352

The space V d
n (ϖγ ) of orthogonal polynomials of degree n for this inner product contains

several explicit bases, which have been studied extensively (cf. [38]). One particular basis
is given by the Rodrigues type formula

Pγ
n (x) := x−γ (1 − |x |)−γd+1

∂ |n|

∂xn


xγ+n(1 − |x |)γd+1+|n|


, (11.9)

where ∂ |n|

∂xn =
∂ |n|

∂x
n1
1 ···∂x

nd
d

and n ∈ Nd
0 . Furthermore, it is known that polynomials in V d

n (Wγ )

are eigenfunctions of the differential operator

Lγ P :=

d
i=1

xi (1 − xi )
∂2 P

∂x2
i

− 2


1≤i< j≤d
xi x j

∂2 P

∂xi∂x j

+

d
i=1

(γi + 1 − (|γ | + d + 1)xi )
∂P

∂xi
,

where |γ | := γ1 + · · · + γd+1; more precisely,

Lγ P = −n (n + |γ | + d) P, ∀P ∈ V d
n (ϖγ ). (11.10)

If some or all γi are equal to −1, the weight function becomes singular but Eq. (11.10)
still has a full set of polynomial solutions. In [1], these solutions were given explicitly
and were shown to be the Sobolev orthogonal polynomials with respect to explicitly given
inner products. For d = 2, the simplex is the triangle T 2, writing the weight function as
ϖα,β,γ (x) = xα yβ(1 − x − y)γ , then the inner products are of the form

⟨ f, g⟩α,β,−1 :=


T 2


x∂x f (x, y)∂x g(x, y)+ y∂y f (x, y)∂y g(x, y)


xα yβdxdy

+ λ1

 1

0
f (x, 1 − x)g(x, 1 − x)xα(1 − x)βdx

⟨ f, g⟩α,−1,−1 :=


T 2
∂y f (x, y)∂y g(x, y)xαdxdy,

+ λ1

 1

0
∂x f (x, 0)∂x g(x, 0)xα+1dx + λ1,0 f (1, 0)g(1, 0)

⟨ f, g⟩−1,−1,−1 :=


T 2
∂xy f (x, y)∂xy g(x, y)(1 − x − y)dxdy,

+ λ1

 1

0
∂x f (x, 0)∂x g(x, 0)dx + λ2

 1

0
∂y f (0, y)∂y g(0, y)dy

+ λ1,0 f (1, 0)g(1, 0)+ λ0,1 f (0, 1)g(0, 1)+ λ0,0 f (0, 0)g(0, 0).

The first case can be deduced by taking limit γ → −1 in the classical inner product with
respect to ϖα,β,γ , as observed in [19]. Identifying the correct form of the inner product is
a major step. For d > 2, one needs to consider the lower dimensional faces of the simplex
T d . Fortunately, restrictions of the polynomials in (11.9) remain orthogonal polynomials
on the faces.
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Besides those considered in [1], no other family of Sobolev orthogonal polynomials has
been studied on the simplex.

11.4. Sobolev orthogonal polynomials on product domain

On the product domain [a1, b1] × [a2, b2] of R2, define the product weight function

ϖ(x1, x2) = w1(x1)w2(x2),

where wi is a weight function on [ai , bi ] for i = 1, 2. With respect to ϖ , we consider the
Sobolev inner product

⟨ f, g⟩S :=


[a,b]2

∇ f (x, y) · ∇g(x, y)ϖ(x, y)dxdy + λ f (c1, c2)g(c1, c2),

where ∇ f = (∂x f, ∂y g), λ > 0 and (c1, c2) is a fixed point in R2.
A moment reflection shows that orthogonal polynomials with respect to this inner prod-

uct are no longer products as that of (11.1) in general. Two cases are considered in [43].
The first one is the product Laguerre weight for which

⟨ f, g⟩S :=


∞

0


∞

0
∇ f (x, y) · ∇g(x, y)wα(x)wβ(y)dxdy + λk f (0, 0)g(0, 0),

where wα(x) = xαe−x . The Sobolev orthogonal polynomials are related to the polynomi-
als Qα,β

j,m defined by

Qα,β
j,m(x, y) := Qα

m− j (x)Q
β
j (y) with Qα

n (x) := L(α)n (x)+ nL(α)n−1(x),

where L(α)n denotes the nth monic Laguerre polynomial. The polynomial Qα
n is monic and

it satisfies d
dx Qα

n (x) = nL(α)n−1(x). For 0 ≤ k ≤ n, let Sα,βn−k,k(x, y) = xn−k yk
+ · · · be the

monic Sobolev orthogonal polynomials of degree n. Define the column vectors

Qα,β
n := (Qα,β

0,n , . . . , Qα,β
n,n )

T and Sα,βn := (Sα,β0,n , . . . , Sα,βn,n )
T .

It was shown in [43] that there is a matrix Bn−1 such that

Qα,β
n = Sα,βn + Bn−1Sα,βn−1

and the matrix Bn−1 and the norm ⟨Sα,βn ,Sα,βn ⟩S can both be computed by one recursive
algorithm.

The above construction of orthogonal basis for the product domain works if w1 and w2
are self-coherent. The case that both are the Gegenbauer weight functions was given as a
second example in [43].

11.5. Miscellaneous results

Sobolev orthogonal polynomials in two variables that satisfy second order partial differ-
ential equations are discussed in [66]. The paper, however, contains few concrete examples.
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In [52], a large family of commutative algebras of partial differential operators invariant
under rotations, called Krall–Jacobi algebra, is constructed and analyzed. The study leads
naturally to the Sobolev orthogonal polynomials with respect to an inner product on the
unit ball that involves spherical Laplacian.

For inner product that contains additional point evaluations of functions, as those dis-
cussed in Section 7, the Krall type construction of orthogonal polynomials can be extended
to several variables, as shown in [33]. The same holds true if the point evaluations involve
derivatives, see [35] for an example.

12. Orthogonal expansions in Sobolev orthogonal polynomials

Let {pn}n≥0 be a system of orthogonal polynomials with respect to an inner product
⟨·, ·⟩. The Fourier orthogonal expansion of a function f in {pn}n≥0 is defined by

f (x) ∼

∞
n=0

fn pn(x), fn =
1

√
⟨pn, pn⟩

⟨ f, pn⟩.

The nth partial sum Sn f if defined by

Sn f (x) :=

n
k=0

fk pk(x) = ⟨ f, Kn(x, ·)⟩,

where Kn(·, ·) is the reproducing kernel of the space of polynomials of degree at most n,
defined by

Kn(x, y) =

n
k=0

1
⟨pk, pk⟩

pk(x)pk(y).

The Fourier expansions in terms of classical orthogonal polynomials have been studied
extensively in the literature. One of the essential tools is the Christoffel–Darboux formula,
which gives a closed formula for the kernel Kn(·, ·). For Sobolev orthogonal polynomials,
however, the Christoffel–Darboux formula no longer holds, which impedes the study of the
Fourier expansion in Sobolev orthogonal polynomials through standard techniques. Indeed,
except one class of Sobolev orthogonal polynomials, little has been done in this direction.

The exceptional class is tied with applications in the spectral methods for solving
differential equations. Approximations using orthogonal expansions in Sobolev spaces
have been extensively studied by spectral methods community; see, for example, [23] and
numerous books (for example, [18,22,51]) on the subject, although Sobolev orthogonal
polynomials are not often used or used only implicitly. As an example of the exceptional
class, consider the inner product

⟨ f, g⟩−s :=

 1

−1
f (s)(x)g(s)(x)dx +

s−1
j=0

λ j [ f ( j)(1)+ f (−1)(−1)].

The orthogonal polynomials with respect to this inner product have been used implicitly
in the spectral method; see, for example, [50,49,100]. The error estimate for the spectral
method requires estimating the error of polynomial approximation in the Sobolev space
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W s
2 [−1, 1]. By subtracting a polynomial g ∈ Π2s−1 that satisfies g( j)(1) = g( j)(−1) = 0

for j = 0, 1, . . . ,m − 1, we can assume that f vanishes on the boundary terms. Let
S−s

n f and S0
n denote the nth partial sum of the Fourier expansion of f in terms of

the Sobolev orthogonal polynomials and the Legendre polynomials P(0,0)n , respectively.
It is not difficult to see that ∂s S−s

n f = S0
n−s∂

s f, which implies that ∂s( f − S−s
n ) =

∂s f − S0
n−s(∂

s f ). Thus, the estimate for the highest order derivative in W s
2 follows from

the estimate of the derivative of f in the usual L2 norm. The estimate that the spectral
method requires is of the form

∥ f − pn∥W s
2

≤ cn−r+s
∥ f ∥W r

2
, r ≥ s,

where pn is a polynomial of degree n. Under the name of simultaneous approximation,
an inequality of this type has also been established in approximation theory for W s

p with
1 ≤ p < ∞; see, for example, [61]. Such results can also be established for the inner
product with the Jacobi weight function (see [100] and the references therein).

In the same spirit, spectral approximation on the unit ball was studied in [69], where the
Sobolev orthogonal polynomials associated with (11.7) play an essential role. In contrast
to one variable, we can no longer construct a polynomial g of low degree so that f − g
vanishes on the boundary and, as a result, the analysis in [69] is more involved.

Besides the above class, little has been established for Fourier expansions in other
Sobolev orthogonal polynomials. For the Legendre–Sobolev inner product

⟨ f, g⟩λ =

 1

−1
f (x)g(x)dx + λ

 1

−1
f ′(x)g′(x)dx, λ ≥ 0,

which is (3.1) and the first Sobolev inner product ever studied, it was observed in [55],
based on computational evidence, that the Fourier expansion in the Sobolev orthogonal
polynomials behaviors markedly better than the Fourier expansion in the Legendre toward
the end point of the interval. Similar phenomenon was also observed in later papers on
Sobolev orthogonal polynomials associated with measures that are coherent pairs, see [30]
and the references therein. It should be mentioned that computation of Sobolev orthogonal
polynomials is discussed in [44,46], where several algorithms are provided. From a
heuristic point of view, Sobolev orthogonal expansions should have a better approximation
behavior than ordinary orthogonal expansions, as the former requires more information
on the function being expanded. However, at the time of this writing, there has been no
theoretical result that either prove or quantify that this is indeed the case.

For approximation in Sobolev spaces, it is to be expected that one should use Sobolev
orthogonality instead of ordinary orthogonality. Given the amount of works that have been
carried out over years, it is surprising how little has been done on the Fourier expansions
in Sobolev orthogonal polynomials. As discussed in Section 2, the initial motivation
for studying Sobolev orthogonal polynomials came from the problem of least square
approximation in Sobolev spaces. We have gained substantial knowledge on the Sobolev
orthogonality, it is now time to go back to the beginning, studying the Fourier expansions
and approximation by polynomials in Sobolev spaces, and to find connections and apply
what we have learnt to solve problems in other fields. We end this survey with this call of
action.
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orthogonal polynomials for coherent pairs, J. Approx. Theory 92 (1998) 280–293.

[88] A. Martı́nez-Finkelshtein, H. Pijeira-Cabrera, Strong asymptotics for Sobolev orthogonal polynomials,
J. Anal. Math. 78 (1999) 143–156.

[89] H.G. Meijer, Coherent pairs and zeros of Sobolev-type orthogonal polynomials, Indag. Math. (N.S.) 4
(1993) 163–176.

[90] H.G. Meijer, Sobolev orthogonal polynomials with a small number of real zeros, J. Approx. Theory 77
(1994) 305–313.

[91] H.G. Meijer, A short history of orthogonal polynomials in a Sobolev space I. The non-discrete case, in: 31st
Dutch Mathematical Conference, Groningen, 1995, Nieuw Arch. Wiskd. (4) 14 (1996) 93–112.

[92] H.G. Meijer, Determination of all coherent pairs of functionals, J. Approx. Theory 89 (1997) 321–343.
[93] H.G. Meijer, M.G. de Bruin, Zeros of Sobolev orthogonal polynomials following from coherent pairs,

J. Comput. Appl. Math. 139 (2002) 253–274.
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[101] G. Szegő, Orthogonal Polynomials, fourth ed., in: Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math.

Soc., Providence, RI, 1975.



352 F. Marcellán, Y. Xu / Expo. Math. 33 (2015) 308–352

[102] Y. Xu, A family of Sobolev orthogonal polynomials on the unit ball, J. Approx. Theory 138 (2006)
232–241.

[103] Y. Xu, Sobolev orthogonal polynomials defined via gradient on the unit ball, J. Approx. Theory 152 (2008)
52–65.


