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Continued Fractions and Generalized Patterns

TOUFIK MANSOUR

Babson and Steingrimsson (2000, Séminaire Lotharingien de Combinatoire, B44b, 18) introduced
generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must
be adjacent in the permutation.

Let f7.,(n) be the number of 1-3-2-avoiding permutations on n letters that contain exactly r occur-
rences of T, where 7 is a generalized pattern on k letters. Let F7., (x) and Fr(x, y) be the generating
functions defined by Fr.,(x) = Yoo fr:r()x" and Fr(x,y) = > ,~o Fr.r(x)y". We find an
explicit expression for Fr (x, y) in the form of a continued fraction for t given as a generalized pat-
tern: T = 12-3-...-k, v = 21-3-...-k, vt = 123...k, or T = k...321. In particular, we find
Fr(x,y) for any T generalized pattern of length 3. This allows us to express Fy.,(x) via Chebyshev
polynomials of the second kind and continued fractions.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Let [p] = {1, ..., p} denote a totally ordered alphabet on p letters, and let 7 = (1, ...,
) € [p1]™, B = (Bi,...,Bm) € [p2]™. We say that v is order-isomorphic to  if for all
1 <i < j < monehas m; < m;ifand only if B; < B;. For two permutations = € S,
and t € S, an occurrence of T in 7 is a subsequence 1 < i < ip < -+ < i < n such
that (m;,, ..., ;) is order-isomorphic to 7; in such a context 7t is usually called the pattern
(classical pattern). We say that 7w avoids t, or is T-avoiding, if there is no occurrence of T in 7.
More generally, we say 7 containing T exactly r times, if there exists r different occurrences
of tinm.

The set of all T-avoiding permutations of all possible sizes including the empty permutation
is denoted S(7). Pattern avoidance proved to be a useful language in a variety of seemingly
unrelated problems, from stack sorting [8] to singularities of Schubert varieties [10]. A com-
plete study of pattern avoidance for the case t € S3 is carried out in [16].

On the other hand, [1] introduced generalized permutation patterns that allow the require-
ment that two adjacent letters in a pattern must be adjacent in the permutation. The idea of [1]
introducing these patterns was the study of Mahonian statistics.

We write a classical pattern with dashes between any two adjacent letters of the pattern,
say 1324, as 1-3-2-4, and if we write, say 24-1-3, then we mean that if this pattern occurs in
permutation 7, then the letters in the permutation 7 that correspond to 2 and 4 are adjacent.
For example, the permutation w = 35421 has only two occurrences of the pattern 23-1,
namely the subsequences 352 and 351, whereas 7 has four occurrences of the pattern 2-3-1,
namely the subsequences 352, 351, 342 and 341.

Reference [3] presented a complete solution for the number of permutations avoiding any
pattern of length three with exactly one adjacent pair of letters. Reference [4] presented a
complete solution for the number of permutations avoiding any two patterns of length three
with exactly one adjacent pair of letters. Reference [7] almost presented results avoiding two
or more 3-patterns without internal dashes, that is, where the pattern corresponds to a con-
tiguous subword in a permutation. Besides, [5] presented the following generating functions
regarding the distribution of the number of occurrences of any generalized pattern of length 3:

2f (y)erfM=y+Dx

Zyqu)nﬁ:
~ 7! fO)+y+ 1+ () —y—Del/O
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where ()7 is the number of occurrences of T in 7w, f(y) = +/(y — D(y + 3).
The purpose of this paper is to point out an analogue of [15], and some interesting conse-

quences of this analogue. Generalizations of this theorem have already been given in [6, 9, 12].
In the present paper we study the generating function for the number 1-3-2-avoiding per-
mutations in S, that contain a prescribed number of generalized pattern 7. The study of
the obtained continued fraction allows us to recover and to present an analogue of the re-
sults of [2, 6, 9, 12] that relates the number of 1-3-2-avoiding permutations that contain no
12-3-...-k (or 21-3-...-k) patterns to Chebyshev polynomials of the second kind.

Let fz.r(n) stand for the number of 1-3-2-avoiding permutations in S, that contain exactly r
occurrences of . We denote by Fr.,.(x) and F; (x, y) the generating function of the sequence
{/fr:r(M)}n=0 and { f7;, (n)}n,r>0, respectively, that is,

For(®) =Y furmx",  Folx,y) =Y Fr(x)y.

n>0 r>0

The paper is organized as follows. The cases v = 12-3-...-k, v = 21-3-...-k, T =
123...k,and t = k...321 are treated in Section 2. In Section 3, we present the cases T =
123, 213, 231, 312, and 321, that is, t is a 3-letters generalized pattern without dashes. In
Section 4, we treat the cases when 7 is a 3-letters generalized pattern with one dash. Finally,
in Section 5, we present examples of restricted more than one generalized pattern of 3-letters.

2. FOUR GENERAL CASES

In this section, we study the following four cases: t = 12-3-...-k, 7 = 21-3-...-k, T =
12...k,and T = k...21, by the following three subsections.

2.1.  Pattern 12-3-...-k. Our first result is a natural analogue of the main theorems of [9,
12, 15].

THEOREM 2.1. The generating function Fiy-3- _x(x,y) for k > 2 is given by the conti-

nued fraction
1

d
d Xyl
I —x+xyh — y 7
l—x+xy2 ————
dy _xy 3

I—x+xy

where d; = (]’(:]2), and (Z) is assumed O whenever a < b orb < Q.

PROOF. Following [12] we define n; (), j > 3, as the number of occurrences of 12-3-.. .-
in r. Define 1, (r) for any 7, as the number of occurrences of 12 in 7, 1y (;r) as the number
of letters of m, and no(r) = 1 for any 7, which means that the empty pattern occurs exactly
once in each permutation. The weight of a permutation 7 is a monomial in k independent
variables q1, . .., gx defined by

1 ()
i
Jj=1

wi () =

The total weight is a polynomial

Wilgr, - q) = Y wi(m).

reS(1-3-2)
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The following proposition is implied immediately by the definitions.
PROPOSITION 2.2. Fip-3- -k (x,y) = Wi(x, 1,...,1,y) fork > 2.

We now find a recurrence relation for the numbers n;(x). Let 7 € S, so that 7 =
(', n, 7).

PROPOSITION 2.3. For any nonempty & € S(1-3-2)
() =n;(") +n;@") +nj-1 (),
where j # 2. Besides, if ' is nonempty then
m(r) = n") +m@") +1,

otherwise
m () = n").

PROOF. Let [ = zm~!(n). Since 7 avoids 1-3-2, each number in 7’ is greater than any
of the numbers in 7”. Therefore, 7’ is a 1-3-2-avoiding permutation of the numbers {n —
I+ 1,n—1+2,...,n— 1}, while 7" is a 1-3-2-avoiding permutation of the numbers
{1,2,...,n — 1}. On the other hand, if 7/ is an arbitrary 1-3-2-avoiding permutation of the
numbers {n —[+1,n—1+2,...,n— 1} and 7" is an arbitrary 1-3-2-avoiding permutation of
the numbers {1,2,...,n — I}, thenw = (7', n, 7”) is 1-3-2-avoiding. Finally, if (i1, ..., ;)
is an occurrence of 12-3-...-j in 7 then either i; < [, and so it is also an occurrence of
12-3-...-jinn’, or iy > [, and so it is also an occurrence of 12-...-j in 7", ori; = [, and
so (i1,...,ij—1) is an occurrence of 12-3-...-(j — 1) in 7', where j # 2. For j = 2 the
proposition is trivial. The result follows. O

Now we are able to find the recurrence relation for the total weight W. Indeed, by Propo-
sition 2.3,

k
j ()
Welgr, g =1+ > []4/"

@#reS(1-3-2) j=1

SESID VD ol | UL LS

G#n'eS(1-3-2) 7" €S (1-3-2) j=1

k—1 k

- : 7y ")
[T@asn?™ a0+ > a[la)™"
=2 77eS1-3-2)  j=1

Hence
Wilgqt, - q0) =1+ qWilqi, -, qk)
+a12Wi(qr, ... qi) (Wi(q1, 9293, - - - gk—19k, q) — D). (1)
Following [12], for any d > 0 and 2 < m < k define
d G
q mo_ l_[qjj :
j=2

recall that (7)) = 0ifa < b or b < 0. The following proposition is implied immediately by
the well-known properties of binomial coefficients.
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PROPOSITION 2.4. Foranyd > 0and2 <m <k

d,m d,m+1

q q — qd+l,m.

Observe now that Wr(q1, ..., qx) = Wi(q1, qo,z, R qo’k) and that by (1) and Propo-
sition 2.4

Wi(gr, q%%, ..., q"" =14+ i Wi (g1, q%2, ..., q*%)
+ 019 Wi(q1, %%, . q Y Wi(qr, T2, L TR — 1.

Therefore

Wk(ql""’qk): q]qO.Z

T2
l-qi+qiq2——— 19"

1=q1+q1 22 - 1=

1—q1+q194°% -

To obtain the continued fraction representation for F(x, y; k) it is enough to use Propo-
sition 2.2 and to observe that

d
q19"? — xy(i2).
Q1=x,q2=...=qk—1=1,qx=y
O
COROLLARY 2.5.
1—x+xy—/(1—x)2=2x(1+x)y+ x2y2
F(x,y;:2) = ;
2xy
in other words, for any r > 1
r+1 n \?
e =255 (1)
PRrROOF. For k = 2, Theorem 2.1 yields
Fia(x,y) :
12X, y) =
l—x+xy— 17x+xyfyx7y”
I—x+xy—=—=
which means that 1
Fia(x,y) = .
12(x, ) Il —x4+xy—xyFp(x,y)
So the rest is easy to see. O

Now, we find an explicit expression for Fip-3- _t.-(x) where 0 < r < k — 2. Following
[12], consider a recurrence relation

1

Ti=—+—,
/ 1 —xTj

j=1L 2
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The solution of (2) with the initial condition 7o = 0 is denoted by R;(x), and the solution
of (2) with the initial condition

To = Gi2-3-..-k(x,y) = s
o (5%)
k—l)_ Xy(le)

1—X+xy( 1 A A
I—X+X}v(é)_&

is denoted by S (x, y; k), or just S; when the value of k is clear from the context. Our interest
in (2) is stipulated by the following relation, which is an easy consequence of Theorem 2.1:

Fro-a- -k(x,y) = Sk—2(x, y5 k). (3
Following [12, Eqn. (4)], forall j > 1

1—x +xy(k52) —

Ui-1(57)

Rj(x) = 4)

where Uj(cos0) = sin(j + 1)0/sin6 are the Chebyshev polynomials of the second kind.
Next, we find an explicit expression for §; in terms of G and R;.

LEMMA 2.6. Forany j > 2 and any k > 2
—xR;_1(x)G12-3-..-k (x, y)

1
Si(x,y1 k) = Rj(x) :
iy 7 1= xRj(x)Gia-3- k(. Y)

&)

PROOF. Indeed, from (2) and Sp = G we get S| = 1/(1 —xG). On the other hand, Ry = 0,
Ry = 1,50 (5) holds for j = 1. Now let j > 1, then by induction

s 1 1 l1-xR; G
j= = : R DR G
1—xS: 1 — xR x(I-xR;_2)R;_1G
. ] ! . J ! 1 - 1—)’CRJ*,II
Relation (2) for Rj and R;_; yields (1 —xR; 2)R;j_1 = (1 —xR;_1)R; = 1, which together
with the above formula gives (5). O

As a corollary from Lemma 2.6 and (3) we get the following expression for the generating
function Fip-3-. -r(x, y).

COROLLARY 2.7. Foranyk >3

Fio-a- 4(x,y) = Re(x) + (Rica(x) = Re3(0)) Y (xRea ()G 1234 (x, )"

m>1
Now we are ready to express the generating function Fip-3- ., (x) where 0 <r <k —2,
via Chebyshev polynomials.
THEOREM 2.8. Forany k > 3, Fi2-3- k. (X) is a rational function given by

UG (50)

Fio3- k;r(x) = . ) 1<r=<k-2,
¢ —x)’UkH(Z\l/;)
Uirt(57)

Fio3- -ko(X) = ———7
V¥UzR)

where U; is the jth Chebyshev polynomial of the second kind.
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PROOF. Observe that G12-3-. ¢ (x, y) = ﬁ . # + yk_lP(x, y), so from Corol-
Ta-0z?
lary 2.7 we get
k mk—2
X m—14n
Fio-a- 4(x, y) = Ri(x) + (Re2(x) = Re3(0)) Y (1 — Rk(x)> Z( . )
m=1 n=1
x2n k—1 p/
T < n. " B P 9 9
T +y (x,y)

where P(x,y) and P’(x, y) are formal power series. To complete the proof, it suffices to
use (4) together with the identity U 3_1(1) — U, (2)U,—2(z) = 1, which follows easily from

the trigonometric identity sin®nf — sin? 0 = sin(n 4+ 1)6 sin(n — 1)6. O
2.2.  Pattern21-3-...-k. Our second result is a natural analogue of the main theorems of [9,
12, 15].
THEOREM 2.9. Foranyk > 2,
X
For3- -k(x,y) = 1= — 7 .
Xy — 1z x
b I

where d; = (]’(:;), and (Z) is assumed O whenever a < b or b < Q.

PROOF. Following [12] we define v;(rr), j > 3, as the number of occurrences of 21-3- .. .-
in 7. Define v, (;r) for any 7, as the number of occurrences of 21 in 7, vy (;r) as the number of
letters of v, and vo(;r) = 1 for any 7, which means that the empty pattern occurs exactly once
in each permutation. The weight of a permutation 7 is a monomial in k£ independent variables
q1, - - -, qx defined by

() =[]/
j=1
The total weight is a polynomial
Vilgr, g0 = Y u).
7eS(1-3-2)
The following proposition is implied immediately by the definitions.
PROPOSITION 2.10. Fri-3- -k (x,y) = Vi(x, 1,...,1,y) fork > 2.

We now find a recurrence relation for the numbers v;(w). Let 7 € S, so that 7 =
(', n,7").

PROPOSITION 2.11. For any nonempty w € S(1-3-2)
Vi) =) +vi@") +vi_i(n),
where j # 2. Besides, if T is nonempty then
v () = v + ") + 1,

otherwise
vy () = v ().
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PROOF. Similar to Proposition 2.3 we get 7 avoids 1-3-2 if and only if 7’ is a 1-3-2-
avoiding permutation of the numbers {n — [ + 1,n — 1 +2,...,n — 1}, while 7" is a 1-3-2-
avoiding permutation of the numbers {1, 2, ..., n—/}. Finally, if (1, ..., ;) is an occurrence
of 21-3-...-j in 7 then either i; < [ and so it is also an occurrence of 21-3-...-j in 7/, or
i1 > [ and so it is also an occurrence of 21-3-...-j in 7", or ij =landso (i1,...,ij—1)is
an occurrence of 21-3-...-(j — 1) in 7/, where j # 2. For j = 2 the proposition is trivial. O

Now we are able to find the recurrence relation for the total weight V. Proposition 2.11
yields

k
j (77)
Vitgr, a0 =1+ > []e/"

@#reS(1-3-2) j=I

=1+ Y

O£ eS(1-3-2)

i k-1
V'(n”) /+1 . / !
Z l_[qu .qu(ﬂ) g - H(Qjﬁljﬂ)v-/(”) -q,‘:"(")

7'eS(1-3-2) j=1 j=2
/ k-l

+ Z 611qlv(n)qlfk(”)H(qu]'+1)"-"(”).

7'eS(1-3-2) j=2

Hence

Vi(qr, ... q) =1+ q1Vi(q1, @293, - - -, Gk—19k, Gk)
+q192Vi(q1, 9293, - - . Gk—1qk, g) (Vi(q1, g2, ... qx) — 1). (6)

Observe now that Vi(q1, ..., qx) = Vi(g1, q%2, ..., q%*) and by (6) and Proposition 2.4
we get
Velgr, g, a = T+ qiVilgr, a2, g0
+aq197Vilgr, ¢ dT Y Vigr g g - D,

To obtain the continued fraction representation for F>j-3- -x(x, y) it is sufficient to use
Proposition 2.10 and to observe that

a19"? — xy(i2)

q1=x,q2=...=qr—1=1,qx=y

COROLLARY 2.12.

1—x+xy—\/(1 —x)2 =2x(1 +x)y + x2y2
2xy

Fi(x,y) =

s

in other words, for any r > 1

r+1 n \?
e =025 ()

PROOF. For k = 2, q1 = x, and g2 = y; Proposition 2.10 and (6) yields F>i(x,y) =
1+ xF(x,y) +xyFar1(x, y)(F21(x, y) — 1), which means F»;(x,y) = Fia(x, y). Using
Corollary 2.5 we have the desired result. g
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Now, we are ready to find an explicit expression for F21-3- —k,(x) where 0 <r <k — 2.

Consider a recurrence relation
, X
Ti=1— —m—+,
J y_ 1
T/{,l(x)

j=1 )

The solution of (7) with the initial condition 7, = 0 is given by R j(x) (Lemma 2.13), and the
solution of (7) with the initial condition

Ty = Gaj3- ik (x, y) =

is denoted by S’ (x, y; k), or just S’; when the value of k is clear from the context. Our interest
in (7) is stipulated by the following relation, which is an easy consequence of Theorem 2.9:

P13 -k (x,y) = Si(x, ¥ k). ®)

First of all, we find an explicit formula for the functions ij (x) in (7).

LEMMA 2.13. Forany j > 1,
Ti(x) = R;j(x). )

PROOF. Indeed, it follows immediately from (7) that 7;j(x) = 0 and T}(x) = 1. Let us
induce, we assume T]f_l(x) = R;_1(x), and prove that ij(x) = Rj(x). By use of (7)
X

Ti(x)=1-

x — 1

Ri-1(0)

On the other hand, following [12], R;(x) = Tﬁ‘—l) which means that Rj(x) = 1 +

(x

XR;_1(x)R;(x), hence Tj((x) = Rj(x). O
Next, we find an explicit expression for S} in terms of G and R;.
LEMMA 2.14. Forany j > 2 and any k > 2

—xR;_1(x)G21-3-. -k (x, y; k)
1 —xR;j(x)Ga13- k(x,y)

As a corollary from Lemma 2.14 and (6) we get the following expression for the generating
function Fp1-3-. -k (x, y).

(10)

, 1
Si(x, yi k) = Rj(x)

COROLLARY 2.15. Foranyk >3

P13k (x, y) = Ri(x) + (Ri—2(x) — Rg—3(x)) Z (X Ri—2(x)G21-3-. -k (x, )™

m>1

Now we are ready to express the generating function Fp1-3- _k.,(x) where 0 <r <k — 2,
via Chebyshev polynomials.
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THEOREM 2.16. Forany k > 3, F>1-3- . (x) is a rational function given by
Fr1-3- opr (X)) = 1

Fr1-3- —p0(x) =

where U is the jth Chebyshev polynomial of the second kind.

PROOF. Observe that Gp1-3- -k (x,y) =1+ ]7;—7)@ + yk_1 P(x, y), so by Corollary 2.15
we get

k m
P13, k(6. y) = Ri(x) + (Rk—2(x) — Rg—3(x)) mX_:l<XRk_2(x)<1 1o xx— xy>>

+ P (2, y),

where P(x,y) and P’(x, y) are formal power series. To complete the proof, it suffices to
use (9) together with the identity U,%_l(z) —U,(Q)Uy—2(z) = 1. m]

REMARK 2.17. Theorem 2.16 and [12] yield the number of 1-3-2-avoiding permutations
in S, such that contain exactly r times the pattern 21-3-...-k is the same number of 1-3-2-
avoiding permutations in S, such that contain exactly r times the pattern 1-2-3 - - - -k, for all
r=0,1,2,...,k — 2. However, the question is if there exists a natural bijection between
the set of 1-3-2-avoiding permutations in S, such that contain exactly r times the generalized
pattern 21-3-. .. -k, and the set of 1-3-2-avoiding permutations in S,, such that contain exactly
r times the classically pattern 1-2-3-. .. -k.

2.3. Patterns: 1T = 12...kandt = k...21. Letm € S,; we say  has d-increasing
canonical decomposition if  has the following form

m=@n? . wtag, ... a0, ar,n, 7Y,
where all the entries of 7/ are greater than all the entries of 7/*!, and ag < ay_1 < - <
a; < n. We say  has d-decreasing canonical decomposition if  has the following form

1 d+l _d d
7= na,. .. aq, 7 74 o))

’

where all the entries of 7/ are greater than all the entries of it andag < ag_ < -+ <

ay < n. The following proposition is the basis of all other results in this section.

PROPOSITION 2.18. Let m € S, (1-3-2). Then there exists unique d > 0 and e > 0 such
that 7w has a d-increasing canonical decomposition, and has e-decreasing canonical decom-
position.

PROOF. Letw € S,(1-3-2), and let ay, a4—1, ..., a;, n a maximal increasing subsequence
of 7 such that ¥ = (', ag, ..., ay, n, ®”). Since 7 avoids 1-3-2 there exists d subsequences
7t/ such that w7 = (711, o ,JTd, ag,...,ap,n, "), and all the entries of 7' are greater than

all the entries of /™!, and all the entries of 79 are greater than all entries of 7”. Hence,
7 has d-increasing canonical decomposition. Similarly, there exist e unique such that = is

e-decreasing canonical decomposition. a
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Let us define I;(x, y; d) (respectively, J;(x, y; e)) as the generating function for all d-
increasing (respectively, e-decreasing) canonical decomposition of permutations in S, (1-3-2)
with exactly r occurrences of t. The following proposition is implied immediately by the
definitions.

PROPOSITION 2.19.

Fev,y) =14 ) L, yid) = 14 ) Jo(x, yie).

d=0 e>0

PRrROOF. Immediately, by definitions of the generating functions and Proposition 2.18 (1 for
the empty permutation). O

Now, we present examples for Propositions 2.18 and 2.19.

First example
THEOREM 2.20. Fi o1(x,y) = F1o. k(x,y), such that

k=2

Fio x(x,y) =Y x"Ffy 4 (x,y)+
n=0

xk_lFIkZi?k(x’ y)
1 —xyFia x(x,y)

PROOF. By Proposition 2.18 and definitions it is easy to obtain for all d > 0
T, ke, yid) = xR (x, ),

where s = d + 1 — k ford > k — 1, and otherwise s; = 0. So by Proposition 2.19 the
theorem holds.
Similarly, we obtain the same result for Fy_21(x, y). O

As a remark, by the above theorem, it is easy to obtain the same results for Corollaries 2.5
and 2.12.

Second example

THEOREM 2.21. Let1 < <k — 1. Then Fi-a-_ -q—1)-14+1).k(x, y) =Ui(x,1,...,1,y)
where

(d+l;rl—k)l_l (dj) d
U1(611,.-.,611)=1+Z<6]1 1_[6].,' ! HUz(pl;j,..-,Pl;,/))
d=0 j=1 j=0
and fori =1,2,...,1 pi.; = [1h2 qj('"*’), prj=qforall0<j<k—1 and p;; =

J—k+l

|- pi(;kl:; )forallj >k—1+1.

PROOF. Following [12] we define y;(), j < [ — 1, as the number of occurrences of
1-2-...-j in . Define y; (;r) for any 7, as the number of occurrences of 1-2-...-(I —1)-I(I+
1)...kin m, and yp(mr) = 1 for any m, which means that the empty pattern occurs exactly
once in each permutation. The weight of a permutation 7 is a monomial in / independent
variables q1, . .., g; defined by

1
y;j(m)
; .
j=1

u(mw) =
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The fotal weight is a polynomial
Ulgr, .-oq) = Y w(r).
neS(1-3-2)
The following proposition is implied immediately by the definitions and Proposition 2.18. O

PROPOSITION 2.22. Fio- -q—1)-14+1)..k(x,y) = Ur(x, 1,..., 1,y) fork > 1 > 1, and
U(qi,....q) =1+ Zdzo ZHGA[[ uj(mw), where Ay is the set of all d-increasing canonical
decomposition permutations in S(1-3-2).

Let us denote Uj.4(q1, ..., q1) = ZneAd uy (7).

PROPOSITION 2.23. Foranyd > 0,

(1) T (45)
Unalqr,--an=q; " [la; 7" T]Urj - pip-
j=1 =0

PROOF. Let 7 be d-increasing canonical decomposition, that is,

T = (nl,nz,...,nd,ad,...,az,al,n,ndH)

where the numbers a; < ag—1 < --- < a; < n appear as consecutive numbers in 7, all
entries of 7w/ are greater than all the entries of 77/ +1 and all entries of 7 are greater than ag.
So, by calculating u;(7) and summing over all 7 € A; we have that

(d+1[+1—k) -1 (@) d
Uia(qi,--.,q94) = q, 'nqj ! 'HUI(Pl;j,--.,Pz;j)-
j=1 =0
O
Therefore, Theorem 2.21 holds, by using Propositions 2.22 and 2.23. a

Now, let/ = k — 1 and by using Theorem 2.21, it is easy to obtain the following.

COROLLARY 2.24. Fork > 3,

k—1

Fiooe -2k (6, ) = D (0 F1- ~—2)-—1r(x, ).
Jj=0

REMARK 2.25. Similarly, the argument of d-increasing canonical decomposition, or the
argument d-decreasing canonical decomposition yields other formulae, for example, the for-
mula for Fiz-3-45(x, y).

3. THREE LETTERS PATTERN WITHOUT INTERNAL DASHES

In this section, we give a complete answer for F;(x, y) where t is a generalized pattern
without internal dashes; that is, T is 123, 213, 231, 312, and 321, by the following four sub-
sections.
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3.1. Patterns 123 and 321.
THEOREM 3.1.

1+xy—x—\/1—2x—3x2—xy(2—2x—xy)
2x(x +y —xy) '

Fio3(x, y) = Fa1(x, y) =

PROOF. Theorem 2.20 yields, Fi23(x, y) = F31(x, y) = H where
x2H?
T—xyH’
so the theorem holds. O

H=1+xH+

3.2.  Pattern 231.
THEOREM 3.2.

1 —2x 4+ 2xy — /1 —4x + 4x2 — 4x2y

F3i(x,y) = 2y

that is, for all r,n > 0

Frapor () 1 [2r x2r+l st (1) ==l ry 1\ [ 2r
. X) = _— N . n)—= — 1.
b r+1\r )1 —2x)¥+l b r+1 2r r

PROOF. Let! = 7~ (n). Since  avoids 1-3-2, each number in 7’ is greater than any of the
numbers in 7", Therefore, 7’ is a 1-3-2-avoiding permutation of the numbers {n —[ + 1,n —

I[+2,...,n—1}, while 7" is a 1-3-2-avoiding permutation of the numbers {1, 2, ...,n —1}.
On the other hand, if 7’ is an arbitrary 1-3-2-avoiding permutation of the numbers {n — [ +
I,n—1+4+2,...,n— 1} and 7" is an arbitrary 1-3-2-avoiding permutation of the numbers

{1,2,...,n—1},then 7w = (n/, n, #"") is 1-3-2-avoiding.
Now let us observe all the possibilities that 7" and 7" is empty or not. This yields

Fa31(x,y) = 1+ x + 2x(Fa31(x, y) — 1) + xy(Fa31 (x, y) — 1)?,
hence the theorem holds. O

3.3.  Pattern 213.
THEOREM 3.3.

1—x24+x2%y — /14 2x2 = 2x2y + x* — 2x4y + x4y2 — 4x
2x(1 +xy — x) ’

F3(x,y) =

PROOF. Let D(x, y) be the generating function of all 1-3-2-avoiding permutations (&', n) €
S, such that contain 213 exactly r times. Let o = (a’, n, ”); if we consider the two cases o’
empty or not we have Fy13(x, y) = 1+ D(x, y) F213(x, y). Leta = (&', n); if we observe the
two cases o’ empty or not, then (similarly)

D(x,y) = x+x2+x2y(Far3(x, ) — D+x*(D(x, y) = D) +x*(D(x, y) = 1) (Fai3(x, y) —1).
However,
+x—=xy+x(y —DF3(x,y)

I —xF3(x,y)
hence, the theorem holds. O

1
Fi3(x,y) =1+ xF3(x, y)

k]
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3.4. Pattern 312.

THEOREM 3 .4.

1—x2 4+ x%y — 14 2x2 — 202y + x% — 2x4y + x4y? — 4x

F s =
312(x, y) 22 Fxy —x)

PROOF. Let @ € S(1-3-2); if « = &, then there is one permutation, otherwise by Propo-

sition 2.18 we can write o = (al, n,ay,a, ..., a4, adtl od, ., az) where all the entries
of o/ are greater than all the entries of o/ 1l andn > a; > ap > --- > ay. Hence, for
any d = 0, 1 the generating function of these permutations in these cases is x4 s 0 (x, y).

Letd > 2;if «?t! = &, then the generating function of these permutations in this case is
x@TVF{, (x, y), otherwise the generating function is x4y F{| ) (x, y) (F312(x, y) — 1). Hence

F32(x, ) = 14 (x + x%) F312(x, y) + ZdeFflz(x, y)

d>2
+ > x My L (x y) (Fan(x, y) = D),
d=2
which means that
2 2
x“F312(x,y) Xy F3(x, y)(Fa2(x,y) — 1)
Fi(x,y) =1+ xF3(x,y) + + )
I —xF3p(x,y) I —xF3p(x,y)
so the rest is easy to see. a

4. THREE LETTERS PATTERN WITH ONE DASH

In this section, we present examples F;(x, y) where t is a generalized pattern with one
dash. Theorem 2.1 yields

THEOREM 4.1. The generating function Fi3-3(x, y) is given by the continued fraction

1

l—xtxy————
lfx+x_v27&

Theorem 2.9 yields

THEOREM 4.2. Forany k > 2,

F21-3(Xa)’)=1_ 1
X

For k = 3 and [ = 2 Theorem 2.24 yields



342 T. Mansour

THEOREM 4.3.
d—1

d .
Fio3(x, y) = 1+ xFr3(x,y) + Zxd+1y(2)F1-23(x, ] FrasGeyl, ».
d>1 j=0

COROLLARY 4.4.

1 —x—+/1—2x —3x2
Fi23,0(x) = 72 ;
—1 1 —2x — x2

Fi3;1(x) = : + ;
2x 2x+/1 —2x — 3x2
o
(1 —2x —3x2)3/2°
11x7 +43x0 +41x° — Tx* —25x3 + 22 +5x — 1

(1 —2x —3x2)3/2

Fio3.0(x) =

Floza(x) =x* — 1+

PROOF. By Theorem 4.3 and by Fj_23(x, 0) = Fj_23.0(x) we get
Fi-23.0(x) = 1 + xF1-23,0(x) + x2F12_23;()(x)7
which means the first formula holds.
By Theorem 4.3 we get
d d 2 d 3 2
—F123(x,0) = x—F1-23(x, 0)+2x" F1-23(x, 0) — F1-23(x, 0)+x~ F1-23(x, 0)" F1-23(0, 0),
dy dy dy

and by Fj23.1(x) = %F 1-23(x, ¥) |y=0 and the first formula, we get the second formula.

Similarly, by Theorem 4.3 and by Fj-23.,(x) = %!%F 1-23(x, y)|y=0 the other formulae
holds. =

THEOREM 4.5.

Fasx,y) =

PROOF. By Propositions 2.18 and 2.19, we obtain

Fr3(x,y) = 1+ xF13(x,y) Zxszd_B(xy, ¥)s
d=0

and the rest is easy to see. O

5. FURTHER RESULTS

First of all, let us denote by G+.4(x, y) the generating function for the number of permuta-
tions in Sy, (1-3-2, t) such that contain ¢ exactly r times; that is

Gr;¢(X, 7) = an Z y%(ﬂ)’

n>0 wes,(1-3-2,7)
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where ay () is the number of occurrences of ¢ in 7. In this section, (similar to previous
sections) we find G.4(x, y) in terms of continued fractions or by explicit formulae, for some
cases of T and ¢.

THEOREM 5.1. The generating functions G123.213(x, y) and G321.312(x, y) are given by

1

I —x—x(1—y)— it B
l—x—x2(1—y)— X

- 2
1,)(,)(2(1,),), 7y

equivalently,

1—x —x24+x%y — /(1 —x —x2)2 = 2yx2(1 + x + x2) + x4y?2
2x2y '

THEOREM 5.2.
G331 (x, y) = H(x, y) +x*(1 — ) H (x, y)?,

where H(x, y) = m which means the number of permutations in S, (1-3-2, 123)

such that contain 231 exactly r > 0 times is given by

« co(2=LY 4o (-
rl g 2r +1 " 2r+1)°

where C,, is the mth Catalan number.

THEOREM 5.3. The generating functions G213.123(x, y) and G312:321(x, y) are given by

l—x—x2+xy— /(1 —x—x2)2 —2xy(l — x + x2) + x2y?2
2xy(l —x) ’

As a concluding remark we note that there are many questions left to answer such as: if there
exists a bijection between, for example, the set of 1-3-2-avoiding permutations in S,, such
that contain exactly r times the generalized pattern 21-3-. .. -k, and the set of 1-3-2-avoiding
permutations in S, such that contain exactly r times the classical pattern 1-2-3-... -k, where
r=0,1,...,k—2.
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