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Let an denote the third order linear recursive sequence defined by the initial values
a0 ¼ a1 ¼ 0 and a2 ¼ 1 and the recursion an ¼ pan�1 þ qan�2 þ ran�3 if n P 3, where p; q,
and r are constants. The an are generalized Tribonacci numbers and reduce to the usual Tri-
bonacci numbers when p ¼ q ¼ r ¼ 1 and to the 3-bonacci numbers when p ¼ r ¼ 1 and
q ¼ 0. Let QnðxÞ ¼ a2xn þ a3xn�1 þ � � � þ anþ1xþ anþ2, which we will refer to as a generalized
Tribonacci coefficient polynomial. In this paper, we show that the polynomial QnðxÞ has no
real zeros if n is even and exactly one real zero if n is odd, under the assumption that p
and q are non-negative real numbers with p P maxf1; qg. This generalizes the known
result when p ¼ q ¼ r ¼ 1 and seems to be new in the case when p ¼ r ¼ 1 and q ¼ 0.
Our argument when specialized to the former case provides an alternative proof of that
result. We also show, under the same assumptions for p and q, that the sequence of real
zeros of the polynomials QnðxÞwhen n is odd converges to the opposite of the positive zero
of the characteristic polynomial associated with the sequence an. In the case p ¼ q ¼ r ¼ 1,
this convergence is monotonic. Finally, we are able to show the convergence in modulus of
all the zeros of QnðxÞ when p P 1 P q P 0.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Let the recursive sequence fangnP0 be defined by the initial values a0 ¼ a1 ¼ 0 and a2 ¼ 1 and the linear recurrence
an ¼ pan�1 þ qan�2 þ ran�3; n P 3: ð1Þ
The numbers an could be referred to as generalized Tribonacci numbers, and reduce when p ¼ q ¼ r ¼ 1 to the usual Tribonacci
numbers Tn (see A000073 in [10]). When p ¼ r ¼ 1 and q ¼ 0, the an reduce to what are termed the 3-bonacci numbers by
Benjamin and Quinn [1, p. 41] (see also A000930 in [10]). The sequence an has been studied in enumerative combinatorics.
For instance, when p; q, and r are positive integers, then an is seen to count the linear tilings of length n� 2 using squares,
dominos, and trominos, where the various pieces are assigned colors in one of p; q, or r ways, respectively (see, e.g., [1, p. 36]).
Explicit formulas involving binomial coefficients were derived for an in [9]. See also Knuth [3], who considered similar linear
recurrences of arbitrary order.

Garth et al. [2] introduced the definition of the Fibonacci coefficient polynomials pnðxÞ ¼ F1xn þ F2xn�1 þ � � � þ Fnxþ Fnþ1

and – among other things – determined the number of real zeros of pnðxÞ. In particular, they showed that pnðxÞ has no real
zeros if n is even and exactly one real zero if n is odd. Later, this result was extended by Mátyás [5,6] to more general second
order recurrences. Mátyás and Szalay [8] showed that the same result also holds for the Tribonacci coefficient polynomials
qnðxÞ ¼ T2xn þ T3xn�1 þ � � � þ Tnþ1xþ Tnþ2.
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If n P 1, then define the polynomial Q nðxÞ by
Q nðxÞ ¼ a2xn þ a3xn�1 þ � � � þ anþ1xþ anþ2: ð2Þ
One could refer to QnðxÞ as a generalized Tribonacci coefficient polynomial. Note that when p ¼ q ¼ r ¼ 1, the QnðxÞ reduce to
the Tribonacci coefficient polynomials qnðxÞ. We wish to study the real zeros of Q nðxÞ. By Proposition 2.1 below, we may as-
sume r ¼ 1 in (1) without loss of generality when studying the zeros of QnðxÞ.

From [7, Theorem 3.1], we know that the polynomials QnðxÞ, assuming p; q, and r are positive numbers, have either 0 or 2
real zeros if n is even and either 1 or 3 real zeros if n is odd. Our main result is as follows, where we show, under a general
assumption for p and q, that the latter alternative in each case is never possible.

Theorem 1.1. Let QnðxÞ be defined by (2) above, and suppose p and q are non-negative real numbers with p P maxf1; qg and
r ¼ 1. Then we have:

(i) If n is even, then QnðxÞ has no real zeros.
(ii) If n is odd, then QnðxÞ has exactly one real zero.

We will prove Theorem 1.1 in the next two sections. Note that Theorem 1.1 follows from Lemma 2.2 and Theorem 3.4
below. We remark that our proof for Theorem 1.1, when specialized to the case p ¼ q ¼ 1, supplies an alternative proof to
the one given in [8] for that case (which we attempted, unsuccessfully, to generalize). Furthermore, taking p ¼ 1 and
q ¼ 0 provides a seemingly new result concerning the zeros of polynomials whose coefficients are 3-bonacci numbers.

We also show, under the same assumptions for p; q, and r, that the sequence of real zeros rn of the polynomials QnðxÞ for n
odd converges to �k, where k is the positive zero of the characteristic polynomial associated with the sequence an (see The-
orem 3.5 below). When p ¼ q ¼ 1, this provides a further result concerning the polynomials qnðxÞ, and we note here that the
comparable result for pnðxÞ was shown in [2]. In the final section, we show that the condition that the sequence of real zeros
rn be decreasing is equivalent to an inequality involving terms of the sequence an. Furthermore, when p ¼ q ¼ 1, we are able
to show this inequality and thus establish the monotonicity of the real zeros of the Tribonacci coefficient polynomials qnðxÞ
for n odd (see Theorem 4.3). Our proof of this is of a more computational nature and utilizes estimates for the roots of the
equation x3 � x2 � x� 1 ¼ 0, but its steps could in principle be performed for any given p and q. Finally, we show the con-
vergence in modulus of all the zeros of QnðxÞ as n increases without bound to the positive root of the equation
x3 � px2 � qx� 1 ¼ 0 when p P 1 P q P 0.

2. Preliminaries

We wish to study the real zeros of the polynomial Q nðxÞ. By the following proposition, we may assume r ¼ 1 in (1).

Proposition 2.1. When considering the zeros of the polynomial Q nðxÞ, there is no loss in generality if one assumes r ¼ 1 in (1).
Proof. Let QnðxÞ ¼
Pn

i¼0aiþ2xn�i, where ai is given by (1) above. Dividing both sides of (1) by rðn�2Þ=3 (we assume r – 0), and
letting
bn ¼
an

rðn�2Þ=3 ; p0 ¼ p
r1=3 ; and q0 ¼ q

r2=3 ;
we obtain the recurrence
bn ¼ p0bn�1 þ q0bn�2 þ bn�3; n P 3; ð3Þ
with the initial values b0 ¼ b1 ¼ 0 and b2 ¼ 1. Let RnðxÞ ¼
Pn

i¼0biþ2xn�i. Note that
Q nðr1=3xÞ ¼
Xb

i¼0

aiþ2ðr1=3xÞn�i ¼
Xn

i¼0

ri=3biþ2ðr1=3xÞn�i ¼ rn=3
Xn

i¼0

biþ2xn�i ¼ rn=3RnðxÞ:
Therefore, RnðxÞ has a zero at x ¼ c if and only if Q nðxÞ has a zero at x ¼ r1=3c. h

From this point onward, we will always assume r ¼ 1 in (1) when considering the zeros of QnðxÞ. By the following lemma,
we may restrict our attention to the case when x 6 �1.

Lemma 2.2. Suppose p P 1 and q P 0 are real numbers. If n P 1, then the polynomial QnðxÞ has no zeros on the interval ð�1;1Þ.
Proof. Clearly, the equation QnðxÞ ¼ 0 has no roots if x P 0 since it has positive coefficients. Suppose �1 < x < 0. If n is odd,
then
a2jþ2xn�2j þ a2jþ3xn�2j�1 > 0; 0 6 j 6 ðn� 1Þ=2;
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since xn�2j�1 > �xn�2j > 0 if �1 < x < 0 and since a2jþ3 P a2jþ2 > 0 as p P 1 and q P 0. This implies
QnðxÞ ¼
Xn�1

2

j¼0

ða2jþ2xn�2j þ a2jþ3xn�2j�1Þ > 0:
Similarly, if n is even, then
QnðxÞ ¼ a2xn þ
Xn�2

2

j¼0

ða2jþ3xn�2j�1 þ a2jþ4xn�2j�2Þ > 0: �
So we seek the zeros of Q nðxÞ, where x 6 �1, equivalently, the zeros of Qnð�xÞ, where x P 1. For this, it is easier to con-
sider zeros of the polynomial fnðxÞ given by
fnðxÞ :¼ cð�xÞQ nð�xÞ; ð4Þ
see [7], where
cðxÞ :¼ x3 � px2 � qx� 1 ð5Þ
denotes the characteristic polynomial associated with the sequence an.
Performing the multiplication in (4) and using the recurrence for an (or referring to [7, Lemma 2.1]), we have
fnðxÞ ¼ ð�xÞnþ3 � anþ3x2 þ ðanþ1 þ qanþ2Þx� anþ2: ð6Þ
In the following section, we study the zeros of fnðxÞ when x P 1, and hence of Q nðxÞ when x 6 �1.

3. Main results

Throughout this section, we assume p and q are non-negative real numbers with p P maxf1; qg. We first consider the
case when n is odd. By (6), we have
fnðxÞ ¼ xnþ3 � anþ3x2 þ ðanþ1 þ qanþ2Þx� anþ2
for n odd. The first lemma concerns the cases of fnðxÞ when n ¼ 1 and n ¼ 3.

Lemma 3.1. The following polynomials have exactly one zero for x P 1:

(i) uðxÞ ¼ x4 � ðp2 þ qÞx2 þ ð1þ pqÞx� p;
(ii) vðxÞ ¼ x6 � ðp4 þ 3p2qþ q2 þ 2pÞx2 þ ðp3qþ 2pq2 þ p2 þ 2qÞx� ðp3 þ 2pqþ 1Þ:

Furthermore, this zero is simple.
Proof.

(i) First observe that uð1Þ 6 0 for all possible p and q as
pðp� qÞ þ pþ q ¼ p2 þ pð1� qÞ þ q P 2;
since p P maxf1; qg, upon considering cases whether q > 1 or 0 6 q 6 1. Note that uð1Þ ¼ 0 if and only if p ¼ 1.
Next observe that u0ð1Þ > 0 if and only if
2p2 � pqþ 2q < 5: ð7Þ
Also, since u00ðxÞ ¼ 12x2 � 2ðp2 þ qÞ, we either have
(a) u00ðxÞP 0 for all x P 1; or
(b) u00ðxÞ < 0 for x 2 ½1; sÞ for some s > 1; with u00ðxÞP 0 for x P s:
If p ¼ 1, then u0ð1Þ > 0, by (7), with (a) occurring, which implies u0ðxÞ > 0 for all x P 1. Thus, there is exactly one zero on the
interval ½1;1Þ in this case, namely, x ¼ 1. It is a simple zero since u0ð1Þ > 0 is non-zero.

So let us assume p > 1. Then uð1Þ < 0 and, to complete the proof, we consider cases depending on u0ð1Þ. If u0ð1Þ 6 0, then
u0ðxÞ 6 0 on the interval ½1; t� for some t P 1 and u0ðxÞ > 0 on ðt;1Þ, when either (a) or (b) occurs. Since uð1Þ < 0 and
limx!1uðxÞ ¼ 1, this implies uðxÞ has exactly one zero r on ½1;1Þ. This zero is simple as r > t implies u0ðrÞ > 0 is non-zero.
If u0ð1Þ > 0, then by (7),
ðp2 þ qÞ þ ðp� qÞ þ q 6 ðp2 þ qÞ þ pðp� qÞ þ q < 5;



T. Mansour, M. Shattuck / Applied Mathematics and Computation 219 (2013) 8366–8374 8369
which implies p2 þ q < 4. Then u00ð1Þ ¼ 12� 2ðp2 þ qÞ > 0, whence u00ðxÞ > 0 for x P 1 since u000ðxÞ ¼ 24x > 0. Then u0ðxÞ > 0
for all x P 1, which implies uðxÞ has one (simple) zero on ½1;1Þ. Note that this zero occurs at x ¼ p in all cases.

(ii) That vð1Þ < 0 follows from comparing positive and negative terms and the assumption p P maxf1; qg. If v 0ð1Þ 6 0,
then proceed as in the proof of (i) above in the comparable case. So assume v 0ð1Þ > 0, which may be written as
ð2p� qÞðp3 þ 2pqþ 1Þ þ ð2q� 1Þðp2 þ qÞ þ 2p < 6: ð8Þ
Since p P q P 0, inequality (8) gives
pðp3 þ 2pqþ 1Þ þ ð2q� 1Þðp2 þ qÞ þ 2p < 6;
which further implies
ðp4 þ 3p2qþ q2 þ 2pÞ þ p2q� p2 < 6: ð9Þ
By (9), we have p4 � p2 < 6, i.e., ðp2 � 3Þðp2 þ 2Þ < 0. Then p2 < 3, together with (9), gives
p4 þ 3p2qþ q2 þ 2p < 6þ p2 < 6þ 3 < 15;
which yields v 00ð1Þ > 0. Then v 00ðxÞ > 0 for all x P 1 so that v 0ðxÞ > 0 for all x P 1 as well. Thus, vðxÞ also has one (simple)
zero on ½1;1Þ in this case, which completes the proof. h
Lemma 3.2. If n P 5 is odd, then the polynomial fnðxÞ has exactly one zero on the interval ½1;1Þ, and it is simple.
Proof. Let f ðxÞ ¼ fnðxÞ. For n P 5 odd, first note that
f ð1Þ ¼ 1� anþ3 þ anþ1 þ ðq� 1Þanþ2 ¼ 1� ðp� qþ 1Þanþ2 þ ð1� qÞanþ1 � an < 0:
Next observe that f 0ð1Þ < 0 for n P 5 odd, i.e.,
ð2p� qÞanþ2 þ ð2q� 1Þanþ1 þ 2an � ðnþ 3Þ ¼ ðpanþ2 þ 2an � ðnþ 3ÞÞ þ ðp� qÞanþ2 � ð1� 2qÞanþ1 > 0;
since panþ2 þ 2an P nþ 3 for all n P 5, which can be shown by induction, and since p P maxf1; qg implies
ðp� qÞanþ2 � ð1� 2qÞanþ1 > 0.

Now f 00ðxÞ ¼ ðnþ 2Þðnþ 3Þxnþ1 � 2anþ3, which is either positive for all x P 1 or has one sign change, from negative to
positive. Since f 0ð1Þ < 0 and limx!1f 0ðxÞ ¼ 1, it follows that f 0ðxÞ has one sign change, from negative to positive, on the
interval ð1;1Þ. The same then holds for f ðxÞ for the same reason. If r denotes the zero of f ðxÞ on the interval ð1;1Þ, then we
have f 0ðrÞ > 0, whence the zero is simple. h
Lemma 3.3. If n is even, then the polynomial fnðxÞ has no zeros on the interval ½1;1Þ.
Proof. Let f ðxÞ ¼ fnðxÞ. If n is even, then
fnðxÞ ¼ �xnþ3 � anþ3x2 þ ðanþ1 þ qanþ2Þx� anþ2:
Note that
f ð1Þ ¼ �1� anþ3 þ ðq� 1Þanþ2 þ anþ1 ¼ �1� ðp� qþ 1Þanþ2 þ ð1� qÞanþ1 � an < 0:
Since p P maxf1; qg, we also have for all x P 1,
f 0ðxÞ ¼ �ðnþ 3Þxnþ2 � 2anþ3xþ qanþ2 þ anþ1 ¼ �ðnþ 3Þxnþ2 þ ðq� 2pxÞanþ2 þ ð1� 2qxÞanþ1 � 2xan

¼ �ðnþ 3Þxnþ2 þ ðpqþ 1� 2qx� 2p2xÞanþ1 þ ðq2 � 2x� 2pqxÞan þ ðq� 2pxÞan�1 < 0;
being the sum of negative terms (except for possibly the last, which can be zero). Thus, f ðxÞ < 0 for all x P 1. h
Theorem 3.4.

(i) If n is odd, then the polynomial Q nðxÞ has one zero on the interval ð�1;�1�, and it is simple.
(ii) If n is even, then the polynomial Q nðxÞ has no zeros on ð�1;�1�.
Proof. First suppose n is even. Then the polynomial fnðxÞ has no zeros for x P 1, by Lemma 3.3. Since fnðxÞ ¼ cð�xÞQnð�xÞ, it
follows that QnðxÞ has no zeros for x 6 �1. Note further that cð�xÞ has no zeros for x P 1.

Now assume n is odd. By Lemma 3.1, the polynomials f1ðxÞ and f3ðxÞ have one zero for x P 1, and it is simple. By Lemma
3.2, the same holds true of fnðxÞ for all n P 5 odd. By (4) and the fact that cð�xÞ has no zeros for x P 1, it follows that Qnð�xÞ
has one zero for x P 1. Thus, QnðxÞ has one (simple) zero for x 6 �1 when n is odd, which completes the proof. h
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By Descartes’ rule of signs, the equation cðxÞ ¼ 0 has one positive root, which we will denote by k.

Theorem 3.5. Let rn denote the real zero of QnðxÞ, where n P 1 is odd. Then rn ! �k as n!1.
Proof. In what follows, n will denote an odd integer, except in one place where stated otherwise. Equivalently, we show that
sn ! k as n!1, where sn denotes the real zero of fnðxÞ. Recall that
fnðxÞ ¼ xnþ3 � anþ3x2 þ ðanþ1 þ qanþ2Þx� anþ2:
Let in denote the positive inflection point of fnðxÞ. We will show
in < sn < k ð10Þ
for all n sufficiently large, and
lim
n!1

in ¼ k: ð11Þ
Taken together, (10) and (11) imply sn ! k, as desired.
To do so, first recall that for all non-negative integers n, we have
an ¼ c1k
n þ c2an þ c3b

n ð12Þ
for some constants c1; c2; c3, where the equation cðxÞ ¼ x3 � px2 � qx� 1 ¼ 0 has distinct roots k;a, and b (with k the positive
root). Then the roots a and b are either distinct negative real numbers, or a conjugate pair of complex numbers that are not
real. In the former case, note that �1 < a; b < 0 since cðxÞ has no zeros for x 6 �1. In the latter case, note that
jaj2 ¼ jbj2 ¼ ab ¼ 1

k < 1 (observe that k > 1 since cð1Þ ¼ �p� q < 0), which implies jaj; jbj < 1. In both cases, we then have
an � c1k

n for large n. If cðxÞ ¼ 0 has a repeated (necessarily negative) root a, then
an ¼ b1k
n þ b2an þ b3nan; ð13Þ
where b1; b2, and b3 are constants and �1 < a < 0, which implies an � b1k
n for large n.

Taking n ¼ 0;n ¼ 1 and n ¼ 2 in (12), recalling a0 ¼ a1 ¼ 0 and a2 ¼ 1 and solving the resulting system gives
c1 ¼
1

ðk� aÞðk� bÞ ; ð14Þ
which is always seen to be a positive real number (note that in the case when a and b are not real, c1 is the product of a non-
zero complex number with its conjugate). Performing the same calculation using (13) shows that formula (14) also holds in
the case when a ¼ b.

Next, observe that the positive point of inflection in when n is odd is given by
in ¼
2anþ3

ðnþ 2Þðnþ 3Þ

� �1=ðnþ1Þ

:

Since anþ3 � c1k
nþ3, with c1 a positive constant, we have limn!1ðanþ3Þ1=ðnþ1Þ ¼ k and (11) follows. Furthermore, from the proof

of Lemma 3.2 above, we see that if n P 5, then in < sn, since both fnð1Þ < 0 and f 0nð1Þ < 0 in this case.
To complete the proof, we must show that sn < k for all n sufficiently large. To do so, we show that fnðkÞ > 0 for all large n

as fnð1Þ < 0 if n P 3. Note first that
fnðkÞ ¼ knþ3 � anþ3k
2 þ ðanþ1 þ qanþ2Þk� anþ2 � knþ3 1� c1k

2 þ c1

k
þ qc1 �

c1

k

� �
¼ knþ3ð1þ qc1 � c1k

2Þ;
as the remaining terms in fnðkÞ coming from the Binet formulas are bounded by M for some positive constant M for all n.
Thus, if it is the case that
1þ qc1 � c1k
2 > 0; ð15Þ
then fnðkÞ will be positive for all large n.
Since �q ¼ kaþ abþ bk, we see from (14) that (15) is equivalent to
1 > c1ðk2 � qÞ ¼ k2 þ ðaþ bÞkþ ab

k2 � ðaþ bÞkþ ab
¼

k2 þ ðaþ bÞkþ 1
k

k2 � ðaþ bÞkþ 1
k

:

Note that cðpÞ ¼ �pq� 1 < 0, which implies k > p. Then p ¼ kþ aþ b implies aþ b < 0, which gives the last inequality and
hence (15). This completes the proof. h



Table 1
Some real zeros of Q nð�xÞ, where k is the positive zero of cðxÞ.

n n ðp; qÞ (1,0) (1,1) (2,1) (10,1)

n ¼ 1 1 1 2 10
n ¼ 5 1.34714 1.59674 2.37536 10.07251
n ¼ 9 1.39756 1.69002 2.44325 10.08699
n ¼ 49 1.45131 1.80885 2.52594 10.10436
n ¼ 99 1.45840 1.82403 2.53637 10.10653
n ¼ 199 1.46197 1.83165 2.54159 10.10762

k 1.46557 1.83928 2.54681 10.10871
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In Table 1 above, we illustrate Theorem 3.5 for four cases of ðp; qÞ.

4. Further results

We have shown that the polynomial QnðxÞ given by (2) above has one real zero when n is odd and no real zeros when n is
even, under the assumption that p and q are non-negative real numbers satisfying p P maxf1; qg. While the problem of
determining necessary and sufficient conditions on positive numbers p and q so as to assure that Q nðxÞ has one real zero
when n is odd and no real zeros when n is even seems to be more difficult and may not be possible, we remark here that
we did find examples where p and q were both positive with Q nðxÞ possessing three real zeros. For example, when
n ¼ 19; p ¼ 5 � 10�8 and q ¼ :125, then QnðxÞ has zeros of approximately �:491;�:763, and �:858.

In the odd case, we have shown further that the sequence of real zeros rn of Q nðxÞ converges to �k, where k is the positive
root of the equation cðxÞ ¼ 0. In this section, we consider the monotonicity of the sequence of real zeros rn of Q nðxÞwhen n is
odd. This monotonicity is equivalent to the following inequality concerning the sequence an.

Proposition 4.1. Suppose n P 3 is odd. Then rn < rn�2 if and only if
ðanþ2Þnþ1 � panþ2ðanþ1Þnþ1 � anðanþ1Þnþ1
> 0: ð16Þ
Proof. First note that
Q nðxÞ � x2Q n�2ðxÞ ¼ anþ2 þ xanþ1; n P 3: ð17Þ
Then rn < rn�2 if and only Qnðrn�2Þ > 0, i.e.,
rn�2 > �
anþ2

anþ1
; n P 3; ð18Þ
upon taking x ¼ rn�2 in (17). Observe that (18) is equivalent to
Q n�2ð�bnþ2Þ < 0; ð19Þ

where bn :¼ an

an�1
. Substituting x ¼ �bnþ2 into
Q n�2ðxÞ ¼
fn�2ð�xÞ

cðxÞ

and noting that �bnþ2 < �1 implies cð�bnþ2Þ < 0, we see that (19) is equivalent to
fn�2ðbnþ2Þ > 0: ð20Þ
Now

ðanþ1Þnþ1fn�2ðbnþ2Þ ¼ ðanþ2Þnþ1 � a2

nþ2ðanþ1Þn þ anþ2ðan�1 þ qanÞðanþ1Þn � anðanþ1Þnþ1

¼ ðanþ2Þnþ1 � anþ2ðanþ1Þnðanþ2 � an�1 � qanÞ � anðanþ1Þnþ1

¼ ðanþ2Þnþ1 � panþ2ðanþ1Þnþ1 � anðanþ1Þnþ1
;

whence (16) follows from (20). h

Remark: In a manner similar to the proof of Theorem 3.5 above, we are able to show that (16) holds for all odd n suffi-
ciently large. That is, the sequence of zeros rn at some point is decreasing.

Though we do not have a complete proof of inequality (16) for all p and q, we suspect that it does hold in all cases. We do
have a proof in the case p ¼ q ¼ 1 corresponding to the Tribonacci coefficient polynomials qnðxÞ, which we now present. As
can be seen, the steps in this proof could be applied to sequences an for any given non-negative p and q such that
p P maxf1; qg, especially for p and q near 1. See [2, Theorem 3.1] for the comparable result concerning the Fibonacci coef-
ficient polynomials pnðxÞ.
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To prove (16) in the case p ¼ q ¼ 1, we start by estimating the zeros, which we will denote by h;l, and m, of the charac-
teristic polynomial cðxÞ ¼ x3 � x2 � x� 1. By any numerical method, we have
h � 1:839; l � �0:419þ 0:606i; m ¼ l:
Recall the constants c1; c2 and c3 appearing in the proof of Theorem 3.5 above, and note that they are given in this case by
c1 ¼
1

ðh� lÞðh� mÞ � 0:182; c2 ¼
1

ðl� hÞðl� mÞ ; c3 ¼
1

ðm� hÞðm� lÞ :
We remark that in the estimates of the roots h;l and m, and of the constant c1, we have truncated the decimal expansion at
three places.

We will need the following estimate of the ratio of two adjacent Tribonacci numbers.

Lemma 4.2. If n P 7, then
Tnþ2

Tnþ1
� h

����
���� < 2

c1h
nþ1 : ð21Þ
Proof. By the Binet formula for Tn, we have for all n P 1,
Tnþ2

Tnþ1
� h

����
���� ¼ jTnþ2 � Tnþ1hj

jTnþ1j
¼

c2ðl� hÞlnþ1 þ c3ðm� hÞmnþ1
�� ��

jTnþ1j
6

lnþ1

l�m

��� ���þ mnþ1

m�l

��� ���
jTnþ1j

6

jljnþ1

jImðlÞj

c1h
nþ1 � lnþ1

ðl�mÞðl�hÞ þ mnþ1

ðm�lÞðm�hÞ

��� ��� :

To bound the last expression, note that all for n P 1, we have
jlnþ1j
jImðlÞj <

jlj
jImðlÞj <

5
4

and
lnþ1

ðl� mÞðl� hÞ þ
mnþ1

ðm� lÞðm� hÞ

����
���� ¼ hðmnþ1 � lnþ1Þ � lmðmn � lnÞ

ðl� mÞðh� lÞðh� mÞ

����
���� 6 2jhjjljnþ1

jðh� lÞðh� mÞj � jl� mj þ
2jlmjjljn

jðh� lÞðh� mÞj � jl� mj

<
jljnþ1

jImðlÞj þ
jmjnþ1

jImðmÞj ¼
2jljnþ1

jImðlÞj < 2 � 5
4
¼ 5

2
:

Thus, we
Tnþ2

Tnþ1
� h

����
���� < 5

4

c1h
nþ1 � 5

2

<
2

c1h
nþ1 ;
which implies (21), provided the second inequality holds for all n P 7. And it is seen to hold since n P 7; :18 < c1 < :2, and
h > 1:8 imply
5c1h
nþ1

4
þ 5 <

hnþ1

4
þ 5 < ð:36Þhnþ1 < 2c1h

nþ1: �
We now prove the monotonicity of the real zeros of the Tribonacci coefficient polynomials qnðxÞ for n odd.
Theorem 4.3. If n P 2, then
Tnþ2 þ Tn <
Tnþ2

Tnþ1

� �nþ1

: ð22Þ
Thus, the sequence of real zeros rn of the polynomials qnðxÞ ¼
Pn

i¼0Tiþ2xn�i for n odd is strictly decreasing.
Proof. By Proposition 4.1, we need only show the first statement. One may verify (22) directly for 2 6 n 6 6. By Lemma 4.2,
we have for all n P 7,
Tnþ2

Tnþ1
¼ hþ Tnþ2

Tnþ1
� h

� �
P h� Tnþ2

Tnþ1
� h

����
���� > h� 2

c1h
nþ1 ;
which implies
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Tnþ2

Tnþ1

� �nþ1

> h� 2
c1h

nþ1

� �nþ1

¼ hnþ1 1� 2
c1h

nþ2

� �nþ1

> hnþ1 1� 7

ð1:8Þnþ1

 !nþ1

:

Note that the function hðxÞ given by
hðxÞ ¼ 1� 7
ð1:8Þx

� �x

; x P 8;
is increasing since
d
dx

lnðhðxÞÞ ¼ ln 1� 7
ð1:8Þx

� �
þ 7x lnð1:8Þ
ð1:8Þx � 7

> � 7
ð1:8Þx

� 49

ð1:8Þ2x þ
7x lnð1:8Þ
ð1:8Þx � 7

> � 7
ð1:8Þx

� 49
3ð1:8Þx

þ 7x lnð1:8Þ
ð1:8Þx � 7

> 0
for all x P 8, where we have used the inequality lnð1� xÞ > �x� x2 if 0 < x < 1
2. Thus, we have
1� 7

ð1:8Þnþ1

 !nþ1

> :59; n P 7;
which implies
Tnþ2

Tnþ1

� �nþ1

> ð:59Þhnþ1; n P 7: ð23Þ
On the other hand, we have for all n P 1,
Tnþ2 þ Tn ¼ c1h
nþ1 hþ 1

h

� �
þ c2lnþ2 þ c3mnþ2 þ c2ln þ c3mn < c1h

nþ1 hþ 1
h

� �
þ jlj

nð1þ jlj2Þ
2jImðlÞj þ jmj

nð1þ jmj2Þ
2jImðmÞj

¼ c1h
nþ1 hþ 1

h

� �
þ jlj

nð1þ jlj2Þ
jImðlÞj < ð:19Þhnþ1 1:9þ 1

1:8

� �
þ 2 � 5

4
< ð:47Þhnþ1 þ 5

2
: ð24Þ
Combining (23) and (24) yields
Tnþ2 þ Tn < ð:47Þhnþ1 þ 5
2
< ð:59Þhnþ1 <

Tnþ2

Tnþ1

� �nþ1

; n P 7;
where the middle inequality follows from h > 1:8. This gives (22) and completes the proof. h

As can be seen, the steps in the proof above may be performed for any given p and q, once one has suitably estimated the
zeros of cðxÞ and the constant c1, though we do not have a unified proof which applies to all p and q. We remark that for some
p and q, one might need to verify all of the cases of (16) up to some fairly large n. But for p and q both near 1 at least, this n
should be relatively small, as the zeros of cðxÞ and the constant c1 are continuous functions of the parameters p and q.

We remind the reader of the following version of Rouché’s Theorem (see, e.g., [4]).

Theorem 4.4 (Rouché). If pðzÞ and qðzÞ are analytic interior to a simple closed Jordan curve C, and are continuous on C, with
jpðzÞj > jqðzÞj; z 2 C;
then the functions pðzÞ � qðzÞ and pðzÞ have the same number of zeros interior to C.
We conclude with the following general result which concerns all of the zeros of QnðxÞ. See [2, Theorem 3.2] for the anal-

ogous result for the Fibonacci coefficient polynomials pnðxÞ.

Theorem 4.5. Suppose p P 1 P q P 0 are given real numbers. Then all of the zeros of the associated polynomials
QnðxÞ ¼

Pn
i¼0aiþ2xn�i converge in modulus as n!1 to k, the real zero of cðxÞ ¼ x3 � px2 � qx� 1.
Proof. We first note that the polynomial cðxÞ has one real zero, which follows from the assumptions on p and q, and this
zero, which we will denote by k, is greater than one since cð1Þ < 0. The other two zeros of cðxÞ are complex conjugates of
modulus 1ffiffi

k
p < 1. From the Binet formula, we see that an � kkn when n is large for some positive constant k.

First suppose z 2 C, where jzj ¼ a and a > k is fixed. We then have
jznþ3j ¼ anþ3 > anþ3jzj2 þ ðanþ1 þ qanþ2Þjzj þ anþ2 P janþ3z2 � ðanþ1 þ qanþ2Þzþ anþ2j
for all n sufficiently large. By Rouche’s Theorem, it follows for such n that
fnðzÞ ¼ znþ3 � anþ3z2 þ ðanþ1 þ qanþ2Þz� anþ2
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has the same number of zeros inside the disk jzj < a as does gðzÞ ¼ znþ3, assuming for now that n is odd. Since
fnðzÞ ¼ cð�zÞQnð�zÞ is a polynomial of degree nþ 3, it follows that all of the zeros of QnðzÞ lie within the disk jzj < a for such
n.

Now observe that
lim
x!k�
ðkx2 � ðqþ 1Þx� 1Þ ¼ k3 � ðqþ 1Þk� 1 > k3 � pk2 � qk� 1 ¼ 0;
which implies kx2 � ðqþ 1Þx� 1 > 0 on the interval ðx; kÞ for some x, where 1 < x < k. Note that the constant x depends
only on p and q (through k).

Next suppose jzj ¼ b, with b fixed and x < b < k. Then we have
janþ3z2 � ðanþ1 þ qanþ2Þzþ anþ2j > anþ3b2 � ðbqþ bþ 1Þanþ2 > bnþ3 ¼ jznþ3j
for all n sufficiently large since an � kkn implies
anþ3b2 � ðbqþ bþ 1Þanþ2 � kknþ2ðkb2 � ðqþ 1Þb� 1Þ;
with kb2 � ðqþ 1Þb� 1 > 0 as x < b < k. By Rouche’s Theorem, it follows for such n that fnðzÞ has the same number of zeros
inside the disk jzj < b as does hðzÞ ¼ anþ3z2 � ðanþ1 þ qanþ2Þzþ anþ2. From the assumptions on p and q, we have
ðanþ1 þ qanþ2Þ

2 � 4anþ3anþ2 < 0, and thus the zeros of hðzÞ are not real. If r denotes one of these zeros, then
jrj2 ¼ rr ¼ anþ2

anþ3
< 1;
which implies both zeros of hðzÞ lie within the disk jzj < b and thus fnðzÞ has two zeros within this disk. Since
fnðzÞ ¼ cð�zÞQnð�zÞ and since the two complex zeros of the polynomial cð�zÞ have modulus less than one and thus lie within
jzj < b, it follows that QnðzÞ has no zeros within jzj < b for n sufficiently large. Thus, given a and b, where x < b < k < a, we
see that Q nðzÞ has all of its zeros within the annulus b 6 jzj < a for n large enough. Allowing a and b to approach k completes
the proof in the odd case. The even case follows in a similar manner, upon considering fnð�zÞ in place of fnðzÞ. h

The above result will probably hold for other p and q as well, though we do not have a proof which covers cases when
q > 1. Taking p ¼ q ¼ 1 in the prior theorem gives the following result concerning Tribonacci coefficient polynomials.

Corollary 4.6. All of the zeros of the polynomials qnðzÞ ¼
Pn

i¼0Tiþ2xn�i converge in modulus as n!1 to h � 1:839, the real root
of the equation x3 � x2 � x� 1 ¼ 0.
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