Continued Fractions and Generalized Patterns

Toufik Mansour

Abstract

Babson and Steingrimsson (2000, Séminaire Lotharingien de Combinatoire, B44b, 18) introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation.

Let $f_{\tau ; r}(n)$ be the number of 1-3-2-avoiding permutations on n letters that contain exactly r occurrences of τ, where τ is a generalized pattern on k letters. Let $F_{\tau ; r}(x)$ and $F_{\tau}(x, y)$ be the generating functions defined by $F_{\tau ; r}(x)=\sum_{n \geq 0} f_{\tau ; r}(n) x^{n}$ and $F_{\tau}(x, y)=\sum_{r \geq 0} F_{\tau ; r}(x) y^{r}$. We find an explicit expression for $F_{\tau}(x, y)$ in the form of a continued fraction for τ given as a generalized pattern: $\tau=12-3-\ldots-k, \tau=21-3-\ldots-k$, $\tau=123 \ldots k$, or $\tau=k \ldots 321$. In particular, we find $F_{\tau}(x, y)$ for any τ generalized pattern of length 3 . This allows us to express $F_{\tau ; r}(x)$ via Chebyshev polynomials of the second kind and continued fractions.

(c) 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Let $[p]=\{1, \ldots, p\}$ denote a totally ordered alphabet on p letters, and let $\pi=\left(\pi_{1}, \ldots\right.$, $\left.\pi_{m}\right) \in\left[p_{1}\right]^{m}, \beta=\left(\beta_{1}, \ldots, \beta_{m}\right) \in\left[p_{2}\right]^{m}$. We say that π is order-isomorphic to β if for all $1 \leq i<j \leq m$ one has $\pi_{i}<\pi_{j}$ if and only if $\beta_{i}<\beta_{j}$. For two permutations $\pi \in S_{n}$ and $\tau \in S_{k}$, an occurrence of τ in π is a subsequence $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$ such that $\left(\pi_{i_{1}}, \ldots, \pi_{i_{k}}\right)$ is order-isomorphic to τ; in such a context τ is usually called the pattern (classical pattern). We say that π avoids τ, or is τ-avoiding, if there is no occurrence of τ in π. More generally, we say π containing τ exactly r times, if there exists r different occurrences of τ in π.
The set of all τ-avoiding permutations of all possible sizes including the empty permutation is denoted $\mathcal{S}(\tau)$. Pattern avoidance proved to be a useful language in a variety of seemingly unrelated problems, from stack sorting [8] to singularities of Schubert varieties [10]. A complete study of pattern avoidance for the case $\tau \in S_{3}$ is carried out in [16].
On the other hand, [1] introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. The idea of [1] introducing these patterns was the study of Mahonian statistics.
We write a classical pattern with dashes between any two adjacent letters of the pattern, say 1324, as 1-3-2-4, and if we write, say 24-1-3, then we mean that if this pattern occurs in permutation π, then the letters in the permutation π that correspond to 2 and 4 are adjacent. For example, the permutation $\pi=35421$ has only two occurrences of the pattern 23-1, namely the subsequences 352 and 351 , whereas π has four occurrences of the pattern 2-3-1, namely the subsequences $352,351,342$ and 341 .
Reference [3] presented a complete solution for the number of permutations avoiding any pattern of length three with exactly one adjacent pair of letters. Reference [4] presented a complete solution for the number of permutations avoiding any two patterns of length three with exactly one adjacent pair of letters. Reference [7] almost presented results avoiding two or more 3-patterns without internal dashes, that is, where the pattern corresponds to a contiguous subword in a permutation. Besides, [5] presented the following generating functions regarding the distribution of the number of occurrences of any generalized pattern of length 3 :

$$
\sum_{\pi \in \mathcal{S}} y^{(123) \pi} \frac{x^{|\pi|}}{|\pi|!}=\frac{2 f(y) e^{\frac{1}{2}(f(y)-y+1) x}}{f(y)+y+1+(f(y)-y-1) e^{f(y) x}},
$$

$$
\sum_{\pi \in \mathcal{S}} y^{(213) \pi} \frac{x^{|\pi|}}{|\pi|!}=\frac{1}{1-\int_{0}^{x} e^{(y-1) t^{2} / 2} d t}
$$

where $(\tau) \pi$ is the number of occurrences of τ in $\pi, f(y)=\sqrt{(y-1)(y+3)}$.
The purpose of this paper is to point out an analogue of [15], and some interesting consequences of this analogue. Generalizations of this theorem have already been given in [6, 9, 12]. In the present paper we study the generating function for the number 1-3-2-avoiding permutations in S_{n} that contain a prescribed number of generalized pattern τ. The study of the obtained continued fraction allows us to recover and to present an analogue of the results of $[2,6,9,12]$ that relates the number of 1-3-2-avoiding permutations that contain no 12-3- ...-k (or 21-3-...-k) patterns to Chebyshev polynomials of the second kind.
Let $f_{\tau ; r}(n)$ stand for the number of 1-3-2-avoiding permutations in S_{n} that contain exactly r occurrences of τ. We denote by $F_{\tau ; r}(x)$ and $F_{\tau}(x, y)$ the generating function of the sequence $\left\{f_{\tau ; r}(n)\right\}_{n \geq 0}$ and $\left\{f_{\tau ; r}(n)\right\}_{n, r \geq 0}$, respectively, that is,

$$
F_{\tau ; r}(x)=\sum_{n \geq 0} f_{\tau ; r}(n) x^{n}, \quad F_{\tau}(x, y)=\sum_{r \geq 0} F_{\tau ; r}(x) y^{r} .
$$

The paper is organized as follows. The cases $\tau=12-3-\ldots-k, \tau=21-3-\ldots-k, \tau=$ $123 \ldots k$, and $\tau=k \ldots 321$ are treated in Section 2. In Section 3, we present the cases $\tau=$ $123,213,231,312$, and 321 , that is, τ is a 3-letters generalized pattern without dashes. In Section 4, we treat the cases when τ is a 3-letters generalized pattern with one dash. Finally, in Section 5, we present examples of restricted more than one generalized pattern of 3-letters.

2. Four General Cases

In this section, we study the following four cases: $\tau=12-3-\ldots-k, \tau=21-3-\ldots-k, \tau=$ $12 \ldots k$, and $\tau=k \ldots 21$, by the following three subsections.
2.1. Pattern $12-3-\ldots-k$. Our first result is a natural analogue of the main theorems of $[9$, 12, 15].

THEOREM 2.1. The generating function $F_{12-3-\ldots-k}(x, y)$ for $k \geq 2$ is given by the continued fraction

$$
\frac{1}{1-x+x y^{d_{1}}-\frac{x y^{d_{1}}}{1-x+x y^{d_{2}}-\frac{x y^{d_{2}}}{1-x+x y^{d_{3}}-\frac{x y^{d_{3}}}{\cdots}}}}
$$

where $d_{i}=\binom{i-1}{k-2}$, and $\binom{a}{b}$ is assumed 0 whenever $a<b$ or $b<0$.
Proof. Following [12] we define $\eta_{j}(\pi), j \geq 3$, as the number of occurrences of $12-3-\ldots-j$ in π. Define $\eta_{2}(\pi)$ for any π, as the number of occurrences of 12 in $\pi, \eta_{1}(\pi)$ as the number of letters of π, and $\eta_{0}(\pi)=1$ for any π, which means that the empty pattern occurs exactly once in each permutation. The weight of a permutation π is a monomial in k independent variables q_{1}, \ldots, q_{k} defined by

$$
w_{k}(\pi)=\prod_{j=1}^{k} q_{j}^{\eta_{j}(\pi)} .
$$

The total weight is a polynomial

$$
W_{k}\left(q_{1}, \ldots, q_{k}\right)=\sum_{\pi \in \mathcal{S}(1-3-2)} w_{k}(\pi) .
$$

The following proposition is implied immediately by the definitions.
PROPOSITION 2.2. $F_{12-3-\ldots-k}(x, y)=W_{k}(x, 1, \ldots, 1, y)$ for $k \geq 2$.
We now find a recurrence relation for the numbers $\eta_{j}(\pi)$. Let $\pi \in S_{n}$, so that $\pi=$ ($\pi^{\prime}, n, \pi^{\prime \prime}$).
Proposition 2.3. For any nonempty $\pi \in \mathcal{S}(1-3-2)$

$$
\eta_{j}(\pi)=\eta_{j}\left(\pi^{\prime}\right)+\eta_{j}\left(\pi^{\prime \prime}\right)+\eta_{j-1}\left(\pi^{\prime}\right),
$$

where $j \neq 2$. Besides, if π^{\prime} is nonempty then

$$
\eta_{2}(\pi)=\eta_{2}\left(\pi^{\prime}\right)+\eta_{2}\left(\pi^{\prime \prime}\right)+1,
$$

otherwise

$$
\eta_{2}(\pi)=\eta_{2}\left(\pi^{\prime \prime}\right) .
$$

Proof. Let $l=\pi^{-1}(n)$. Since π avoids 1-3-2, each number in π^{\prime} is greater than any of the numbers in $\pi^{\prime \prime}$. Therefore, π^{\prime} is a 1-3-2-avoiding permutation of the numbers $\{n-$ $l+1, n-l+2, \ldots, n-1\}$, while $\pi^{\prime \prime}$ is a 1-3-2-avoiding permutation of the numbers $\{1,2, \ldots, n-l\}$. On the other hand, if π^{\prime} is an arbitrary 1-3-2-avoiding permutation of the numbers $\{n-l+1, n-l+2, \ldots, n-1\}$ and $\pi^{\prime \prime}$ is an arbitrary 1-3-2-avoiding permutation of the numbers $\{1,2, \ldots, n-l\}$, then $\pi=\left(\pi^{\prime}, n, \pi^{\prime \prime}\right)$ is 1-3-2-avoiding. Finally, if $\left(i_{1}, \ldots, i_{j}\right)$ is an occurrence of $12-3-\ldots-j$ in π then either $i_{j}<l$, and so it is also an occurrence of $12-3-\ldots-j$ in π^{\prime}, or $i_{1}>l$, and so it is also an occurrence of $12-\ldots-j$ in $\pi^{\prime \prime}$, or $i_{j}=l$, and so $\left(i_{1}, \ldots, i_{j-1}\right)$ is an occurrence of $12-3-\ldots-(j-1)$ in π^{\prime}, where $j \neq 2$. For $j=2$ the proposition is trivial. The result follows.

Now we are able to find the recurrence relation for the total weight W. Indeed, by Proposition 2.3,

$$
\begin{aligned}
W_{k}\left(q_{1}, \ldots, q_{k}\right)= & 1+\sum_{\varnothing \neq \pi \in \mathcal{S}(1-3-2)} \prod_{j=1}^{k} q_{j}^{\eta_{j}(\pi)} \\
= & 1+\sum_{\varnothing \neq \pi^{\prime} \in \mathcal{S}(1-3-2)} \sum_{\pi^{\prime \prime} \in \mathcal{S}(1-3-2)} \prod_{j=1}^{k} q_{j}^{\eta_{j}\left(\pi^{\prime \prime}\right)} \cdot q_{1}^{\eta_{1}\left(\pi^{\prime}\right)+1} q_{2} \\
& \prod_{j=2}^{k-1}\left(q_{j} q_{j+1}\right)^{\eta_{j}\left(\pi^{\prime}\right)} \cdot q_{k}^{\eta_{k}\left(\pi^{\prime}\right)}+\sum_{\pi^{\prime \prime} \in \mathcal{S}(1-3-2)} q_{1} \prod_{j=1}^{k} q_{j}^{\eta_{j}\left(\pi^{\prime \prime}\right)} .
\end{aligned}
$$

Hence

$$
\begin{align*}
W_{k}\left(q_{1}, \ldots, q_{k}\right)= & 1+q_{1} W_{k}\left(q_{1}, \ldots, q_{k}\right) \\
& +q_{1} q_{2} W_{k}\left(q_{1}, \ldots, q_{k}\right)\left(W_{k}\left(q_{1}, q_{2} q_{3}, \ldots, q_{k-1} q_{k}, q_{k}\right)-1\right) . \tag{1}
\end{align*}
$$

Following [12], for any $d \geq 0$ and $2 \leq m \leq k$ define

$$
\mathbf{q}^{d, m}=\prod_{j=2}^{k} q_{j}^{\left({ }_{j-m}^{d}\right)} ;
$$

recall that $\binom{a}{b}=0$ if $a<b$ or $b<0$. The following proposition is implied immediately by the well-known properties of binomial coefficients.

PROPOSITION 2.4. For any $d \geq 0$ and $2 \leq m \leq k$

$$
\mathbf{q}^{d, m} \mathbf{q}^{d, m+1}=\mathbf{q}^{d+1, m}
$$

Observe now that $W_{k}\left(q_{1}, \ldots, q_{k}\right)=W_{k}\left(q_{1}, \mathbf{q}^{0,2}, \ldots, \mathbf{q}^{0, k}\right)$ and that by (1) and Proposition 2.4

$$
\begin{aligned}
W_{k}\left(q_{1}, \mathbf{q}^{d, 2}, \ldots, \mathbf{q}^{d, k}\right)= & 1+q_{1} W_{k}\left(q_{1}, \mathbf{q}^{d, 2}, \ldots, \mathbf{q}^{d, k}\right) \\
& +q_{1} q^{d, 2} W_{k}\left(q_{1}, q^{d, 2}, \ldots, \mathbf{q}^{d, k}\right)\left(W_{k}\left(q_{1}, \mathbf{q}^{d+1,2}, \ldots, \mathbf{q}^{d+1, k}\right)-1\right) .
\end{aligned}
$$

Therefore

$$
W_{k}\left(q_{1}, \ldots, q_{k}\right)=\frac{1}{1-q_{1}+q_{1} \mathbf{q}^{0,2}-\frac{q_{1} \mathbf{q}^{0,2}}{1-q_{1}+q_{1} \mathbf{q}^{1,2}-\frac{q_{1} \mathbf{q}^{1,2}}{1-q_{1}+q_{1} \mathbf{q}^{2,2}-\frac{q_{1} \mathbf{q}^{2,2}}{\cdots}}}} .
$$

To obtain the continued fraction representation for $F(x, y ; k)$ it is enough to use Proposition 2.2 and to observe that

$$
\left.q_{1} \mathbf{q}^{d, 2}\right|_{q_{1}=x, q_{2}=\ldots=q_{k-1}=1, q_{k}=y}=x y\binom{d}{k-2} .
$$

Corollary 2.5.

$$
F(x, y ; 2)=\frac{1-x+x y-\sqrt{(1-x)^{2}-2 x(1+x) y+x^{2} y^{2}}}{2 x y},
$$

in other words, for any $r \geq 1$

$$
f_{12}(n)=\frac{r+1}{n(n-r)}\binom{n}{r+1}^{2} .
$$

Proof. For $k=2$, Theorem 2.1 yields

$$
F_{12}(x, y)=\frac{1}{1-x+x y-\frac{x y}{1-x+x y-\frac{x y}{1-x+x y-\frac{x y}{\cdots}}} . .}
$$

which means that

$$
F_{12}(x, y)=\frac{1}{1-x+x y-x y F_{12}(x, y)}
$$

So the rest is easy to see.
Now, we find an explicit expression for $F_{12-3-\ldots-k ; r}(x)$ where $0 \leq r \leq k-2$. Following [12], consider a recurrence relation

$$
\begin{equation*}
T_{j}=\frac{1}{1-x T_{j-1}}, \quad j \geq 1 \tag{2}
\end{equation*}
$$

The solution of (2) with the initial condition $T_{0}=0$ is denoted by $R_{j}(x)$, and the solution of (2) with the initial condition

$$
T_{0}=G_{12-3-\ldots-k}(x, y)=\frac{1}{1-x+x y\binom{k-2}{0}}-\frac{x y\binom{k-2}{0}}{1-x+x y\binom{k-1}{1}-\frac{x y\binom{k-1}{1}}{1-x+x y\binom{k}{2}-\frac{x y}{}\binom{k}{2}}}
$$

is denoted by $S_{j}(x, y ; k)$, or just S_{j} when the value of k is clear from the context. Our interest in (2) is stipulated by the following relation, which is an easy consequence of Theorem 2.1:

$$
\begin{equation*}
F_{12-3-\ldots-k}(x, y)=S_{k-2}(x, y ; k) \tag{3}
\end{equation*}
$$

Following [12, Eqn. (4)], for all $j \geq 1$

$$
\begin{equation*}
R_{j}(x)=\frac{U_{j-1}\left(\frac{1}{2 \sqrt{x}}\right)}{\sqrt{x} U_{j}\left(\frac{1}{2 \sqrt{x}}\right)} \tag{4}
\end{equation*}
$$

where $U_{j}(\cos \theta)=\sin (j+1) \theta / \sin \theta$ are the Chebyshev polynomials of the second kind. Next, we find an explicit expression for S_{j} in terms of G and R_{j}.

LEMMA 2.6. For any $j \geq 2$ and any $k \geq 2$

$$
\begin{equation*}
S_{j}(x, y ; k)=R_{j}(x) \frac{1-x R_{j-1}(x) G_{12-3-\ldots-k}(x, y)}{1-x R_{j}(x) G_{12-3-\ldots-k}(x, y)} \tag{5}
\end{equation*}
$$

Proof. Indeed, from (2) and $S_{0}=G$ we get $S_{1}=1 /(1-x G)$. On the other hand, $R_{0}=0$, $R_{1}=1$, so (5) holds for $j=1$. Now let $j>1$, then by induction

$$
S_{j}=\frac{1}{1-x S_{j-1}}=\frac{1}{1-x R_{j-1}} \cdot \frac{1-x R_{j-1} G}{1-\frac{x\left(1-x R_{j-2}\right) R_{j-1} G}{1-x R_{j-1}}}
$$

Relation (2) for R_{j} and R_{j-1} yields $\left(1-x R_{j-2}\right) R_{j-1}=\left(1-x R_{j-1}\right) R_{j}=1$, which together with the above formula gives (5).
As a corollary from Lemma 2.6 and (3) we get the following expression for the generating function $F_{12-3-\ldots-k}(x, y)$.
Corollary 2.7. For any $k \geq 3$

$$
F_{12-3-\ldots-k}(x, y)=R_{k}(x)+\left(R_{k-2}(x)-R_{k-3}(x)\right) \sum_{m \geq 1}\left(x R_{k-2}(x) G_{12-3-\ldots-k}(x, y)\right)^{m}
$$

Now we are ready to express the generating function $F_{12-3-\ldots-k ; r}(x)$ where $0 \leq r \leq k-2$, via Chebyshev polynomials.
THEOREM 2.8. For any $k \geq 3, F_{12-3-\ldots-k ; r}(x)$ is a rational function given by

$$
\begin{aligned}
& F_{12-3-\ldots-k ; r}(x)=\frac{x^{r-1} U_{k-2}^{r-1}\left(\frac{1}{2 \sqrt{x}}\right)}{(1-x)^{r} U_{k}^{r+1}\left(\frac{1}{2 \sqrt{x}}\right)}, \quad 1 \leq r \leq k-2, \\
& F_{12-3-\ldots-k ; 0}(x)=\frac{U_{k-1}\left(\frac{1}{2 \sqrt{x}}\right)}{\sqrt{x} U_{k}\left(\frac{1}{2 \sqrt{x}}\right)},
\end{aligned}
$$

where U_{j} is the j th Chebyshev polynomial of the second kind.

Proof. Observe that $G_{12-3-\ldots-k}(x, y)=\frac{1}{1-x} \cdot \frac{1}{1-\frac{x^{2}}{(1-x)^{2}} y}+y^{k-1} P(x, y)$, so from Corollary 2.7 we get

$$
\begin{aligned}
F_{12-3-\ldots-k}(x, y)= & R_{k}(x)+\left(R_{k-2}(x)-R_{k-3}(x)\right) \sum_{m=1}^{k}\left(\frac{x}{1-x} R_{k}(x)\right)^{m} \sum_{n=1}^{k-2}\binom{m-1+n}{n} \\
& \times \frac{x^{2 n}}{(1-x)^{2 n}} y^{n}+y^{k-1} P^{\prime}(x, y)
\end{aligned}
$$

where $P(x, y)$ and $P^{\prime}(x, y)$ are formal power series. To complete the proof, it suffices to use (4) together with the identity $U_{n-1}^{2}(z)-U_{n}(z) U_{n-2}(z)=1$, which follows easily from the trigonometric identity $\sin ^{2} n \theta-\sin ^{2} \theta=\sin (n+1) \theta \sin (n-1) \theta$.
2.2. Pattern 21-3- ...k. Our second result is a natural analogue of the main theorems of [9, 12, 15].

Theorem 2.9. For any $k \geq 2$,

$$
F_{21-3-\ldots-k}(x, y)=1-\frac{x}{x y^{d_{1}}-\frac{1}{1-\frac{1}{x y^{d_{2}}-\frac{1}{1-\frac{1}{1-y^{d_{3}}-\frac{1}{\ddots}}}}}},
$$

where $d_{i}=\binom{i-1}{k-2}$, and $\binom{a}{b}$ is assumed 0 whenever $a<b$ or $b<0$.
Proof. Following [12] we define $v_{j}(\pi), j \geq 3$, as the number of occurrences of $21-3-\ldots-j$ in π. Define $\nu_{2}(\pi)$ for any π, as the number of occurrences of 21 in $\pi, \nu_{1}(\pi)$ as the number of letters of ν, and $\nu_{0}(\pi)=1$ for any π, which means that the empty pattern occurs exactly once in each permutation. The weight of a permutation π is a monomial in k independent variables q_{1}, \ldots, q_{k} defined by

$$
v_{k}(\pi)=\prod_{j=1}^{k} q_{j}^{v_{j}(\pi)}
$$

The total weight is a polynomial

$$
V_{k}\left(q_{1}, \ldots, q_{k}\right)=\sum_{\pi \in \mathcal{S}(1-3-2)} v_{k}(\pi)
$$

The following proposition is implied immediately by the definitions.
Proposition 2.10. $F_{21-3-\ldots-k}(x, y)=V_{k}(x, 1, \ldots, 1, y)$ for $k \geq 2$.
We now find a recurrence relation for the numbers $\nu_{j}(\pi)$. Let $\pi \in S_{n}$, so that $\pi=$ ($\pi^{\prime}, n, \pi^{\prime \prime}$).

Proposition 2.11. For any nonempty $\pi \in \mathcal{S}(1-3-2)$

$$
v_{j}(\pi)=v_{j}\left(\pi^{\prime}\right)+v_{j}\left(\pi^{\prime \prime}\right)+v_{j-1}\left(\pi^{\prime}\right),
$$

where $j \neq 2$. Besides, if $\pi^{\prime \prime}$ is nonempty then

$$
v_{2}(\pi)=v_{2}\left(\pi^{\prime}\right)+v_{2}\left(\pi^{\prime \prime}\right)+1
$$

otherwise

$$
v_{2}(\pi)=v_{2}\left(\pi^{\prime \prime}\right) .
$$

Proof. Similar to Proposition 2.3 we get π avoids 1-3-2 if and only if π^{\prime} is a 1-3-2avoiding permutation of the numbers $\{n-l+1, n-l+2, \ldots, n-1\}$, while $\pi^{\prime \prime}$ is a 1-3-2avoiding permutation of the numbers $\{1,2, \ldots, n-l\}$. Finally, if $\left(i_{1}, \ldots, i_{j}\right)$ is an occurrence of 21-3- $\ldots-j$ in π then either $i_{j}<l$ and so it is also an occurrence of 21-3- $\ldots-j$ in π^{\prime}, or $i_{1}>l$ and so it is also an occurrence of $21-3-\ldots-j$ in $\pi^{\prime \prime}$, or $i_{j}=l$ and so $\left(i_{1}, \ldots, i_{j-1}\right)$ is an occurrence of 21-3- $\ldots-(j-1)$ in π^{\prime}, where $j \neq 2$. For $j=2$ the proposition is trivial.

Now we are able to find the recurrence relation for the total weight V. Proposition 2.11 yields

$$
\begin{aligned}
V_{k}\left(q_{1}, \ldots, q_{k}\right)= & 1+\sum_{\varnothing \neq \pi \in \mathcal{S}(1-3-2)} \prod_{j=1}^{k} q_{j}^{v_{j}(\pi)} \\
= & 1+\sum_{\varnothing \neq \pi^{\prime \prime} \in \mathcal{S}(1-3-2)} \cdot \\
& \sum_{\pi^{\prime} \in \mathcal{S}(1-3-2)} \prod_{j=1}^{k} q_{j}^{\nu_{j}\left(\pi^{\prime \prime}\right)} \cdot q_{1}^{\nu_{1}\left(\pi^{\prime}\right)+1} q_{2} \cdot \prod_{j=2}^{k-1}\left(q_{j} q_{j+1}\right)^{v_{j}\left(\pi^{\prime}\right)} \cdot q_{k}^{v_{k}\left(\pi^{\prime}\right)} \\
& +\sum_{\pi^{\prime} \in \mathcal{S}(1-3-2)} q_{1} q_{1}^{\nu\left(\pi^{\prime}\right)} q_{k}^{v_{k}\left(\pi^{\prime}\right)} \prod_{j=2}^{k-1}\left(q_{j} q_{j+1}\right)^{v_{j}\left(\pi^{\prime}\right)} .
\end{aligned}
$$

Hence

$$
\begin{align*}
V_{k}\left(q_{1}, \ldots, q_{k}\right)= & 1+q_{1} V_{k}\left(q_{1}, q_{2} q_{3}, \ldots, q_{k-1} q_{k}, q_{k}\right) \\
& +q_{1} q_{2} V_{k}\left(q_{1}, q_{2} q_{3}, \ldots, q_{k-1} q_{k}, q_{k}\right)\left(V_{k}\left(q_{1}, q_{2}, \ldots, q_{k}\right)-1\right) \tag{6}
\end{align*}
$$

Observe now that $V_{k}\left(q_{1}, \ldots, q_{k}\right)=V_{k}\left(q_{1}, \mathbf{q}^{0,2}, \ldots, \mathbf{q}^{0, k}\right)$ and by (6) and Proposition 2.4 we get

$$
\begin{aligned}
V_{k}\left(q_{1}, \mathbf{q}^{d, 2}, \ldots, \mathbf{q}^{d, k}\right)= & 1+q_{1} V_{k}\left(q_{1}, \mathbf{q}^{d+1,2}, \ldots, \mathbf{q}^{d+1, k}\right) \\
& +q_{1} q^{d, 2} V_{k}\left(q_{1}, q^{d+1,2}, \ldots, \mathbf{q}^{d+1, k}\right)\left(V_{k}\left(q_{1}, \mathbf{q}^{d, 2}, \ldots, \mathbf{q}^{d, k}\right)-1\right)
\end{aligned}
$$

To obtain the continued fraction representation for $F_{21-3-\ldots-k}(x, y)$ it is sufficient to use Proposition 2.10 and to observe that

$$
\left.q_{1} \mathbf{q}^{d, 2}\right|_{q_{1}=x, q_{2}=\ldots=q_{k-1}=1, q_{k}=y}=x y^{\binom{d}{k-2}} .
$$

COROLLARY 2.12.

$$
F_{21}(x, y)=\frac{1-x+x y-\sqrt{(1-x)^{2}-2 x(1+x) y+x^{2} y^{2}}}{2 x y}
$$

in other words, for any $r \geq 1$

$$
f_{21 ; r}(n)=\frac{r+1}{n(n-r)}\binom{n}{r+1}^{2}
$$

Proof. For $k=2, q_{1}=x$, and $q_{2}=y$; Proposition 2.10 and (6) yields $F_{21}(x, y)=$ $1+x F_{21}(x, y)+x y F_{21}(x, y)\left(F_{21}(x, y)-1\right)$, which means $F_{21}(x, y)=F_{12}(x, y)$. Using Corollary 2.5 we have the desired result.

Now, we are ready to find an explicit expression for $F_{21-3-\ldots-k ; r}(x)$ where $0 \leq r \leq k-2$.

Consider a recurrence relation

$$
\begin{equation*}
T_{j}^{\prime}=1-\frac{x}{x-\frac{1}{T_{j-1}^{\prime}(x)}}, \quad j \geq 1 \tag{7}
\end{equation*}
$$

The solution of (7) with the initial condition $T_{0}^{\prime}=0$ is given by $R_{j}(x)$ (Lemma 2.13), and the solution of (7) with the initial condition

$$
T_{0}^{\prime}=G_{21-3-\ldots-k}(x, y)=\frac{1}{x y\binom{k-2}{k-2}-\frac{1}{\left.1-\frac{x}{x y} \begin{array}{c}
k-1 \\
k-2
\end{array}\right)-\frac{1}{1-\frac{x}{x_{x y}\left(k_{k}^{k}\right)-1}}}},
$$

is denoted by $S_{j}^{\prime}(x, y ; k)$, or just S_{j}^{\prime} when the value of k is clear from the context. Our interest in (7) is stipulated by the following relation, which is an easy consequence of Theorem 2.9:

$$
\begin{equation*}
F_{21-3-\ldots-k}(x, y)=S_{k}^{\prime}(x, y ; k) . \tag{8}
\end{equation*}
$$

First of all, we find an explicit formula for the functions $T_{j}^{\prime}(x)$ in (7).
Lemma 2.13. For any $j \geq 1$,

$$
\begin{equation*}
T_{j}^{\prime}(x)=R_{j}(x) \tag{9}
\end{equation*}
$$

Proof. Indeed, it follows immediately from (7) that $T_{0}^{\prime}(x)=0$ and $T_{1}^{\prime}(x)=1$. Let us induce, we assume $T_{j-1}^{\prime}(x)=R_{j-1}(x)$, and prove that $T_{j}^{\prime}(x)=R_{j}(x)$. By use of (7)

$$
T_{j}^{\prime}(x)=1-\frac{x}{x-\frac{1}{R_{j-1}(x)}} .
$$

On the other hand, following [12], $R_{j}(x)=\frac{1}{1-x R_{j-1}(x)}$ which means that $R_{j}(x)=1+$ $x R_{j-1}(x) R_{j}(x)$, hence $T_{j}^{\prime}(x)=R_{j}(x)$.

Next, we find an explicit expression for S_{j}^{\prime} in terms of G and R_{j}.
LEmma 2.14. For any $j \geq 2$ and any $k \geq 2$

$$
\begin{equation*}
S_{j}^{\prime}(x, y ; k)=R_{j}(x) \frac{1-x R_{j-1}(x) G_{21-3-\ldots-k}(x, y ; k)}{1-x R_{j}(x) G_{21-3-\ldots-k}(x, y)} \tag{10}
\end{equation*}
$$

As a corollary from Lemma 2.14 and (6) we get the following expression for the generating function $F_{21-3-\ldots-k}(x, y)$.

Corollary 2.15. For any $k \geq 3$

$$
F_{21-3-\ldots-k}(x, y)=R_{k}(x)+\left(R_{k-2}(x)-R_{k-3}(x)\right) \sum_{m \geq 1}\left(x R_{k-2}(x) G_{21-3-\ldots-k}(x, y)\right)^{m} .
$$

Now we are ready to express the generating function $F_{21-3-\ldots-k ; r}(x)$ where $0 \leq r \leq k-2$, via Chebyshev polynomials.

THEOREM 2.16. For any $k \geq 3, F_{21-3-\ldots-k ; r}(x)$ is a rational function given by

$$
\begin{aligned}
& F_{21-3-\ldots-k ; r}(x)=\frac{x^{\frac{r-1}{2}} U_{k-2}^{r-1}\left(\frac{1}{2 \sqrt{x}}\right)}{U_{k}^{r+1}\left(\frac{1}{2 \sqrt{x}}\right)}, \quad 1 \leq r \leq k-2 \\
& F_{21-3-\ldots-k ; 0}(x)=\frac{U_{k-1}\left(\frac{1}{2 \sqrt{x}}\right)}{\sqrt{x} U_{k}\left(\frac{1}{2 \sqrt{x}}\right)}
\end{aligned}
$$

where U_{j} is the j th Chebyshev polynomial of the second kind.
Proof. Observe that $G_{21-3-\ldots-k}(x, y)=1+\frac{x}{1-x-x y}+y^{k-1} P(x, y)$, so by Corollary 2.15 we get

$$
\begin{aligned}
F_{21-3-\ldots-k}(x, y)= & R_{k}(x)+\left(R_{k-2}(x)-R_{k-3}(x)\right) \sum_{m=1}^{k}\left(x R_{k-2}(x)\left(1+\frac{x}{1-x-x y}\right)\right)^{m} \\
& +y^{k-1} P^{\prime}(x, y)
\end{aligned}
$$

where $P(x, y)$ and $P^{\prime}(x, y)$ are formal power series. To complete the proof, it suffices to use (9) together with the identity $U_{n-1}^{2}(z)-U_{n}(z) U_{n-2}(z)=1$.

REMARK 2.17. Theorem 2.16 and [12] yield the number of 1-3-2-avoiding permutations in S_{n} such that contain exactly r times the pattern 21-3- $\ldots-k$ is the same number of 1-3-2avoiding permutations in S_{n} such that contain exactly r times the pattern 1-2-3 $\cdots-k$, for all $r=0,1,2, \ldots, k-2$. However, the question is if there exists a natural bijection between the set of 1-3-2-avoiding permutations in S_{n} such that contain exactly r times the generalized pattern 21-3- $\ldots-k$, and the set of 1-3-2-avoiding permutations in S_{n} such that contain exactly r times the classically pattern 1-2-3- ... $-k$.
2.3. Patterns: $\tau=12 \ldots k$ and $\tau=k \ldots 21$. Let $\pi \in S_{n}$; we say π has d-increasing canonical decomposition if π has the following form

$$
\pi=\left(\pi^{1}, \pi^{2}, \ldots, \pi^{d}, a_{d}, \ldots, a_{2}, a_{1}, n, \pi^{d+1}\right)
$$

where all the entries of π^{i} are greater than all the entries of π^{i+1}, and $a_{d}<a_{d-1}<\cdots<$ $a_{1}<n$. We say π has d-decreasing canonical decomposition if π has the following form

$$
\pi=\left(\pi^{1}, n, a_{1}, \ldots, a_{d}, \pi^{d+1}, \pi^{d}, \ldots, \pi^{d}\right)
$$

where all the entries of π^{i} are greater than all the entries of π^{i+1}, and $a_{d}<a_{d-1}<\cdots<$ $a_{1}<n$. The following proposition is the basis of all other results in this section.

Proposition 2.18. Let $\pi \in S_{n}(1-3-2)$. Then there exists unique $d \geq 0$ and $e \geq 0$ such that π has a d-increasing canonical decomposition, and has e-decreasing canonical decomposition.

Proof. Let $\pi \in S_{n}(1-3-2)$, and let $a_{d}, a_{d-1}, \ldots, a_{1}, n$ a maximal increasing subsequence of π such that $\pi=\left(\pi^{\prime}, a_{d}, \ldots, a_{1}, n, \pi^{\prime \prime}\right)$. Since π avoids 1-3-2 there exists d subsequences π^{j} such that $\pi=\left(\pi^{1}, \ldots, \pi^{d}, a_{d}, \ldots, a_{1}, n, \pi^{\prime \prime}\right)$, and all the entries of π^{i} are greater than all the entries of π^{i+1}, and all the entries of π^{d} are greater than all entries of $\pi^{\prime \prime}$. Hence, π has d-increasing canonical decomposition. Similarly, there exist e unique such that π is e-decreasing canonical decomposition.

Let us define $I_{\tau}(x, y ; d)$ (respectively, $J_{\tau}(x, y ; e)$) as the generating function for all d increasing (respectively, e-decreasing) canonical decomposition of permutations in S_{n} (1-3-2) with exactly r occurrences of τ. The following proposition is implied immediately by the definitions.

Proposition 2.19.

$$
F_{\tau}(x, y)=1+\sum_{d \geq 0} I_{\tau}(x, y ; d)=1+\sum_{e \geq 0} J_{\tau}(x, y ; e) .
$$

Proof. Immediately, by definitions of the generating functions and Proposition 2.18 (1 for the empty permutation).

Now, we present examples for Propositions 2.18 and 2.19.

First example

ThEOREM 2.20. $F_{k \ldots 21}(x, y)=F_{12 \ldots k}(x, y)$, such that

$$
F_{12 \ldots k}(x, y)=\sum_{n=0}^{k-2} x^{n} F_{12 \ldots k}^{n}(x, y)+\frac{x^{k-1} F_{12 \ldots k}^{k-1}(x, y)}{1-x y F_{12 \ldots k}(x, y)} .
$$

Proof. By Proposition 2.18 and definitions it is easy to obtain for all $d \geq 0$

$$
I_{12 \ldots k}(x, y ; d)=x^{d+1} y^{s_{d}} F_{12 \ldots k}^{d+1}(x, y),
$$

where $s_{d}=d+1-k$ for $d \geq k-1$, and otherwise $s_{d}=0$. So by Proposition 2.19 the theorem holds.
Similarly, we obtain the same result for $F_{k \ldots 21}(x, y)$.
As a remark, by the above theorem, it is easy to obtain the same results for Corollaries 2.5 and 2.12.

Second example

THEOREM 2.21. Let $1 \leq l \leq k-1$. Then $F_{1-2-\ldots-(l-1)-l(l+1) \ldots k}(x, y)=U_{l}(x, 1, \ldots, 1, y)$ where

$$
U_{l}\left(q_{1}, \ldots, q_{l}\right)=1+\sum_{d \geq 0}\left(q_{l}^{\left(\frac{d+1+l-k}{l}\right)} \prod_{j=1}^{l-1} q_{j}^{\left(\frac{d+1}{j}\right)} \prod_{j=0}^{d} U_{l}\left(p_{1 ; j}, \ldots, p_{l ; j}\right)\right)
$$

and for $i=1,2, \ldots, l, p_{i ; j}=\prod_{m=1}^{l-1} q_{j}^{\left(\frac{j}{m-i}\right)}, p_{l, j}=q_{l}$ for all $0 \leq j \leq k-l$, and $p_{i ; j}=$ $\prod_{m=1}^{l} p_{i ; k-l}^{\left(\frac{j-k+l}{l-i}\right)}$ for all $j \geq k-l+1$.

Proof. Following [12] we define $\gamma_{j}(\pi), j \leq l-1$, as the number of occurrences of $1-2-\ldots-j$ in π. Define $\gamma_{l}(\pi)$ for any π, as the number of occurrences of $1-2-\ldots-(l-1)-l(l+$ 1) $\ldots k$ in π, and $\gamma_{0}(\pi)=1$ for any π, which means that the empty pattern occurs exactly once in each permutation. The weight of a permutation π is a monomial in l independent variables q_{1}, \ldots, q_{l} defined by

$$
u_{l}(\pi)=\prod_{j=1}^{l} q_{j}^{\gamma_{j}(\pi)}
$$

The total weight is a polynomial

$$
U_{l}\left(q_{1}, \ldots, q_{l}\right)=\sum_{\pi \in \mathcal{S}(1-3-2)} u_{l}(\pi) .
$$

The following proposition is implied immediately by the definitions and Proposition 2.18.
Proposition 2.22. $F_{1-2-\ldots-(l-1)-l(l+1) \ldots k}(x, y)=U_{k}(x, 1, \ldots, 1, y)$ for $k>l \geq 1$, and $U_{l}\left(q_{1}, \ldots, q_{l}\right)=1+\sum_{d \geq 0} \sum_{\pi \in A_{d}} u_{l}(\pi)$, where A_{d} is the set of all d-increasing canonical decomposition permutations in \mathcal{S} (1-3-2).

Let us denote $U_{l ; d}\left(q_{1}, \ldots, q_{l}\right)=\sum_{\pi \in A_{d}} u_{l}(\pi)$.
Proposition 2.23. For any $d \geq 0$,

$$
U_{l ; d}\left(q_{1}, \ldots q_{l}\right)=q_{l}^{\left(\frac{d+1+l-k}{l}\right)} \prod_{j=1}^{l-1} q_{j}^{\left(\frac{d+1}{j}\right)} \prod_{j=0}^{d} U_{l}\left(p_{1 ; j}, \ldots, p_{l ; j}\right) .
$$

Proof. Let π be d-increasing canonical decomposition, that is,

$$
\pi=\left(\pi^{1}, \pi^{2}, \ldots, \pi^{d}, a_{d}, \ldots, a_{2}, a_{1}, n, \pi^{d+1}\right)
$$

where the numbers $a_{d}<a_{d-1}<\cdots<a_{1}<n$ appear as consecutive numbers in π, all entries of π^{j} are greater than all the entries of π^{j+1}, and all entries of π^{d} are greater than a_{d}. So, by calculating $u_{l}(\pi)$ and summing over all $\pi \in A_{d}$ we have that

$$
U_{l ; d}\left(q_{1}, \ldots, q_{d}\right)=q_{l}^{\left(\frac{d+1+l-k}{l}\right)} \cdot \prod_{j=1}^{l-1} q_{j}^{\left(\frac{d+1}{j}\right)} \cdot \prod_{j=0}^{d} U_{l}\left(p_{1 ; j}, \ldots, p_{l ; j}\right) .
$$

Therefore, Theorem 2.21 holds, by using Propositions 2.22 and 2.23.
Now, let $l=k-1$ and by using Theorem 2.21, it is easy to obtain the following.
Corollary 2.24. For $k \geq 3$,

$$
F_{1-2-\ldots-(k-2)-(k-1) k}(x, y)=\sum_{j=0}^{k-1}\left(x F_{1-2-\ldots-(k-2)-(k-1) k}(x, y)\right)^{j}
$$

REMARK 2.25. Similarly, the argument of d-increasing canonical decomposition, or the argument d-decreasing canonical decomposition yields other formulae, for example, the formula for $F_{12-3-45}(x, y)$.

3. Three Letters Pattern Without Internal Dashes

In this section, we give a complete answer for $F_{\tau}(x, y)$ where τ is a generalized pattern without internal dashes; that is, τ is $123,213,231,312$, and 321 , by the following four subsections.

3.1. Patterns 123 and 321 .

Theorem 3.1.

$$
F_{123}(x, y)=F_{321}(x, y)=\frac{1+x y-x-\sqrt{1-2 x-3 x^{2}-x y(2-2 x-x y)}}{2 x(x+y-x y)} .
$$

Proof. Theorem 2.20 yields, $F_{123}(x, y)=F_{321}(x, y)=H$ where

$$
H=1+x H+\frac{x^{2} H^{2}}{1-x y H}
$$

so the theorem holds.

3.2. Pattern 231.

Theorem 3.2.

$$
F_{231}(x, y)=\frac{1-2 x+2 x y-\sqrt{1-4 x+4 x^{2}-4 x^{2} y}}{2 x y},
$$

that is, for all $r, n \geq 0$

$$
F_{231 ; r}(x)=\frac{1}{r+1}\left(\frac{2 r}{r}\right) \frac{x^{2 r+1}}{(1-2 x)^{2 r+1}}, \quad f_{231 ; r}(n)=\frac{2^{n-2 r-1}}{r+1}\left(\frac{n-1}{2 r}\right)\left(\frac{2 r}{r}\right)
$$

Proof. Let $l=\pi^{-1}(n)$. Since π avoids 1-3-2, each number in π^{\prime} is greater than any of the numbers in $\pi^{\prime \prime}$. Therefore, π^{\prime} is a 1-3-2-avoiding permutation of the numbers $\{n-l+1, n-$ $l+2, \ldots, n-1\}$, while $\pi^{\prime \prime}$ is a 1-3-2-avoiding permutation of the numbers $\{1,2, \ldots, n-l\}$. On the other hand, if π^{\prime} is an arbitrary 1-3-2-avoiding permutation of the numbers $\{n-l+$ $1, n-l+2, \ldots, n-1\}$ and $\pi^{\prime \prime}$ is an arbitrary 1-3-2-avoiding permutation of the numbers $\{1,2, \ldots, n-l\}$, then $\pi=\left(\pi^{\prime}, n, \pi^{\prime \prime}\right)$ is 1-3-2-avoiding.
Now let us observe all the possibilities that π^{\prime} and $\pi^{\prime \prime}$ is empty or not. This yields

$$
F_{231}(x, y)=1+x+2 x\left(F_{231}(x, y)-1\right)+x y\left(F_{231}(x, y)-1\right)^{2},
$$

hence the theorem holds.

3.3. Pattern 213.

Theorem 3.3.

$$
F_{213}(x, y)=\frac{1-x^{2}+x^{2} y-\sqrt{1+2 x^{2}-2 x^{2} y+x^{4}-2 x^{4} y+x^{4} y^{2}-4 x}}{2 x(1+x y-x)} .
$$

Proof. Let $D(x, y)$ be the generating function of all 1-3-2-avoiding permutations $\left(\alpha^{\prime}, n\right) \in$ S_{n} such that contain 213 exactly r times. Let $\alpha=\left(\alpha^{\prime}, n, \alpha^{\prime \prime}\right)$; if we consider the two cases α^{\prime} empty or not we have $F_{213}(x, y)=1+D(x, y) F_{213}(x, y)$. Let $\alpha=\left(\alpha^{\prime}, n\right)$; if we observe the two cases α^{\prime} empty or not, then (similarly)
$D(x, y)=x+x^{2}+x^{2} y\left(F_{213}(x, y)-1\right)+x^{2}(D(x, y)-1)+x^{2}(D(x, y)-1)\left(F_{213}(x, y)-1\right)$.
However,

$$
F_{213}(x, y)=1+x F_{213}(x, y) \frac{1+x-x y+x(y-1) F_{213}(x, y)}{1-x F_{213}(x, y)}
$$

hence, the theorem holds.

3.4. Pattern 312.

Theorem 3.4.

$$
F_{312}(x, y)=\frac{1-x^{2}+x^{2} y-\sqrt{1+2 x^{2}-2 x^{2} y+x^{4}-2 x^{4} y+x^{4} y^{2}-4 x}}{2 x(1+x y-x)} .
$$

Proof. Let $\alpha \in \mathcal{S}(1-3-2)$; if $\alpha=\varnothing$, then there is one permutation, otherwise by Proposition 2.18 we can write $\alpha=\left(\alpha^{1}, n, a_{1}, a_{2}, \ldots, a_{d}, \alpha^{d+1}, \alpha^{d}, \ldots, \alpha^{2}\right)$ where all the entries of α^{j} are greater than all the entries of α^{j+1}, and $n>a_{1}>a_{2}>\cdots>a_{d}$. Hence, for any $d=0,1$ the generating function of these permutations in these cases is $x^{d+1} F_{312}(x, y)$. Let $d \geq 2$; if $\alpha^{d+1}=\varnothing$, then the generating function of these permutations in this case is $x^{d+1} F_{312}^{\bar{d}}(x, y)$, otherwise the generating function is $x^{d+1} y F_{312}^{d}(x, y)\left(F_{312}(x, y)-1\right)$. Hence

$$
\begin{aligned}
F_{312}(x, y)= & 1+\left(x+x^{2}\right) F_{312}(x, y)+\sum_{d \geq 2} x^{d+1} F_{312}^{d}(x, y) \\
& +\sum_{d \geq 2} x^{d+1} y F_{312}^{d}(x, y)\left(F_{312}(x, y)-1\right),
\end{aligned}
$$

which means that

$$
F_{312}(x, y)=1+x F_{312}(x, y)+\frac{x^{2} F_{312}(x, y)}{1-x F_{312}(x, y)}+\frac{x^{2} y F_{312}(x, y)\left(F_{312}(x, y)-1\right)}{1-x F_{312}(x, y)}
$$

so the rest is easy to see.

4. Three Letters Pattern With One Dash

In this section, we present examples $F_{\tau}(x, y)$ where τ is a generalized pattern with one dash. Theorem 2.1 yields

THEOREM 4.1. The generating function $F_{12-3}(x, y)$ is given by the continued fraction

$$
\frac{1}{1-\frac{x}{1-x+x y-\frac{x y}{1-x+x y^{2}-\frac{x y^{2}}{\ddots}}}} .
$$

Theorem 2.9 yields
THEOREM 4.2. For any $k \geq 2$,

$$
F_{21-3}(x, y)=1-\frac{x}{x-\frac{1}{1-\frac{x}{x y-\frac{1}{1-\frac{x}{x y^{2}-\frac{1}{\ddots}}}}}} .
$$

For $k=3$ and $l=2$ Theorem 2.24 yields

Theorem 4.3 .

$$
F_{1-23}(x, y)=1+x F_{1-23}(x, y)+\sum_{d \geq 1} x^{d+1} y^{\left(\frac{d}{2}\right)} F_{1-23}(x, y) \prod_{j=0}^{d-1} F_{1-23}\left(x y^{j}, y\right) .
$$

Corollary 4.4.

$$
\begin{aligned}
& F_{1-23 ; 0}(x)=\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x^{2}} ; \\
& F_{1-23 ; 1}(x)=\frac{x-1}{2 x}+\frac{1-2 x-x^{2}}{2 x \sqrt{1-2 x-3 x^{2}}} ; \\
& F_{1-23 ; 2}(x)=\frac{x^{4}}{\left(1-2 x-3 x^{2}\right)^{3 / 2}} ; \\
& F_{1-23 ; 3}(x)=x^{2}-1+\frac{11 x^{7}+43 x^{6}+41 x^{5}-7 x^{4}-25 x^{3}+x^{2}+5 x-1}{\left(1-2 x-3 x^{2}\right)^{5 / 2}} .
\end{aligned}
$$

Proof. By Theorem 4.3 and by $F_{1-23}(x, 0)=F_{1-23 ; 0}(x)$ we get

$$
F_{1-23 ; 0}(x)=1+x F_{1-23 ; 0}(x)+x^{2} F_{1-23 ; 0}^{2}(x),
$$

which means the first formula holds.
By Theorem 4.3 we get
$\frac{d}{d y} F_{1-23}(x, 0)=x \frac{d}{d y} F_{1-23}(x, 0)+2 x^{2} F_{1-23}(x, 0) \frac{d}{d y} F_{1-23}(x, 0)+x^{3} F_{1-23}(x, 0)^{2} F_{1-23}(0,0)$, and by $F_{1-23 ; 1}(x)=\left.\frac{d}{d y} F_{1-23}(x, y)\right|_{y=0}$ and the first formula, we get the second formula.

Similarly, by Theorem 4.3 and by $F_{1-23 ; r}(x)=\left.\frac{1}{r!} \frac{d^{r}}{d y^{r}} F_{1-23}(x, y)\right|_{y=0}$ the other formulae holds.

Theorem 4.5 .

$$
F_{2-13}(x, y)=\frac{1}{1-\frac{x_{x}}{1-\frac{x^{\prime}}{1-\frac{x y}{1-\frac{x y}{1-\frac{x y^{2}}{1-\frac{x y^{2}}{1-}}}}}} ~}
$$

Proof. By Propositions 2.18 and 2.19, we obtain

$$
F_{2-13}(x, y)=1+x F_{2-13}(x, y) \sum_{d \geq 0} x^{d} F_{2-13}^{d}(x y, y),
$$

and the rest is easy to see.

5. Further Results

First of all, let us denote by $G_{\tau ; \phi}(x, y)$ the generating function for the number of permutations in $S_{n}(1-3-2, \tau)$ such that contain ϕ exactly r times; that is

$$
G_{\tau ; \phi}(x, z)=\sum_{n \geq 0} x^{n} \sum_{\pi \in S_{n}(1-3-2, \tau)} y^{a_{\phi}(\pi)},
$$

where $a_{\phi}(\pi)$ is the number of occurrences of ϕ in π. In this section, (similar to previous sections) we find $G_{\tau ; \phi}(x, y)$ in terms of continued fractions or by explicit formulae, for some cases of τ and ϕ.

THEOREM 5.1. The generating functions $G_{123 ; 213}(x, y)$ and $G_{321 ; 312}(x, y)$ are given by

$$
\frac{1}{1-x-x^{2}(1-y)-\frac{x^{2} y}{1-x-x^{2}(1-y)-\frac{x^{2} y}{1-x-x^{2}(1-y)-\frac{x^{2} y}{\ddots}}}},
$$

equivalently,

$$
\frac{1-x-x^{2}+x^{2} y-\sqrt{\left(1-x-x^{2}\right)^{2}-2 y x^{2}\left(1+x+x^{2}\right)+x^{4} y^{2}}}{2 x^{2} y} .
$$

THEOREM 5.2.

$$
G_{123 ; 231}(x, y)=H(x, y)+x^{2}(1-y) H(x, y)^{2},
$$

where $H(x, y)=\frac{1}{1-x-x^{2} y H(x, y)}$, which means the number of permutations in $S_{n}(1-3-2,123)$ such that contain 231 exactly $r \geq 0$ times is given by

$$
\left(C_{r+1}-C_{r}\right)\left(\frac{n-1}{2 r+1}\right)+C_{r}\left(\frac{n}{2 r+1}\right),
$$

where C_{m} is the mth Catalan number.
THEOREM 5.3. The generating functions $G_{213 ; 123}(x, y)$ and $G_{312 ; 321}(x, y)$ are given by

$$
\frac{1-x-x^{2}+x y-\sqrt{\left(1-x-x^{2}\right)^{2}-2 x y\left(1-x+x^{2}\right)+x^{2} y^{2}}}{2 x y(1-x)} .
$$

As a concluding remark we note that there are many questions left to answer such as: if there exists a bijection between, for example, the set of 1-3-2-avoiding permutations in S_{n} such that contain exactly r times the generalized pattern 21-3- ...-k, and the set of 1-3-2-avoiding permutations in S_{n} such that contain exactly r times the classical pattern 1-2-3- ... k, where $r=0,1, \ldots, k-2$.

References

1. E. Babson and E. Steingrimsson, Generalized permutation patterns and a classification of the Mahonian statistics, Séminaire Lotharingien de Combinatoire, B44b (2000), 18.
2. T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, Discrete Math., 204 (1999), 119-128.
3. A. Claesson, Generalised pattern avoidance, Europ. J. Combinatorics, 22 (2001), 961-973.
4. A. Claesson and T. Mansour, Permutations avoiding a pair of generalized patterns of length three with exactly one dash, preprint CO/0107044.
5. S. Elizalde and M. Noy, In Formual Power Series and Algebraic Combinatorics (Tempe, 2001), Arizona State University, 2001, pp. 179-189.
6. M. Jani and R. G. Rieper, Continued fractions and Catalan problems, Electron. J. Comb., 7 (2000), \#R1.
7. S. Kitaev, Multi-avoidance of generalised patterns, to appear.
8. D. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
9. C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. Appl. Math., 27 (2001), 510-530.
10. V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in $\mathrm{Sl}(n) / B$, Proc. Indian Acad. Sci., 100 (1990), 45-52.
11. L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland, 1992.
12. T. Mansour and A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials, Electron. J. Comb., 7 (2000), \#R17.
13. J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, Discrete Math., 152 (1996), 307-313.
14. J. Noonan and D. Zeilberger, The enumeration of permutations with a prescribed number of 'forbidden' patterns, Adv. Appl. Math., 17 (1996), 381-407.
15. A. Robertson, H. Wilf and D. Zeilberger, Permutation patterns and continuous fractions, Electron J. Comb., 6 (1999), \#R38.
16. R. Simion and F. Schmidt, Restricted permutations, Europ. J. Combinatorics, 6 (1985), 383-406.
17. J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math., 146 (1995), 247-262.
