Europ. J. Combinatorics (2002) **23**, 329–344 doi:10.1006/eujc.2002.0566 Available online at http://www.idealibrary.com on **DE**

Continued Fractions and Generalized Patterns

TOUFIK MANSOUR

Babson and Steingrimsson (2000, Séminaire Lotharingien de Combinatoire, **B44b**, 18) introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation.

Let $f_{\tau;r}(n)$ be the number of 1-3-2-avoiding permutations on n letters that contain exactly r occurrences of τ , where τ is a generalized pattern on k letters. Let $F_{\tau;r}(x)$ and $F_{\tau}(x, y)$ be the generating functions defined by $F_{\tau;r}(x) = \sum_{n\geq 0} f_{\tau;r}(n)x^n$ and $F_{\tau}(x, y) = \sum_{r\geq 0} F_{\tau;r}(x)y^r$. We find an explicit expression for $F_{\tau}(x, y)$ in the form of a continued fraction for τ given as a generalized pattern: $\tau = 12$ -3-...-k, $\tau = 21$ -3-...-k, $\tau = 123$...k, or $\tau = k$...321. In particular, we find $F_{\tau}(x, y)$ for any τ generalized pattern of length 3. This allows us to express $F_{\tau;r}(x)$ via Chebyshev polynomials of the second kind and continued fractions.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Let $[p] = \{1, \ldots, p\}$ denote a totally ordered alphabet on p letters, and let $\pi = (\pi_1, \ldots, \pi_m) \in [p_1]^m$, $\beta = (\beta_1, \ldots, \beta_m) \in [p_2]^m$. We say that π is *order-isomorphic* to β if for all $1 \le i < j \le m$ one has $\pi_i < \pi_j$ if and only if $\beta_i < \beta_j$. For two permutations $\pi \in S_n$ and $\tau \in S_k$, an *occurrence* of τ in π is a subsequence $1 \le i_1 < i_2 < \cdots < i_k \le n$ such that $(\pi_{i_1}, \ldots, \pi_{i_k})$ is order-isomorphic to τ ; in such a context τ is usually called the *pattern* (classical pattern). We say that π *avoids* τ , or is τ -*avoiding*, if there is no occurrence of τ in π .

The set of all τ -avoiding permutations of all possible sizes including the empty permutation is denoted $S(\tau)$. Pattern avoidance proved to be a useful language in a variety of seemingly unrelated problems, from stack sorting [8] to singularities of Schubert varieties [10]. A complete study of pattern avoidance for the case $\tau \in S_3$ is carried out in [16].

On the other hand, [1] introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. The idea of [1] introducing these patterns was the study of Mahonian statistics.

We write a classical pattern with dashes between any two adjacent letters of the pattern, say 1324, as 1-3-2-4, and if we write, say 24-1-3, then we mean that if this pattern occurs in permutation π , then the letters in the permutation π that correspond to 2 and 4 are adjacent. For example, the permutation $\pi = 35421$ has only two occurrences of the pattern 23-1, namely the subsequences 352 and 351, whereas π has four occurrences of the pattern 2-3-1, namely the subsequences 352, 351, 342 and 341.

Reference [3] presented a complete solution for the number of permutations avoiding any pattern of length three with exactly one adjacent pair of letters. Reference [4] presented a complete solution for the number of permutations avoiding any two patterns of length three with exactly one adjacent pair of letters. Reference [7] almost presented results avoiding two or more 3-patterns without internal dashes, that is, where the pattern corresponds to a contiguous subword in a permutation. Besides, [5] presented the following generating functions regarding the distribution of the number of occurrences of any generalized pattern of length 3:

$$\sum_{\pi \in S} y^{(123)\pi} \frac{x^{|\pi|}}{|\pi|!} = \frac{2f(y)e^{\frac{1}{2}(f(y)-y+1)x}}{f(y)+y+1+(f(y)-y-1)e^{f(y)x}}$$

0195-6698/02/040329 + 16 \$35.00/0

© 2002 Elsevier Science Ltd. All rights reserved.

$$\sum_{\pi \in \mathcal{S}} y^{(213)\pi} \frac{x^{|\pi|}}{|\pi|!} = \frac{1}{1 - \int_0^x e^{(y-1)t^2/2} dt}$$

where $(\tau)\pi$ is the number of occurrences of τ in π , $f(y) = \sqrt{(y-1)(y+3)}$.

The purpose of this paper is to point out an analogue of [15], and some interesting consequences of this analogue. Generalizations of this theorem have already been given in [6, 9, 12]. In the present paper we study the generating function for the number 1-3-2-avoiding permutations in S_n that contain a prescribed number of generalized pattern τ . The study of the obtained continued fraction allows us to recover and to present an analogue of the results of [2, 6, 9, 12] that relates the number of 1-3-2-avoiding permutations that contain no 12-3-...-k (or 21-3-...-k) patterns to Chebyshev polynomials of the second kind.

Let $f_{\tau;r}(n)$ stand for the number of 1-3-2-avoiding permutations in S_n that contain exactly r occurrences of τ . We denote by $F_{\tau;r}(x)$ and $F_{\tau}(x, y)$ the generating function of the sequence $\{f_{\tau;r}(n)\}_{n\geq 0}$ and $\{f_{\tau;r}(n)\}_{n,r\geq 0}$, respectively, that is,

$$F_{\tau;r}(x) = \sum_{n \ge 0} f_{\tau;r}(n) x^n, \qquad F_{\tau}(x, y) = \sum_{r \ge 0} F_{\tau;r}(x) y^r.$$

The paper is organized as follows. The cases $\tau = 12-3-\ldots-k$, $\tau = 21-3-\ldots-k$, $\tau = 123\ldots k$, and $\tau = k \ldots 321$ are treated in Section 2. In Section 3, we present the cases $\tau = 123, 213, 231, 312$, and 321, that is, τ is a 3-letters generalized pattern without dashes. In Section 4, we treat the cases when τ is a 3-letters generalized pattern with one dash. Finally, in Section 5, we present examples of restricted more than one generalized pattern of 3-letters.

2. FOUR GENERAL CASES

In this section, we study the following four cases: $\tau = 12-3-\ldots-k$, $\tau = 21-3-\ldots-k$, $\tau = 12\ldots k$, and $\tau = k \ldots 21$, by the following three subsections.

2.1. *Pattern* 12-3-...-*k*. Our first result is a natural analogue of the main theorems of [9, 12, 15].

THEOREM 2.1. The generating function $F_{12-3-...-k}(x, y)$ for $k \ge 2$ is given by the continued fraction

$$\frac{1}{1-x+xy^{d_1}-\frac{xy^{d_1}}{1-x+xy^{d_2}-\frac{xy^{d_2}}{1-x+xy^{d_3}-\frac{xy^{d_3}}{\dots}}}$$

where $d_i = {\binom{i-1}{k-2}}$, and ${\binom{a}{b}}$ is assumed 0 whenever a < b or b < 0.

PROOF. Following [12] we define $\eta_j(\pi)$, $j \ge 3$, as the number of occurrences of 12-3-...-*j* in π . Define $\eta_2(\pi)$ for any π , as the number of occurrences of 12 in π , $\eta_1(\pi)$ as the number of letters of π , and $\eta_0(\pi) = 1$ for any π , which means that the empty pattern occurs exactly once in each permutation. The *weight* of a permutation π is a monomial in *k* independent variables q_1, \ldots, q_k defined by

$$w_k(\pi) = \prod_{j=1}^k q_j^{\eta_j(\pi)}.$$

The total weight is a polynomial

$$W_k(q_1,\ldots,q_k)=\sum_{\pi\in\mathcal{S}(1\text{-}3\text{-}2)}w_k(\pi).$$

The following proposition is implied immediately by the definitions.

PROPOSITION 2.2. $F_{12-3-...-k}(x, y) = W_k(x, 1, ..., 1, y)$ for $k \ge 2$.

We now find a recurrence relation for the numbers $\eta_j(\pi)$. Let $\pi \in S_n$, so that $\pi = (\pi', n, \pi'')$.

PROPOSITION 2.3. For any nonempty $\pi \in S(1-3-2)$

$$\eta_j(\pi) = \eta_j(\pi') + \eta_j(\pi'') + \eta_{j-1}(\pi'),$$

where $j \neq 2$. Besides, if π' is nonempty then

$$\eta_2(\pi) = \eta_2(\pi') + \eta_2(\pi'') + 1,$$

otherwise

$$\eta_2(\pi) = \eta_2(\pi'').$$

PROOF. Let $l = \pi^{-1}(n)$. Since π avoids 1-3-2, each number in π' is greater than any of the numbers in π'' . Therefore, π' is a 1-3-2-avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$, while π'' is a 1-3-2-avoiding permutation of the numbers $\{1, 2, ..., n - l\}$. On the other hand, if π' is an arbitrary 1-3-2-avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$ and π'' is an arbitrary 1-3-2-avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$ and π'' is an arbitrary 1-3-2-avoiding permutation of the numbers $\{1, 2, ..., n - l\}$, then $\pi = (\pi', n, \pi'')$ is 1-3-2-avoiding. Finally, if $(i_1, ..., i_j)$ is an occurrence of 12-3-...-j in π then either $i_j < l$, and so it is also an occurrence of 12-3-...-j in π'' , or $i_j = l$, and so $(i_1, ..., i_{j-1})$ is an occurrence of 12-3-...-(j - 1) in π' , where $j \neq 2$. For j = 2 the proposition is trivial. The result follows.

Now we are able to find the recurrence relation for the total weight W. Indeed, by Proposition 2.3,

$$W_{k}(q_{1},...,q_{k}) = 1 + \sum_{\emptyset \neq \pi \in \mathcal{S}(1-3-2)} \prod_{j=1}^{k} q_{j}^{\eta_{j}(\pi)}$$

= $1 + \sum_{\emptyset \neq \pi' \in \mathcal{S}(1-3-2)} \sum_{\pi'' \in \mathcal{S}(1-3-2)} \prod_{j=1}^{k} q_{j}^{\eta_{j}(\pi'')} \cdot q_{1}^{\eta_{1}(\pi')+1} q_{2} \cdot \prod_{j=2}^{k-1} (q_{j}q_{j+1})^{\eta_{j}(\pi')} \cdot q_{k}^{\eta_{k}(\pi')} + \sum_{\pi'' \in \mathcal{S}(1-3-2)} q_{1} \prod_{j=1}^{k} q_{j}^{\eta_{j}(\pi'')}.$

Hence

$$W_k(q_1, \dots, q_k) = 1 + q_1 W_k(q_1, \dots, q_k) + q_1 q_2 W_k(q_1, \dots, q_k) (W_k(q_1, q_2 q_3, \dots, q_{k-1} q_k, q_k) - 1).$$
(1)

Following [12], for any $d \ge 0$ and $2 \le m \le k$ define

$$\mathbf{q}^{d,m} = \prod_{j=2}^{k} q_j^{\binom{d}{j-m}};$$

recall that $\binom{a}{b} = 0$ if a < b or b < 0. The following proposition is implied immediately by the well-known properties of binomial coefficients.

PROPOSITION 2.4. For any $d \ge 0$ and $2 \le m \le k$

$$\mathbf{q}^{d,m}\mathbf{q}^{d,m+1}=\mathbf{q}^{d+1,m}.$$

Observe now that $W_k(q_1, \ldots, q_k) = W_k(q_1, \mathbf{q}^{0,2}, \ldots, \mathbf{q}^{0,k})$ and that by (1) and Proposition 2.4

$$W_k(q_1, \mathbf{q}^{d,2}, \dots, \mathbf{q}^{d,k}) = 1 + q_1 W_k(q_1, \mathbf{q}^{d,2}, \dots, \mathbf{q}^{d,k}) + q_1 q^{d,2} W_k(q_1, q^{d,2}, \dots, \mathbf{q}^{d,k}) (W_k(q_1, \mathbf{q}^{d+1,2}, \dots, \mathbf{q}^{d+1,k}) - 1).$$

Therefore

$$W_k(q_1,\ldots,q_k) = \frac{1}{1 - q_1 + q_1 \mathbf{q}^{0,2} - \frac{q_1 \mathbf{q}^{0,2}}{1 - q_1 + q_1 \mathbf{q}^{1,2} - \frac{q_1 \mathbf{q}^{1,2}}{1 - q_1 + q_1 \mathbf{q}^{2,2} - \frac{q_1 \mathbf{q}^{1,2}}{1 - q_1 + q_1 \mathbf{q}^{2,2} - \frac{q_1 \mathbf{q}^{2,2}}{1 - q_1 + q_1 \mathbf{q}^{2,2} - \frac{q_1 \mathbf{q}^{2,2$$

To obtain the continued fraction representation for F(x, y; k) it is enough to use Proposition 2.2 and to observe that

$$q_1 \mathbf{q}^{d,2} \Big|_{q_1 = x, q_2 = \dots = q_{k-1} = 1, q_k = y} = x y^{\binom{d}{k-2}}.$$

COROLLARY 2.5.

$$F(x, y; 2) = \frac{1 - x + xy - \sqrt{(1 - x)^2 - 2x(1 + x)y + x^2y^2}}{2xy},$$

in other words, for any $r \ge 1$

$$f_{12}(n) = \frac{r+1}{n(n-r)} {\binom{n}{r+1}}^2.$$

PROOF. For k = 2, Theorem 2.1 yields

$$F_{12}(x, y) = \frac{1}{1 - x + xy - \frac{xy}{1 - x + xy - \frac{xy}{1 - x + xy - \frac{xy}{\dots}}}}$$

which means that

$$F_{12}(x, y) = \frac{1}{1 - x + xy - xyF_{12}(x, y)}.$$

So the rest is easy to see.

Now, we find an explicit expression for $F_{12-3-...-k;r}(x)$ where $0 \le r \le k-2$. Following [12], consider a recurrence relation

$$T_j = \frac{1}{1 - xT_{j-1}}, \qquad j \ge 1.$$
 (2)

332

The solution of (2) with the initial condition $T_0 = 0$ is denoted by $R_j(x)$, and the solution of (2) with the initial condition

$$T_{0} = G_{12-3-\dots-k}(x, y) = \frac{1}{1 - x + xy\binom{k-2}{0} - \frac{xy\binom{k-2}{0}}{1 - x + xy\binom{k-1}{1} - \frac{xy\binom{k-1}{1}}{\frac{xy\binom{k}{2} - xy\binom{k}{2}}{1 - x + xy\binom{k}{2} - \frac{xy\binom{k}{2}}{1 - x + y\binom{k}{2} - \frac{xy\binom{k}{2}}}{1 - x + y\binom{k}{2} - \frac{xy\binom{k}{2}}{1 - x + y\binom{k}{2} - \frac{xy\binom{k}{2}}}{1 - x + y\binom{k}{2} - x + y\binom{k}{2}}}}$$

is denoted by $S_j(x, y; k)$, or just S_j when the value of k is clear from the context. Our interest in (2) is stipulated by the following relation, which is an easy consequence of Theorem 2.1:

$$F_{12-3-\dots-k}(x, y) = S_{k-2}(x, y; k).$$
(3)

Following [12, Eqn. (4)], for all $j \ge 1$

$$R_{j}(x) = \frac{U_{j-1}(\frac{1}{2\sqrt{x}})}{\sqrt{x}U_{j}(\frac{1}{2\sqrt{x}})},$$
(4)

where $U_j(\cos \theta) = \sin(j + 1)\theta / \sin \theta$ are the Chebyshev polynomials of the second kind. Next, we find an explicit expression for S_j in terms of G and R_j .

LEMMA 2.6. For any $j \ge 2$ and any $k \ge 2$

$$S_j(x, y; k) = R_j(x) \frac{1 - xR_{j-1}(x)G_{12-3-\dots-k}(x, y)}{1 - xR_j(x)G_{12-3-\dots-k}(x, y)}.$$
(5)

PROOF. Indeed, from (2) and $S_0 = G$ we get $S_1 = 1/(1 - xG)$. On the other hand, $R_0 = 0$, $R_1 = 1$, so (5) holds for j = 1. Now let j > 1, then by induction

$$S_{j} = \frac{1}{1 - xS_{j-1}} = \frac{1}{1 - xR_{j-1}} \cdot \frac{1 - xR_{j-1}G}{1 - \frac{x(1 - xR_{j-2})R_{j-1}G}{1 - xR_{j-1}}}.$$

Relation (2) for R_j and R_{j-1} yields $(1 - xR_{j-2})R_{j-1} = (1 - xR_{j-1})R_j = 1$, which together with the above formula gives (5).

As a corollary from Lemma 2.6 and (3) we get the following expression for the generating function $F_{12-3-...-k}(x, y)$.

COROLLARY 2.7. For any $k \ge 3$

$$F_{12-3-\dots-k}(x, y) = R_k(x) + \left(R_{k-2}(x) - R_{k-3}(x)\right) \sum_{m \ge 1} \left(xR_{k-2}(x)G_{12-3-\dots-k}(x, y)\right)^m.$$

Now we are ready to express the generating function $F_{12-3-...-k;r}(x)$ where $0 \le r \le k-2$, via Chebyshev polynomials.

THEOREM 2.8. For any $k \ge 3$, $F_{12-3-\dots-k;r}(x)$ is a rational function given by

$$F_{12-3-\dots-k;r}(x) = \frac{x^{r-1}U_{k-2}^{r-1}\left(\frac{1}{2\sqrt{x}}\right)}{(1-x)^r U_k^{r+1}\left(\frac{1}{2\sqrt{x}}\right)}, \qquad 1 \le r \le k-2,$$

$$F_{12-3-\dots-k;0}(x) = \frac{U_{k-1}\left(\frac{1}{2\sqrt{x}}\right)}{\sqrt{x}U_k\left(\frac{1}{2\sqrt{x}}\right)},$$

where U_i is the *j*th Chebyshev polynomial of the second kind.

PROOF. Observe that $G_{12-3-...-k}(x, y) = \frac{1}{1-x} \cdot \frac{1}{1-\frac{x^2}{(1-x)^2}y} + y^{k-1}P(x, y)$, so from Corollary 2.7 we get

$$F_{12-3-\dots-k}(x, y) = R_k(x) + \left(R_{k-2}(x) - R_{k-3}(x)\right) \sum_{m=1}^k \left(\frac{x}{1-x}R_k(x)\right)^m \sum_{n=1}^{k-2} \binom{m-1+n}{n}$$
$$\times \frac{x^{2n}}{(1-x)^{2n}} y^n + y^{k-1} P'(x, y),$$

where P(x, y) and P'(x, y) are formal power series. To complete the proof, it suffices to use (4) together with the identity $U_{n-1}^2(z) - U_n(z)U_{n-2}(z) = 1$, which follows easily from the trigonometric identity $\sin^2 n\theta - \sin^2 \theta = \sin(n+1)\theta \sin(n-1)\theta$.

2.2. *Pattern* 21-3-...-*k*. Our second result is a natural analogue of the main theorems of [9, 12, 15].

THEOREM 2.9. For any $k \ge 2$,

$$F_{21-3-\dots-k}(x, y) = 1 - \frac{x}{xy^{d_1} - \frac{1}{1 - \frac{1}{xy^{d_2} - \frac{1}{1 - \frac{1}{xy^{d_3} - \frac$$

where $d_i = {\binom{i-1}{k-2}}$, and ${\binom{a}{b}}$ is assumed 0 whenever a < b or b < 0.

PROOF. Following [12] we define $v_j(\pi)$, $j \ge 3$, as the number of occurrences of 21-3-...-*j* in π . Define $v_2(\pi)$ for any π , as the number of occurrences of 21 in π , $v_1(\pi)$ as the number of letters of v, and $v_0(\pi) = 1$ for any π , which means that the empty pattern occurs exactly once in each permutation. The *weight* of a permutation π is a monomial in *k* independent variables q_1, \ldots, q_k defined by

$$v_k(\pi) = \prod_{j=1}^k q_j^{\nu_j(\pi)}.$$

The total weight is a polynomial

$$V_k(q_1,\ldots,q_k) = \sum_{\pi \in \mathcal{S}(1-3-2)} v_k(\pi)$$

The following proposition is implied immediately by the definitions.

PROPOSITION 2.10. $F_{21-3-...-k}(x, y) = V_k(x, 1, ..., 1, y)$ for $k \ge 2$.

We now find a recurrence relation for the numbers $v_j(\pi)$. Let $\pi \in S_n$, so that $\pi = (\pi', n, \pi'')$.

PROPOSITION 2.11. For any nonempty $\pi \in S(1-3-2)$

$$v_i(\pi) = v_i(\pi') + v_i(\pi'') + v_{i-1}(\pi'),$$

where $j \neq 2$. Besides, if π'' is nonempty then

$$\nu_2(\pi) = \nu_2(\pi') + \nu_2(\pi'') + 1,$$

otherwise

$$v_2(\pi) = v_2(\pi'').$$

PROOF. Similar to Proposition 2.3 we get π avoids 1-3-2 if and only if π' is a 1-3-2avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$, while π'' is a 1-3-2avoiding permutation of the numbers $\{1, 2, ..., n - l\}$. Finally, if $(i_1, ..., i_j)$ is an occurrence of 21-3-...-j in π then either $i_j < l$ and so it is also an occurrence of 21-3-...-j in π' , or $i_1 > l$ and so it is also an occurrence of 21-3-...-j in π'' , or $i_j = l$ and so $(i_1, ..., i_{j-1})$ is an occurrence of 21-3-...-(j - 1) in π' , where $j \neq 2$. For j = 2 the proposition is trivial. \Box

Now we are able to find the recurrence relation for the total weight V. Proposition 2.11 yields

$$\begin{aligned} V_k(q_1, \dots, q_k) &= 1 + \sum_{\emptyset \neq \pi \in \mathcal{S}(1-3-2)} \prod_{j=1}^k q_j^{\nu_j(\pi)} \\ &= 1 + \sum_{\emptyset \neq \pi'' \in \mathcal{S}(1-3-2)} \cdot \\ &\sum_{\pi' \in \mathcal{S}(1-3-2)} \prod_{j=1}^k q_j^{\nu_j(\pi'')} \cdot q_1^{\nu_1(\pi')+1} q_2 \cdot \prod_{j=2}^{k-1} (q_j q_{j+1})^{\nu_j(\pi')} \cdot q_k^{\nu_k(\pi')} \\ &+ \sum_{\pi' \in \mathcal{S}(1-3-2)} q_1 q_1^{\nu(\pi')} q_k^{\nu_k(\pi')} \prod_{j=2}^{k-1} (q_j q_{j+1})^{\nu_j(\pi')}. \end{aligned}$$

Hence

$$V_k(q_1, \dots, q_k) = 1 + q_1 V_k(q_1, q_2 q_3, \dots, q_{k-1} q_k, q_k) + q_1 q_2 V_k(q_1, q_2 q_3, \dots, q_{k-1} q_k, q_k) (V_k(q_1, q_2, \dots, q_k) - 1).$$
(6)

Observe now that $V_k(q_1, \ldots, q_k) = V_k(q_1, \mathbf{q}^{0,2}, \ldots, \mathbf{q}^{0,k})$ and by (6) and Proposition 2.4 we get

$$V_k(q_1, \mathbf{q}^{d,2}, \dots, \mathbf{q}^{d,k}) = 1 + q_1 V_k(q_1, \mathbf{q}^{d+1,2}, \dots, \mathbf{q}^{d+1,k}) + q_1 q^{d,2} V_k(q_1, q^{d+1,2}, \dots, \mathbf{q}^{d+1,k}) (V_k(q_1, \mathbf{q}^{d,2}, \dots, \mathbf{q}^{d,k}) - 1).$$

To obtain the continued fraction representation for $F_{21-3-...-k}(x, y)$ it is sufficient to use Proposition 2.10 and to observe that

$$q_1 \mathbf{q}^{d,2}\Big|_{q_1=x,q_2=\ldots=q_{k-1}=1,q_k=y} = xy^{\binom{d}{k-2}}.$$

COROLLARY 2.12.

$$F_{21}(x, y) = \frac{1 - x + xy - \sqrt{(1 - x)^2 - 2x(1 + x)y + x^2y^2}}{2xy},$$

in other words, for any $r \ge 1$

$$f_{21;r}(n) = \frac{r+1}{n(n-r)} {\binom{n}{r+1}}^2.$$

PROOF. For k = 2, $q_1 = x$, and $q_2 = y$; Proposition 2.10 and (6) yields $F_{21}(x, y) = 1 + xF_{21}(x, y) + xyF_{21}(x, y)(F_{21}(x, y) - 1)$, which means $F_{21}(x, y) = F_{12}(x, y)$. Using Corollary 2.5 we have the desired result.

Now, we are ready to find an explicit expression for $F_{21-3-...-k;r}(x)$ where $0 \le r \le k-2$.

Consider a recurrence relation

$$T'_{j} = 1 - \frac{x}{x - \frac{1}{T'_{j-1}(x)}}, \qquad j \ge 1.$$
(7)

The solution of (7) with the initial condition $T'_0 = 0$ is given by $R_j(x)$ (Lemma 2.13), and the solution of (7) with the initial condition

$$T'_{0} = G_{21-3-\dots-k}(x, y) = \frac{1}{xy^{\binom{k-2}{k-2}} - \frac{1}{1 - \frac{1}{xy^{\binom{k-1}{k-2}} - \frac{1}{1 - \frac{1}{xy^{\binom{k}{k-2}} - \frac{1}{xy^{\binom{k}{k-2}} - \frac{1}{1 - \frac{1}{xy^{\binom{k}{k-2}} -$$

is denoted by $S'_j(x, y; k)$, or just S'_j when the value of k is clear from the context. Our interest in (7) is stipulated by the following relation, which is an easy consequence of Theorem 2.9:

$$F_{21-3-\dots-k}(x, y) = S'_k(x, y; k).$$
(8)

First of all, we find an explicit formula for the functions $T'_i(x)$ in (7).

LEMMA 2.13. For any $j \ge 1$,

$$T'_i(x) = R_i(x). (9)$$

PROOF. Indeed, it follows immediately from (7) that $T'_0(x) = 0$ and $T'_1(x) = 1$. Let us induce, we assume $T'_{j-1}(x) = R_{j-1}(x)$, and prove that $T'_j(x) = R_j(x)$. By use of (7)

$$T'_j(x) = 1 - \frac{x}{x - \frac{1}{R_{j-1}(x)}}$$

On the other hand, following [12], $R_j(x) = \frac{1}{1-xR_{j-1}(x)}$ which means that $R_j(x) = 1 + xR_{j-1}(x)R_j(x)$, hence $T'_i(x) = R_j(x)$.

Next, we find an explicit expression for S'_i in terms of G and R_j .

LEMMA 2.14. For any $j \ge 2$ and any $k \ge 2$

$$S'_{j}(x, y; k) = R_{j}(x) \frac{1 - xR_{j-1}(x)G_{21-3-\dots-k}(x, y; k)}{1 - xR_{j}(x)G_{21-3-\dots-k}(x, y)}.$$
(10)

As a corollary from Lemma 2.14 and (6) we get the following expression for the generating function $F_{21-3-...-k}(x, y)$.

COROLLARY 2.15. For any $k \ge 3$

$$F_{21-3-\dots-k}(x, y) = R_k(x) + \left(R_{k-2}(x) - R_{k-3}(x)\right) \sum_{m \ge 1} \left(xR_{k-2}(x)G_{21-3-\dots-k}(x, y)\right)^m.$$

Now we are ready to express the generating function $F_{21-3-...-k;r}(x)$ where $0 \le r \le k-2$, via Chebyshev polynomials.

THEOREM 2.16. For any $k \ge 3$, $F_{21-3-\dots-k;r}(x)$ is a rational function given by

$$F_{21-3-\dots-k;r}(x) = \frac{x^{\frac{r-1}{2}}U_{k-2}^{r-1}\left(\frac{1}{2\sqrt{x}}\right)}{U_{k}^{r+1}\left(\frac{1}{2\sqrt{x}}\right)}, \quad 1 \le r \le k-2,$$

$$F_{21-3-\dots-k;0}(x) = \frac{U_{k-1}\left(\frac{1}{2\sqrt{x}}\right)}{\sqrt{x}U_{k}\left(\frac{1}{2\sqrt{x}}\right)},$$

where U_j is the *j*th Chebyshev polynomial of the second kind.

PROOF. Observe that $G_{21-3-...-k}(x, y) = 1 + \frac{x}{1-x-xy} + y^{k-1}P(x, y)$, so by Corollary 2.15 we get

$$F_{21-3-\dots-k}(x, y) = R_k(x) + \left(R_{k-2}(x) - R_{k-3}(x)\right) \sum_{m=1}^k \left(xR_{k-2}(x)\left(1 + \frac{x}{1-x-xy}\right)\right)^m + y^{k-1}P'(x, y),$$

where P(x, y) and P'(x, y) are formal power series. To complete the proof, it suffices to use (9) together with the identity $U_{n-1}^2(z) - U_n(z)U_{n-2}(z) = 1$.

REMARK 2.17. Theorem 2.16 and [12] yield the number of 1-3-2-avoiding permutations in S_n such that contain exactly r times the pattern 21-3-...-k is the same number of 1-3-2avoiding permutations in S_n such that contain exactly r times the pattern 1-2-3...-k, for all r = 0, 1, 2, ..., k - 2. However, the question is if there exists a natural bijection between the set of 1-3-2-avoiding permutations in S_n such that contain exactly r times the generalized pattern 21-3-...-k, and the set of 1-3-2-avoiding permutations in S_n such that contain exactly r times the classically pattern 1-2-3...-k.

2.3. Patterns: $\tau = 12...k$ and $\tau = k...21$. Let $\pi \in S_n$; we say π has *d*-increasing canonical decomposition if π has the following form

$$\pi = (\pi^1, \pi^2, \dots, \pi^d, a_d, \dots, a_2, a_1, n, \pi^{d+1}),$$

where all the entries of π^i are greater than all the entries of π^{i+1} , and $a_d < a_{d-1} < \cdots < a_1 < n$. We say π has *d*-decreasing canonical decomposition if π has the following form

$$\pi = (\pi^1, n, a_1, \dots, a_d, \pi^{d+1}, \pi^d, \dots, \pi^d),$$

where all the entries of π^i are greater than all the entries of π^{i+1} , and $a_d < a_{d-1} < \cdots < a_1 < n$. The following proposition is the basis of all other results in this section.

PROPOSITION 2.18. Let $\pi \in S_n(1-3-2)$. Then there exists unique $d \ge 0$ and $e \ge 0$ such that π has a d-increasing canonical decomposition, and has e-decreasing canonical decomposition.

PROOF. Let $\pi \in S_n(1-3-2)$, and let $a_d, a_{d-1}, \ldots, a_1, n$ a maximal increasing subsequence of π such that $\pi = (\pi', a_d, \ldots, a_1, n, \pi'')$. Since π avoids 1-3-2 there exists d subsequences π^j such that $\pi = (\pi^1, \ldots, \pi^d, a_d, \ldots, a_1, n, \pi'')$, and all the entries of π^i are greater than all the entries of π^{i+1} , and all the entries of π^d are greater than all entries of π'' . Hence, π has d-increasing canonical decomposition. Similarly, there exist e unique such that π is e-decreasing canonical decomposition. \Box

Let us define $I_{\tau}(x, y; d)$ (respectively, $J_{\tau}(x, y; e)$) as the generating function for all dincreasing (respectively, e-decreasing) canonical decomposition of permutations in S_n (1-3-2) with exactly r occurrences of τ . The following proposition is implied immediately by the definitions.

PROPOSITION 2.19.

$$F_{\tau}(x, y) = 1 + \sum_{d \ge 0} I_{\tau}(x, y; d) = 1 + \sum_{e \ge 0} J_{\tau}(x, y; e).$$

PROOF. Immediately, by definitions of the generating functions and Proposition 2.18 (1 for the empty permutation).

Now, we present examples for Propositions 2.18 and 2.19.

First example

THEOREM 2.20. $F_{k...21}(x, y) = F_{12...k}(x, y)$, such that

$$F_{12\dots k}(x, y) = \sum_{n=0}^{k-2} x^n F_{12\dots k}^n(x, y) + \frac{x^{k-1} F_{12\dots k}^{k-1}(x, y)}{1 - xy F_{12\dots k}(x, y)}.$$

PROOF. By Proposition 2.18 and definitions it is easy to obtain for all d > 0

$$I_{12\dots k}(x, y; d) = x^{d+1} y^{s_d} F_{12\dots k}^{d+1}(x, y),$$

where $s_d = d + 1 - k$ for $d \ge k - 1$, and otherwise $s_d = 0$. So by Proposition 2.19 the theorem holds.

Similarly, we obtain the same result for $F_{k...21}(x, y)$.

As a remark, by the above theorem, it is easy to obtain the same results for Corollaries 2.5 and 2.12.

Second example

THEOREM 2.21. Let $1 \le l \le k - 1$. Then $F_{1-2-\dots-(l-1)-l(l+1)\dots k}(x, y) = U_l(x, 1, \dots, 1, y)$ where

$$U_{l}(q_{1},\ldots,q_{l}) = 1 + \sum_{d\geq 0} \left(q_{l}^{\left(\frac{d+1+l-k}{l}\right)} \prod_{j=1}^{l-1} q_{j}^{\left(\frac{d+1}{j}\right)} \prod_{j=0}^{d} U_{l}(p_{1;j},\ldots,p_{l;j}) \right),$$

and for i = 1, 2, ..., l, $p_{i;j} = \prod_{m=1}^{l-1} q_j^{\left(\frac{j}{m-i}\right)}$, $p_{l,j} = q_l$ for all $0 \le j \le k-l$, and $p_{i;j} = \prod_{m=1}^{l} p_{i;k-l}^{\left(\frac{j-k+l}{l-i}\right)}$ for all $j \ge k-l+1$.

PROOF. Following [12] we define $\gamma_j(\pi), j \leq l-1$, as the number of occurrences of 1-2-...-j in π . Define $\gamma_l(\pi)$ for any π , as the number of occurrences of 1-2-...-(l-1)-l(l+1)1)...k in π , and $\gamma_0(\pi) = 1$ for any π , which means that the empty pattern occurs exactly once in each permutation. The *weight* of a permutation π is a monomial in *l* independent variables q_1, \ldots, q_l defined by

$$u_l(\pi) = \prod_{j=1}^l q_j^{\gamma_j(\pi)}.$$

The total weight is a polynomial

$$U_l(q_1,\ldots,q_l)=\sum_{\pi\in\mathcal{S}(1-3-2)}u_l(\pi).$$

The following proposition is implied immediately by the definitions and Proposition 2.18. \Box

PROPOSITION 2.22. $F_{1-2-\dots-(l-1)-l(l+1)\dots k}(x, y) = U_k(x, 1, \dots, 1, y)$ for $k > l \ge 1$, and $U_l(q_1, \dots, q_l) = 1 + \sum_{d \ge 0} \sum_{\pi \in A_d} u_l(\pi)$, where A_d is the set of all d-increasing canonical decomposition permutations in S(1-3-2).

Let us denote $U_{l;d}(q_1, \ldots, q_l) = \sum_{\pi \in A_d} u_l(\pi)$.

PROPOSITION 2.23. For any $d \ge 0$,

$$U_{l;d}(q_1,\ldots,q_l) = q_l^{\left(\frac{d+1+l-k}{l}\right)} \prod_{j=1}^{l-1} q_j^{\left(\frac{d+1}{j}\right)} \prod_{j=0}^d U_l(p_{1;j},\ldots,p_{l;j}).$$

PROOF. Let π be *d*-increasing canonical decomposition, that is,

$$\pi = (\pi^1, \pi^2, \dots, \pi^d, a_d, \dots, a_2, a_1, n, \pi^{d+1}),$$

where the numbers $a_d < a_{d-1} < \cdots < a_1 < n$ appear as consecutive numbers in π , all entries of π^j are greater than all the entries of π^{j+1} , and all entries of π^d are greater than a_d . So, by calculating $u_l(\pi)$ and summing over all $\pi \in A_d$ we have that

$$U_{l;d}(q_1, \dots, q_d) = q_l^{\left(\frac{d+1+l-k}{l}\right)} \cdot \prod_{j=1}^{l-1} q_j^{\left(\frac{d+1}{j}\right)} \cdot \prod_{j=0}^d U_l(p_{1;j}, \dots, p_{l;j}).$$

Therefore, Theorem 2.21 holds, by using Propositions 2.22 and 2.23.

Now, let l = k - 1 and by using Theorem 2.21, it is easy to obtain the following.

COROLLARY 2.24. For $k \ge 3$,

$$F_{1-2-\dots-(k-2)-(k-1)k}(x, y) = \sum_{j=0}^{k-1} (xF_{1-2-\dots-(k-2)-(k-1)k}(x, y))^j.$$

REMARK 2.25. Similarly, the argument of *d*-increasing canonical decomposition, or the argument *d*-decreasing canonical decomposition yields other formulae, for example, the formula for $F_{12-3-45}(x, y)$.

3. THREE LETTERS PATTERN WITHOUT INTERNAL DASHES

In this section, we give a complete answer for $F_{\tau}(x, y)$ where τ is a generalized pattern without internal dashes; that is, τ is 123, 213, 231, 312, and 321, by the following four subsections.

3.1. Patterns 123 *and* 321.

THEOREM 3.1.

$$F_{123}(x, y) = F_{321}(x, y) = \frac{1 + xy - x - \sqrt{1 - 2x - 3x^2 - xy(2 - 2x - xy)}}{2x(x + y - xy)}.$$

PROOF. Theorem 2.20 yields, $F_{123}(x, y) = F_{321}(x, y) = H$ where

$$H = 1 + xH + \frac{x^2H^2}{1 - xyH},$$

so the theorem holds.

3.2. Pattern 231.

THEOREM 3.2.

$$F_{231}(x, y) = \frac{1 - 2x + 2xy - \sqrt{1 - 4x + 4x^2 - 4x^2y}}{2xy}$$

that is, for all $r, n \ge 0$

$$F_{231;r}(x) = \frac{1}{r+1} \left(\frac{2r}{r}\right) \frac{x^{2r+1}}{(1-2x)^{2r+1}}, \qquad f_{231;r}(n) = \frac{2^{n-2r-1}}{r+1} \left(\frac{n-1}{2r}\right) \left(\frac{2r}{r}\right).$$

PROOF. Let $l = \pi^{-1}(n)$. Since π avoids 1-3-2, each number in π' is greater than any of the numbers in π'' . Therefore, π' is a 1-3-2-avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$, while π'' is a 1-3-2-avoiding permutation of the numbers $\{1, 2, ..., n - l\}$. On the other hand, if π' is an arbitrary 1-3-2-avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$ and π'' is an arbitrary 1-3-2-avoiding permutation of the numbers $\{n - l + 1, n - l + 2, ..., n - 1\}$ and π'' is an arbitrary 1-3-2-avoiding permutation of the numbers $\{1, 2, ..., n - l\}$, then $\pi = (\pi', n, \pi'')$ is 1-3-2-avoiding.

Now let us observe all the possibilities that π' and π'' is empty or not. This yields

$$F_{231}(x, y) = 1 + x + 2x(F_{231}(x, y) - 1) + xy(F_{231}(x, y) - 1)^2,$$

hence the theorem holds.

3.3. Pattern 213.

THEOREM 3.3.

$$F_{213}(x, y) = \frac{1 - x^2 + x^2y - \sqrt{1 + 2x^2 - 2x^2y + x^4 - 2x^4y + x^4y^2 - 4x}}{2x(1 + xy - x)}$$

PROOF. Let D(x, y) be the generating function of all 1-3-2-avoiding permutations $(\alpha', n) \in S_n$ such that contain 213 exactly r times. Let $\alpha = (\alpha', n, \alpha'')$; if we consider the two cases α' empty or not we have $F_{213}(x, y) = 1 + D(x, y)F_{213}(x, y)$. Let $\alpha = (\alpha', n)$; if we observe the two cases α' empty or not, then (similarly)

 $D(x, y) = x + x^{2} + x^{2}y(F_{213}(x, y) - 1) + x^{2}(D(x, y) - 1) + x^{2}(D(x, y) - 1)(F_{213}(x, y) - 1).$

However,

$$F_{213}(x, y) = 1 + xF_{213}(x, y) \frac{1 + x - xy + x(y - 1)F_{213}(x, y)}{1 - xF_{213}(x, y)},$$

hence, the theorem holds.

340

3.4. Pattern 312.

THEOREM 3.4.

$$F_{312}(x, y) = \frac{1 - x^2 + x^2y - \sqrt{1 + 2x^2 - 2x^2y + x^4 - 2x^4y + x^4y^2 - 4x}}{2x(1 + xy - x)}.$$

PROOF. Let $\alpha \in S(1-3-2)$; if $\alpha = \emptyset$, then there is one permutation, otherwise by Proposition 2.18 we can write $\alpha = (\alpha^1, n, a_1, a_2, \dots, a_d, \alpha^{d+1}, \alpha^d, \dots, \alpha^2)$ where all the entries of α^j are greater than all the entries of α^{j+1} , and $n > a_1 > a_2 > \dots > a_d$. Hence, for any d = 0, 1 the generating function of these permutations in these cases is $x^{d+1}F_{312}(x, y)$. Let $d \ge 2$; if $\alpha^{d+1} = \emptyset$, then the generating function of these permutations in this case is $x^{d+1}F_{312}^d(x, y)$, otherwise the generating function is $x^{d+1}yF_{312}^d(x, y)(F_{312}(x, y)-1)$. Hence

$$F_{312}(x, y) = 1 + (x + x^2)F_{312}(x, y) + \sum_{d \ge 2} x^{d+1}F_{312}^d(x, y) + \sum_{d \ge 2} x^{d+1}yF_{312}^d(x, y)(F_{312}(x, y) - 1),$$

which means that

$$F_{312}(x, y) = 1 + xF_{312}(x, y) + \frac{x^2F_{312}(x, y)}{1 - xF_{312}(x, y)} + \frac{x^2yF_{312}(x, y)(F_{312}(x, y) - 1)}{1 - xF_{312}(x, y)},$$

so the rest is easy to see.

4. THREE LETTERS PATTERN WITH ONE DASH

In this section, we present examples $F_{\tau}(x, y)$ where τ is a generalized pattern with one dash. Theorem 2.1 yields

THEOREM 4.1. The generating function $F_{12-3}(x, y)$ is given by the continued fraction

$$\frac{1}{1 - \frac{x}{1 - x + xy - \frac{xy}{1 - x + xy^2 - \frac{xy^2}{2}}}}$$

Theorem 2.9 yields

THEOREM 4.2. For any $k \ge 2$,

$$F_{21-3}(x, y) = 1 - \frac{x}{x - \frac{1}{1 - \frac{1}{xy - \frac{1}{1 - \frac{x}{xy^2 - \frac{1}{xy^2 - \frac{1}{x$$

For k = 3 and l = 2 Theorem 2.24 yields

THEOREM 4.3.

$$F_{1-23}(x, y) = 1 + xF_{1-23}(x, y) + \sum_{d \ge 1} x^{d+1} y^{\left(\frac{d}{2}\right)} F_{1-23}(x, y) \prod_{j=0}^{d-1} F_{1-23}(xy^j, y).$$

COROLLARY 4.4.

$$F_{1-23;0}(x) = \frac{1-x-\sqrt{1-2x-3x^2}}{2x^2};$$

$$F_{1-23;1}(x) = \frac{x-1}{2x} + \frac{1-2x-x^2}{2x\sqrt{1-2x-3x^2}};$$

$$F_{1-23;2}(x) = \frac{x^4}{(1-2x-3x^2)^{3/2}};$$

$$F_{1-23;3}(x) = x^2 - 1 + \frac{11x^7 + 43x^6 + 41x^5 - 7x^4 - 25x^3 + x^2 + 5x - 1}{(1-2x-3x^2)^{5/2}}.$$

PROOF. By Theorem 4.3 and by $F_{1-23}(x, 0) = F_{1-23,0}(x)$ we get

$$F_{1-23;0}(x) = 1 + xF_{1-23;0}(x) + x^2F_{1-23;0}^2(x)$$

which means the first formula holds.

By Theorem 4.3 we get

$$\frac{d}{dy}F_{1-23}(x,0) = x\frac{d}{dy}F_{1-23}(x,0) + 2x^2F_{1-23}(x,0)\frac{d}{dy}F_{1-23}(x,0) + x^3F_{1-23}(x,0)^2F_{1-23}(0,0),$$

and by $F_{1-23;1}(x) = \frac{d}{dy} F_{1-23}(x, y) \Big|_{y=0}$ and the first formula, we get the second formula. Similarly, by Theorem 4.3 and by $F_{1-23;r}(x) = \frac{1}{r!} \frac{d^r}{dy^r} F_{1-23}(x, y) \Big|_{y=0}$ the other formulae holds.

THEOREM 4.5.

$$F_{2-13}(x, y) = \frac{1}{1 - \frac{x}{1 - \frac{x}{1 - \frac{xy}{1 - \frac{xy}{1 - \frac{xy^2}{1 -$$

PROOF. By Propositions 2.18 and 2.19, we obtain

$$F_{2-13}(x, y) = 1 + x F_{2-13}(x, y) \sum_{d \ge 0} x^d F_{2-13}^d(xy, y),$$

and the rest is easy to see.

5. FURTHER RESULTS

First of all, let us denote by $G_{\tau;\phi}(x, y)$ the generating function for the number of permutations in $S_n(1-3-2, \tau)$ such that contain ϕ exactly r times; that is

$$G_{\tau;\phi}(x,z) = \sum_{n \ge 0} x^n \sum_{\pi \in S_n(1-3-2,\tau)} y^{a_{\phi}(\pi)},$$

where $a_{\phi}(\pi)$ is the number of occurrences of ϕ in π . In this section, (similar to previous sections) we find $G_{\tau;\phi}(x, y)$ in terms of continued fractions or by explicit formulae, for some cases of τ and ϕ .

THEOREM 5.1. The generating functions $G_{123;213}(x, y)$ and $G_{321;312}(x, y)$ are given by

$$\frac{1}{1-x-x^2(1-y)-\frac{x^2y}{1-x-x^2(1-y)-\frac{x^2y}{1-x-x^2(1-y)-\frac{x^2y}{x^2}}}}$$

equivalently,

$$\frac{1 - x - x^2 + x^2y - \sqrt{(1 - x - x^2)^2 - 2yx^2(1 + x + x^2) + x^4y^2}}{2x^2y}$$

THEOREM 5.2.

$$G_{123;231}(x, y) = H(x, y) + x^2(1 - y)H(x, y)^2$$

where $H(x, y) = \frac{1}{1-x-x^2yH(x,y)}$, which means the number of permutations in $S_n(1-3-2, 123)$ such that contain 231 exactly $r \ge 0$ times is given by

$$(C_{r+1}-C_r)\left(\frac{n-1}{2r+1}\right)+C_r\left(\frac{n}{2r+1}\right),$$

where C_m is the mth Catalan number.

THEOREM 5.3. The generating functions $G_{213;123}(x, y)$ and $G_{312;321}(x, y)$ are given by

$$\frac{1 - x - x^2 + xy - \sqrt{(1 - x - x^2)^2 - 2xy(1 - x + x^2) + x^2y^2}}{2xy(1 - x)}.$$

As a concluding remark we note that there are many questions left to answer such as: if there exists a bijection between, for example, the set of 1-3-2-avoiding permutations in S_n such that contain exactly r times the generalized pattern 21-3-...-k, and the set of 1-3-2-avoiding permutations in S_n such that contain exactly r times the classical pattern 1-2-3-...-k, where r = 0, 1, ..., k - 2.

REFERENCES

- 1. E. Babson and E. Steingrimsson, Generalized permutation patterns and a classification of the Mahonian statistics, *Séminaire Lotharingien de Combinatoire*, **B44b** (2000), 18.
- 2. T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, *Discrete Math.*, **204** (1999), 119–128.
- 3. A. Claesson, Generalised pattern avoidance, Europ. J. Combinatorics, 22 (2001), 961-973.
- 4. A. Claesson and T. Mansour, Permutations avoiding a pair of generalized patterns of length three with exactly one dash, preprint CO/0107044.
- 5. S. Elizalde and M. Noy, *In Formual Power Series and Algebraic Combinatorics (Tempe, 2001)*, Arizona State University, 2001, pp. 179–189.

- M. Jani and R. G. Rieper, Continued fractions and Catalan problems, *Electron. J. Comb.*, 7 (2000), #R1.
- 7. S. Kitaev, Multi-avoidance of generalised patterns, to appear.
- 8. D. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
- 9. C. Krattenthaler, Permutations with restricted patterns and Dyck paths, *Adv. Appl. Math.*, **27** (2001), 510–530.
- V. Lakshmibai and B. Sandhya, Criterion for smoothness of Schubert varieties in Sl(n)/B, Proc. Indian Acad. Sci., 100 (1990), 45–52.
- 11. L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland, 1992.
- T. Mansour and A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials, *Electron. J. Comb.*, 7 (2000), #R17.
- 13. J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, *Discrete Math.*, **152** (1996), 307–313.
- J. Noonan and D. Zeilberger, The enumeration of permutations with a prescribed number of 'forbidden' patterns, *Adv. Appl. Math.*, 17 (1996), 381–407.
- A. Robertson, H. Wilf and D. Zeilberger, Permutation patterns and continuous fractions, *Electron J. Comb.*, 6 (1999), #R38.
- 16. R. Simion and F. Schmidt, Restricted permutations, Europ. J. Combinatorics, 6 (1985), 383-406.
- 17. J. West, Generating trees and the Catalan and Schröder numbers, *Discrete Math.*, **146** (1995), 247–262.

Received 23 October 2001 and accepted 31 January 2002

TOUFIK MANSOUR LABRI (UMR 5800), Université Bordeaux 1, 351 cours de la Libération, 33405 Talence Cedex, France E-mail: toufik@labri.fr