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Continued Fractions and Generalized Patterns

TOUFIK MANSOUR

Babson and Steingrimsson (2000, Séminaire Lotharingien de Combinatoire, B44b, 18) introduced

generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must

be adjacent in the permutation.
Let fτ ;r (n) be the number of 1-3-2-avoiding permutations on n letters that contain exactly r occur-

rences of τ , where τ is a generalized pattern on k letters. Let Fτ ;r (x) and Fτ (x, y) be the generating

functions defined by Fτ ;r (x) =
∑

n≥0 fτ ;r (n)xn and Fτ (x, y) =
∑

r≥0 Fτ ;r (x)yr . We find an

explicit expression for Fτ (x, y) in the form of a continued fraction for τ given as a generalized pat-

tern: τ = 12-3- . . . -k, τ = 21-3- . . . -k, τ = 123 . . . k, or τ = k . . . 321. In particular, we find

Fτ (x, y) for any τ generalized pattern of length 3. This allows us to express Fτ ;r (x) via Chebyshev

polynomials of the second kind and continued fractions.

c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Let [p] = {1, . . . , p} denote a totally ordered alphabet on p letters, and let π = (π1, . . . ,

πm) ∈ [p1]m , β = (β1, . . . , βm) ∈ [p2]m . We say that π is order-isomorphic to β if for all

1 ≤ i < j ≤ m one has πi < π j if and only if βi < β j . For two permutations π ∈ Sn

and τ ∈ Sk , an occurrence of τ in π is a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such

that (πi1 , . . . , πik
) is order-isomorphic to τ ; in such a context τ is usually called the pattern

(classical pattern). We say that π avoids τ , or is τ -avoiding, if there is no occurrence of τ in π .

More generally, we say π containing τ exactly r times, if there exists r different occurrences

of τ in π .

The set of all τ -avoiding permutations of all possible sizes including the empty permutation

is denoted S(τ ). Pattern avoidance proved to be a useful language in a variety of seemingly

unrelated problems, from stack sorting [8] to singularities of Schubert varieties [10]. A com-

plete study of pattern avoidance for the case τ ∈ S3 is carried out in [16].

On the other hand, [1] introduced generalized permutation patterns that allow the require-

ment that two adjacent letters in a pattern must be adjacent in the permutation. The idea of [1]

introducing these patterns was the study of Mahonian statistics.

We write a classical pattern with dashes between any two adjacent letters of the pattern,

say 1324, as 1-3-2-4, and if we write, say 24-1-3, then we mean that if this pattern occurs in

permutation π , then the letters in the permutation π that correspond to 2 and 4 are adjacent.

For example, the permutation π = 35421 has only two occurrences of the pattern 23-1,

namely the subsequences 352 and 351, whereas π has four occurrences of the pattern 2-3-1,

namely the subsequences 352, 351, 342 and 341.

Reference [3] presented a complete solution for the number of permutations avoiding any

pattern of length three with exactly one adjacent pair of letters. Reference [4] presented a

complete solution for the number of permutations avoiding any two patterns of length three

with exactly one adjacent pair of letters. Reference [7] almost presented results avoiding two

or more 3-patterns without internal dashes, that is, where the pattern corresponds to a con-

tiguous subword in a permutation. Besides, [5] presented the following generating functions

regarding the distribution of the number of occurrences of any generalized pattern of length 3:

∑

π∈S
y(123)π x |π |

|π |!
=

2 f (y)e
1
2 ( f (y)−y+1)x

f (y) + y + 1 + ( f (y) − y − 1)e f (y)x
,
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∑

π∈S
y(213)π x |π |

|π |!
=

1

1 −
∫ x

0 e(y−1)t2/2dt
,

where (τ )π is the number of occurrences of τ in π , f (y) =
√

(y − 1)(y + 3).

The purpose of this paper is to point out an analogue of [15], and some interesting conse-

quences of this analogue. Generalizations of this theorem have already been given in [6, 9, 12].

In the present paper we study the generating function for the number 1-3-2-avoiding per-

mutations in Sn that contain a prescribed number of generalized pattern τ . The study of

the obtained continued fraction allows us to recover and to present an analogue of the re-

sults of [2, 6, 9, 12] that relates the number of 1-3-2-avoiding permutations that contain no

12-3- . . . -k (or 21-3- . . . -k) patterns to Chebyshev polynomials of the second kind.

Let fτ ;r (n) stand for the number of 1-3-2-avoiding permutations in Sn that contain exactly r

occurrences of τ . We denote by Fτ ;r (x) and Fτ (x, y) the generating function of the sequence

{ fτ ;r (n)}n≥0 and { fτ ;r (n)}n,r≥0, respectively, that is,

Fτ ;r (x) =
∑

n≥0

fτ ;r (n)xn, Fτ (x, y) =
∑

r≥0

Fτ ;r (x)yr .

The paper is organized as follows. The cases τ = 12-3- . . . -k, τ = 21-3- . . . -k, τ =
123 . . . k, and τ = k . . . 321 are treated in Section 2. In Section 3, we present the cases τ =
123, 213, 231, 312, and 321, that is, τ is a 3-letters generalized pattern without dashes. In

Section 4, we treat the cases when τ is a 3-letters generalized pattern with one dash. Finally,

in Section 5, we present examples of restricted more than one generalized pattern of 3-letters.

2. FOUR GENERAL CASES

In this section, we study the following four cases: τ = 12-3- . . . -k, τ = 21-3- . . . -k, τ =
12 . . . k, and τ = k . . . 21, by the following three subsections.

2.1. Pattern 12-3- . . . -k. Our first result is a natural analogue of the main theorems of [9,

12, 15].

THEOREM 2.1. The generating function F12-3-...-k(x, y) for k ≥ 2 is given by the conti-

nued fraction
1

1 − x + xyd1 − xyd1

1−x+xyd2− xyd2

1−x+xyd3 − xyd3
...

,

where di =
(

i−1
k−2

)

, and
(

a
b

)

is assumed 0 whenever a < b or b < 0.

PROOF. Following [12] we define η j (π), j ≥ 3, as the number of occurrences of 12-3- . . . - j

in π . Define η2(π) for any π , as the number of occurrences of 12 in π , η1(π) as the number

of letters of π , and η0(π) = 1 for any π , which means that the empty pattern occurs exactly

once in each permutation. The weight of a permutation π is a monomial in k independent

variables q1, . . . , qk defined by

wk(π) =
k

∏

j=1

q
η j (π)

j .

The total weight is a polynomial

Wk(q1, . . . , qk) =
∑

π∈S(1-3-2)

wk(π).
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The following proposition is implied immediately by the definitions.

PROPOSITION 2.2. F12-3-...-k(x, y) = Wk(x, 1, . . . , 1, y) for k ≥ 2.

We now find a recurrence relation for the numbers η j (π). Let π ∈ Sn , so that π =
(π ′, n, π ′′).

PROPOSITION 2.3. For any nonempty π ∈ S(1-3-2)

η j (π) = η j (π
′) + η j (π

′′) + η j−1(π
′),

where j 6= 2. Besides, if π ′ is nonempty then

η2(π) = η2(π
′) + η2(π

′′) + 1,

otherwise

η2(π) = η2(π
′′).

PROOF. Let l = π−1(n). Since π avoids 1-3-2, each number in π ′ is greater than any

of the numbers in π ′′. Therefore, π ′ is a 1-3-2-avoiding permutation of the numbers {n −
l + 1, n − l + 2, . . . , n − 1}, while π ′′ is a 1-3-2-avoiding permutation of the numbers

{1, 2, . . . , n − l}. On the other hand, if π ′ is an arbitrary 1-3-2-avoiding permutation of the

numbers {n − l +1, n − l +2, . . . , n −1} and π ′′ is an arbitrary 1-3-2-avoiding permutation of

the numbers {1, 2, . . . , n − l}, then π = (π ′, n, π ′′) is 1-3-2-avoiding. Finally, if (i1, . . . , i j )

is an occurrence of 12-3- . . . - j in π then either i j < l, and so it is also an occurrence of

12-3- . . . - j in π ′, or i1 > l, and so it is also an occurrence of 12- . . . - j in π ′′, or i j = l, and

so (i1, . . . , i j−1) is an occurrence of 12-3- . . . -( j − 1) in π ′, where j 6= 2. For j = 2 the

proposition is trivial. The result follows. ✷

Now we are able to find the recurrence relation for the total weight W . Indeed, by Propo-

sition 2.3,

Wk(q1, . . . , qk) = 1 +
∑

∅6=π∈S(1-3-2)

k
∏

j=1

q
η j (π)

j

= 1 +
∑

∅6=π ′∈S(1-3-2)

∑

π ′′∈S(1-3-2)

k
∏

j=1

q
η j (π

′′)
j · q

η1(π
′)+1

1 q2 ·

k−1
∏

j=2

(q j q j+1)
η j (π

′) · q
ηk (π

′)
k +

∑

π ′′∈S(1-3-2)

q1

k
∏

j=1

q
η j (π

′′)
j .

Hence

Wk(q1, . . . , qk) = 1 + q1Wk(q1, . . . , qk)

+ q1q2Wk(q1, . . . , qk)(Wk(q1, q2q3, . . . , qk−1qk, qk) − 1). (1)

Following [12], for any d ≥ 0 and 2 ≤ m ≤ k define

qd,m =
k

∏

j=2

q
( d

j−m)
j ;

recall that
(

a
b

)

= 0 if a < b or b < 0. The following proposition is implied immediately by

the well-known properties of binomial coefficients.
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PROPOSITION 2.4. For any d ≥ 0 and 2 ≤ m ≤ k

qd,mqd,m+1 = qd+1,m .

Observe now that Wk(q1, . . . , qk) = Wk(q1, q0,2, . . . , q0,k) and that by (1) and Propo-

sition 2.4

Wk(q1, qd,2, . . . , qd,k) = 1 + q1Wk(q1, qd,2, . . . , qd,k)

+ q1qd,2Wk(q1, qd,2, . . . , qd,k)(Wk(q1, qd+1,2, . . . , qd+1,k) − 1).

Therefore

Wk(q1, . . . , qk) =
1

1 − q1 + q1q0,2 − q1q0,2

1−q1+q1q1,2− q1q1,2

1−q1+q1q2,2− q1q2,2

...

.

To obtain the continued fraction representation for F(x, y; k) it is enough to use Propo-

sition 2.2 and to observe that

q1qd,2

∣

∣

∣

∣

q1=x,q2=...=qk−1=1,qk=y

= xy

(

d
k−2

)

.

✷

COROLLARY 2.5.

F(x, y; 2) =
1 − x + xy −

√

(1 − x)2 − 2x(1 + x)y + x2 y2

2xy
,

in other words, for any r ≥ 1

f12(n) =
r + 1

n(n − r)

(

n

r + 1

)2

.

PROOF. For k = 2, Theorem 2.1 yields

F12(x, y) =
1

1 − x + xy − xy

1−x+xy− xy

1−x+xy− xy
...

.

which means that

F12(x, y) =
1

1 − x + xy − xyF12(x, y)
.

So the rest is easy to see. ✷

Now, we find an explicit expression for F12-3-...-k;r (x) where 0 ≤ r ≤ k − 2. Following

[12], consider a recurrence relation

T j =
1

1 − xT j−1
, j ≥ 1. (2)
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The solution of (2) with the initial condition T0 = 0 is denoted by R j (x), and the solution

of (2) with the initial condition

T0 = G12-3-...-k(x, y) =
1

1 − x + xy

(

k−2
0

)

− xy

(

k−2
0

)

1−x+xy

(

k−1
1

)

− xy

(

k−1
1

)

1−x+xy

(

k
2

)

− xy

(

k
2

)

...

is denoted by S j (x, y; k), or just S j when the value of k is clear from the context. Our interest

in (2) is stipulated by the following relation, which is an easy consequence of Theorem 2.1:

F12-3-...-k(x, y) = Sk−2(x, y; k). (3)

Following [12, Eqn. (4)], for all j ≥ 1

R j (x) =
U j−1

(

1
2
√

x

)

√
xU j

(

1
2
√

x

) , (4)

where U j (cos θ) = sin( j + 1)θ/ sin θ are the Chebyshev polynomials of the second kind.

Next, we find an explicit expression for S j in terms of G and R j .

LEMMA 2.6. For any j ≥ 2 and any k ≥ 2

S j (x, y; k) = R j (x)
1 − x R j−1(x)G12-3-...-k(x, y)

1 − x R j (x)G12-3-...-k(x, y)
. (5)

PROOF. Indeed, from (2) and S0 = G we get S1 = 1/(1− xG). On the other hand, R0 = 0,

R1 = 1, so (5) holds for j = 1. Now let j > 1, then by induction

S j =
1

1 − x S j−1
=

1

1 − x R j−1
·

1 − x R j−1G

1 − x(1−x R j−2)R j−1G

1−x R j−1

.

Relation (2) for R j and R j−1 yields (1− x R j−2)R j−1 = (1− x R j−1)R j = 1, which together

with the above formula gives (5). ✷

As a corollary from Lemma 2.6 and (3) we get the following expression for the generating

function F12-3-...-k(x, y).

COROLLARY 2.7. For any k ≥ 3

F12-3-...-k(x, y) = Rk(x) +
(

Rk−2(x) − Rk−3(x)
)

∑

m≥1

(

x Rk−2(x)G12-3-...-k(x, y)
)m

.

Now we are ready to express the generating function F12-3-...-k;r (x) where 0 ≤ r ≤ k − 2,

via Chebyshev polynomials.

THEOREM 2.8. For any k ≥ 3, F12-3-...-k;r (x) is a rational function given by

F12-3-...-k;r (x) =
xr−1U r−1

k−2

(

1
2
√

x

)

(1 − x)r U r+1
k

(

1
2
√

x

)
, 1 ≤ r ≤ k − 2,

F12-3-...-k;0(x) =
Uk−1

(

1
2
√

x

)

√
xUk

(

1
2
√

x

) ,

where U j is the j th Chebyshev polynomial of the second kind.
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PROOF. Observe that G12-3-...-k(x, y) = 1
1−x

· 1

1− x2

(1−x)2
y

+ yk−1 P(x, y), so from Corol-

lary 2.7 we get

F12-3-...-k(x, y) = Rk(x) +
(

Rk−2(x) − Rk−3(x)
)

k
∑

m=1

(

x

1 − x
Rk(x)

)m k−2
∑

n=1

(

m − 1 + n

n

)

×
x2n

(1 − x)2n
yn + yk−1 P ′(x, y),

where P(x, y) and P ′(x, y) are formal power series. To complete the proof, it suffices to

use (4) together with the identity U 2
n−1(z) − Un(z)Un−2(z) = 1, which follows easily from

the trigonometric identity sin2 nθ − sin2 θ = sin(n + 1)θ sin(n − 1)θ . ✷

2.2. Pattern 21-3- . . . -k. Our second result is a natural analogue of the main theorems of [9,

12, 15].

THEOREM 2.9. For any k ≥ 2,

F21-3-...-k(x, y) = 1 −
x

xyd1 − 1
1− x

xyd2 − 1
1− x

xyd3 − 1

...

,

where di =
(

i−1
k−2

)

, and
(

a
b

)

is assumed 0 whenever a < b or b < 0.

PROOF. Following [12] we define ν j (π), j ≥ 3, as the number of occurrences of 21-3- . . . - j

in π . Define ν2(π) for any π , as the number of occurrences of 21 in π , ν1(π) as the number of

letters of ν, and ν0(π) = 1 for any π , which means that the empty pattern occurs exactly once

in each permutation. The weight of a permutation π is a monomial in k independent variables

q1, . . . , qk defined by

vk(π) =
k

∏

j=1

q
ν j (π)

j .

The total weight is a polynomial

Vk(q1, . . . , qk) =
∑

π∈S(1-3-2)

vk(π).

The following proposition is implied immediately by the definitions.

PROPOSITION 2.10. F21-3-...-k(x, y) = Vk(x, 1, . . . , 1, y) for k ≥ 2.

We now find a recurrence relation for the numbers ν j (π). Let π ∈ Sn , so that π =
(π ′, n, π ′′).

PROPOSITION 2.11. For any nonempty π ∈ S(1-3-2)

ν j (π) = ν j (π
′) + ν j (π

′′) + ν j−1(π
′),

where j 6= 2. Besides, if π ′′ is nonempty then

ν2(π) = ν2(π
′) + ν2(π

′′) + 1,

otherwise

ν2(π) = ν2(π
′′).



Continued fractions and generalized patterns 335

PROOF. Similar to Proposition 2.3 we get π avoids 1-3-2 if and only if π ′ is a 1-3-2-

avoiding permutation of the numbers {n − l + 1, n − l + 2, . . . , n − 1}, while π ′′ is a 1-3-2-

avoiding permutation of the numbers {1, 2, . . . , n − l}. Finally, if (i1, . . . , i j ) is an occurrence

of 21-3- . . . - j in π then either i j < l and so it is also an occurrence of 21-3- . . . - j in π ′, or

i1 > l and so it is also an occurrence of 21-3- . . . - j in π ′′, or i j = l and so (i1, . . . , i j−1) is

an occurrence of 21-3- . . . -( j − 1) in π ′, where j 6= 2. For j = 2 the proposition is trivial. ✷

Now we are able to find the recurrence relation for the total weight V . Proposition 2.11

yields

Vk(q1, . . . , qk) = 1 +
∑

∅6=π∈S(1-3-2)

k
∏

j=1

q
ν j (π)

j

= 1 +
∑

∅6=π ′′∈S(1-3-2)

·

∑

π ′∈S(1-3-2)

k
∏

j=1

q
ν j (π

′′)
j · q

ν1(π
′)+1

1 q2 ·
k−1
∏

j=2

(q j q j+1)
ν j (π

′) · q
νk (π

′)
k

+
∑

π ′∈S(1-3-2)

q1q
ν(π ′)
1 q

νk (π
′)

k

k−1
∏

j=2

(q j q j+1)
ν j (π

′).

Hence

Vk(q1, . . . , qk) = 1 + q1Vk(q1, q2q3, . . . , qk−1qk, qk)

+ q1q2Vk(q1, q2q3, . . . , qk−1qk, qk)(Vk(q1, q2, . . . , qk) − 1). (6)

Observe now that Vk(q1, . . . , qk) = Vk(q1, q0,2, . . . , q0,k) and by (6) and Proposition 2.4

we get

Vk(q1, qd,2, . . . , qd,k) = 1 + q1Vk(q1, qd+1,2, . . . , qd+1,k)

+ q1qd,2Vk(q1, qd+1,2, . . . , qd+1,k)(Vk(q1, qd,2, . . . , qd,k) − 1).

To obtain the continued fraction representation for F21-3-...-k(x, y) it is sufficient to use

Proposition 2.10 and to observe that

q1qd,2

∣

∣

∣

∣

q1=x,q2=...=qk−1=1,qk=y

= xy

(

d
k−2

)

.

COROLLARY 2.12.

F21(x, y) =
1 − x + xy −

√

(1 − x)2 − 2x(1 + x)y + x2 y2

2xy
,

in other words, for any r ≥ 1

f21;r (n) =
r + 1

n(n − r)

(

n

r + 1

)2

.

PROOF. For k = 2, q1 = x , and q2 = y; Proposition 2.10 and (6) yields F21(x, y) =
1 + x F21(x, y) + xyF21(x, y)(F21(x, y) − 1), which means F21(x, y) = F12(x, y). Using

Corollary 2.5 we have the desired result. ✷
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Now, we are ready to find an explicit expression for F21-3-...-k;r (x) where 0 ≤ r ≤ k − 2.

Consider a recurrence relation

T ′
j = 1 −

x

x − 1
T ′

j−1(x)

, j ≥ 1. (7)

The solution of (7) with the initial condition T ′
0 = 0 is given by R j (x) (Lemma 2.13), and the

solution of (7) with the initial condition

T ′
0 = G21-3-...-k(x, y) =

1

xy

(

k−2
k−2

)

− 1
1− x

xy

(

k−1
k−2

)

− 1
1− x

xy

(

k
k−2

)

− 1

...

,

is denoted by S′
j (x, y; k), or just S′

j when the value of k is clear from the context. Our interest

in (7) is stipulated by the following relation, which is an easy consequence of Theorem 2.9:

F21-3-...-k(x, y) = S′
k(x, y; k). (8)

First of all, we find an explicit formula for the functions T ′
j (x) in (7).

LEMMA 2.13. For any j ≥ 1,

T ′
j (x) = R j (x). (9)

PROOF. Indeed, it follows immediately from (7) that T ′
0(x) = 0 and T ′

1(x) = 1. Let us

induce, we assume T ′
j−1(x) = R j−1(x), and prove that T ′

j (x) = R j (x). By use of (7)

T ′
j (x) = 1 −

x

x − 1
R j−1(x)

.

On the other hand, following [12], R j (x) = 1
1−x R j−1(x)

which means that R j (x) = 1 +
x R j−1(x)R j (x), hence T ′

j (x) = R j (x). ✷

Next, we find an explicit expression for S′
j in terms of G and R j .

LEMMA 2.14. For any j ≥ 2 and any k ≥ 2

S′
j (x, y; k) = R j (x)

1 − x R j−1(x)G21-3-...-k(x, y; k)

1 − x R j (x)G21-3-...-k(x, y)
. (10)

As a corollary from Lemma 2.14 and (6) we get the following expression for the generating

function F21-3-...-k(x, y).

COROLLARY 2.15. For any k ≥ 3

F21-3-...-k(x, y) = Rk(x) +
(

Rk−2(x) − Rk−3(x)
)

∑

m≥1

(

x Rk−2(x)G21-3-...-k(x, y)
)m

.

Now we are ready to express the generating function F21-3-...-k;r (x) where 0 ≤ r ≤ k − 2,

via Chebyshev polynomials.
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THEOREM 2.16. For any k ≥ 3, F21-3-...-k;r (x) is a rational function given by

F21-3-...-k;r (x) =
x

r−1
2 U r−1

k−2

(

1
2
√

x

)

U r+1
k

(

1
2
√

x

)
, 1 ≤ r ≤ k − 2,

F21-3-...-k;0(x) =
Uk−1

(

1
2
√

x

)

√
xUk

(

1
2
√

x

) ,

where U j is the j th Chebyshev polynomial of the second kind.

PROOF. Observe that G21-3-...-k(x, y) = 1 + x
1−x−xy

+ yk−1 P(x, y), so by Corollary 2.15

we get

F21-3-...-k(x, y) = Rk(x) +
(

Rk−2(x) − Rk−3(x)
)

k
∑

m=1

(

x Rk−2(x)

(

1 +
x

1 − x − xy

))m

+ yk−1 P ′(x, y),

where P(x, y) and P ′(x, y) are formal power series. To complete the proof, it suffices to

use (9) together with the identity U 2
n−1(z) − Un(z)Un−2(z) = 1. ✷

REMARK 2.17. Theorem 2.16 and [12] yield the number of 1-3-2-avoiding permutations

in Sn such that contain exactly r times the pattern 21-3- . . . -k is the same number of 1-3-2-

avoiding permutations in Sn such that contain exactly r times the pattern 1-2-3 · · · -k, for all

r = 0, 1, 2, . . . , k − 2. However, the question is if there exists a natural bijection between

the set of 1-3-2-avoiding permutations in Sn such that contain exactly r times the generalized

pattern 21-3- . . . -k, and the set of 1-3-2-avoiding permutations in Sn such that contain exactly

r times the classically pattern 1-2-3- . . . -k.

2.3. Patterns: τ = 12 . . . k and τ = k . . . 21. Let π ∈ Sn ; we say π has d-increasing

canonical decomposition if π has the following form

π = (π1, π2, . . . , πd , ad , . . . , a2, a1, n, πd+1),

where all the entries of π i are greater than all the entries of π i+1, and ad < ad−1 < · · · <

a1 < n. We say π has d-decreasing canonical decomposition if π has the following form

π = (π1, n, a1, . . . , ad , πd+1, πd , . . . , πd),

where all the entries of π i are greater than all the entries of π i+1, and ad < ad−1 < · · · <

a1 < n. The following proposition is the basis of all other results in this section.

PROPOSITION 2.18. Let π ∈ Sn(1-3-2). Then there exists unique d ≥ 0 and e ≥ 0 such

that π has a d-increasing canonical decomposition, and has e-decreasing canonical decom-

position.

PROOF. Let π ∈ Sn(1-3-2), and let ad , ad−1, . . . , a1, n a maximal increasing subsequence

of π such that π = (π ′, ad , . . . , a1, n, π ′′). Since π avoids 1-3-2 there exists d subsequences

π j such that π = (π1, . . . , πd , ad , . . . , a1, n, π ′′), and all the entries of π i are greater than

all the entries of π i+1, and all the entries of πd are greater than all entries of π ′′. Hence,

π has d-increasing canonical decomposition. Similarly, there exist e unique such that π is

e-decreasing canonical decomposition. ✷
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Let us define Iτ (x, y; d) (respectively, Jτ (x, y; e)) as the generating function for all d-

increasing (respectively, e-decreasing) canonical decomposition of permutations in Sn(1-3-2)

with exactly r occurrences of τ . The following proposition is implied immediately by the

definitions.

PROPOSITION 2.19.

Fτ (x, y) = 1 +
∑

d≥0

Iτ (x, y; d) = 1 +
∑

e≥0

Jτ (x, y; e).

PROOF. Immediately, by definitions of the generating functions and Proposition 2.18 (1 for

the empty permutation). ✷

Now, we present examples for Propositions 2.18 and 2.19.

First example

THEOREM 2.20. Fk...21(x, y) = F12...k(x, y), such that

F12...k(x, y) =
k−2
∑

n=0

xn Fn
12...k(x, y) +

xk−1 Fk−1
12...k(x, y)

1 − xyF12...k(x, y)
.

PROOF. By Proposition 2.18 and definitions it is easy to obtain for all d ≥ 0

I12...k(x, y; d) = xd+1 ysd Fd+1
12...k(x, y),

where sd = d + 1 − k for d ≥ k − 1, and otherwise sd = 0. So by Proposition 2.19 the

theorem holds.

Similarly, we obtain the same result for Fk...21(x, y). ✷

As a remark, by the above theorem, it is easy to obtain the same results for Corollaries 2.5

and 2.12.

Second example

THEOREM 2.21. Let 1 ≤ l ≤ k − 1. Then F1-2-...-(l−1)-l(l+1)...k(x, y) = Ul(x, 1, . . . , 1, y)

where

Ul(q1, . . . , ql) = 1 +
∑

d≥0

(

q

(

d+1+l−k
l

)

l

l−1
∏

j=1

q

(

d+1
j

)

j

d
∏

j=0

Ul(p1; j , . . . , pl; j )

)

,

and for i = 1, 2, . . . , l, pi; j =
∏l−1

m=1 q

(

j
m−i

)

j , pl, j = ql for all 0 ≤ j ≤ k − l, and pi; j =
∏l

m=1 p

(

j−k+l
l−i

)

i;k−l
for all j ≥ k − l + 1.

PROOF. Following [12] we define γ j (π), j ≤ l − 1, as the number of occurrences of

1-2- . . . - j in π . Define γl(π) for any π , as the number of occurrences of 1-2- . . . -(l −1)-l(l +
1) . . . k in π , and γ0(π) = 1 for any π , which means that the empty pattern occurs exactly

once in each permutation. The weight of a permutation π is a monomial in l independent

variables q1, . . . , ql defined by

ul(π) =
l

∏

j=1

q
γ j (π)

j .
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The total weight is a polynomial

Ul(q1, . . . , ql) =
∑

π∈S(1-3-2)

ul(π).

The following proposition is implied immediately by the definitions and Proposition 2.18. ✷

PROPOSITION 2.22. F1-2-...-(l−1)-l(l+1)...k(x, y) = Uk(x, 1, . . . , 1, y) for k > l ≥ 1, and

Ul(q1, . . . , ql) = 1 +
∑

d≥0

∑

π∈Ad
ul(π), where Ad is the set of all d-increasing canonical

decomposition permutations in S(1-3-2).

Let us denote Ul;d(q1, . . . , ql) =
∑

π∈Ad
ul(π).

PROPOSITION 2.23. For any d ≥ 0,

Ul;d(q1, . . . ql) = q

(

d+1+l−k
l

)

l

l−1
∏

j=1

q

(

d+1
j

)

j

d
∏

j=0

Ul(p1; j , . . . , pl; j ).

PROOF. Let π be d-increasing canonical decomposition, that is,

π = (π1, π2, . . . , πd , ad , . . . , a2, a1, n, πd+1),

where the numbers ad < ad−1 < · · · < a1 < n appear as consecutive numbers in π , all

entries of π j are greater than all the entries of π j+1, and all entries of πd are greater than ad .

So, by calculating ul(π) and summing over all π ∈ Ad we have that

Ul;d(q1, . . . , qd) = q

(

d+1+l−k
l

)

l ·
l−1
∏

j=1

q

(

d+1
j

)

j ·
d

∏

j=0

Ul(p1; j , . . . , pl; j ).

✷

Therefore, Theorem 2.21 holds, by using Propositions 2.22 and 2.23. ✷

Now, let l = k − 1 and by using Theorem 2.21, it is easy to obtain the following.

COROLLARY 2.24. For k ≥ 3,

F1-2-...-(k−2)-(k−1)k(x, y) =
k−1
∑

j=0

(x F1-2-...-(k−2)-(k−1)k(x, y)) j .

REMARK 2.25. Similarly, the argument of d-increasing canonical decomposition, or the

argument d-decreasing canonical decomposition yields other formulae, for example, the for-

mula for F12-3-45(x, y).

3. THREE LETTERS PATTERN WITHOUT INTERNAL DASHES

In this section, we give a complete answer for Fτ (x, y) where τ is a generalized pattern

without internal dashes; that is, τ is 123, 213, 231, 312, and 321, by the following four sub-

sections.
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3.1. Patterns 123 and 321.

THEOREM 3.1.

F123(x, y) = F321(x, y) =
1 + xy − x −

√

1 − 2x − 3x2 − xy(2 − 2x − xy)

2x(x + y − xy)
.

PROOF. Theorem 2.20 yields, F123(x, y) = F321(x, y) = H where

H = 1 + x H +
x2 H2

1 − xy H
,

so the theorem holds. ✷

3.2. Pattern 231.

THEOREM 3.2.

F231(x, y) =
1 − 2x + 2xy −

√

1 − 4x + 4x2 − 4x2 y

2xy
,

that is, for all r, n ≥ 0

F231;r (x) =
1

r + 1

(

2r

r

)

x2r+1

(1 − 2x)2r+1
, f231;r (n) =

2n−2r−1

r + 1

(

n − 1

2r

)(

2r

r

)

.

PROOF. Let l = π−1(n). Since π avoids 1-3-2, each number in π ′ is greater than any of the

numbers in π ′′. Therefore, π ′ is a 1-3-2-avoiding permutation of the numbers {n − l + 1, n −
l + 2, . . . , n − 1}, while π ′′ is a 1-3-2-avoiding permutation of the numbers {1, 2, . . . , n − l}.
On the other hand, if π ′ is an arbitrary 1-3-2-avoiding permutation of the numbers {n − l +
1, n − l + 2, . . . , n − 1} and π ′′ is an arbitrary 1-3-2-avoiding permutation of the numbers

{1, 2, . . . , n − l}, then π = (π ′, n, π ′′) is 1-3-2-avoiding.

Now let us observe all the possibilities that π ′ and π ′′ is empty or not. This yields

F231(x, y) = 1 + x + 2x(F231(x, y) − 1) + xy(F231(x, y) − 1)2,

hence the theorem holds. ✷

3.3. Pattern 213.

THEOREM 3.3.

F213(x, y) =
1 − x2 + x2 y −

√

1 + 2x2 − 2x2 y + x4 − 2x4 y + x4 y2 − 4x

2x(1 + xy − x)
.

PROOF. Let D(x, y) be the generating function of all 1-3-2-avoiding permutations (α′, n) ∈
Sn such that contain 213 exactly r times. Let α = (α′, n, α′′); if we consider the two cases α′

empty or not we have F213(x, y) = 1 + D(x, y)F213(x, y). Let α = (α′, n); if we observe the

two cases α′ empty or not, then (similarly)

D(x, y) = x +x2 +x2 y(F213(x, y)−1)+x2(D(x, y)−1)+x2(D(x, y)−1)(F213(x, y)−1).

However,

F213(x, y) = 1 + x F213(x, y)
1 + x − xy + x(y − 1)F213(x, y)

1 − x F213(x, y)
,

hence, the theorem holds. ✷
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3.4. Pattern 312.

THEOREM 3.4.

F312(x, y) =
1 − x2 + x2 y −

√

1 + 2x2 − 2x2 y + x4 − 2x4 y + x4 y2 − 4x

2x(1 + xy − x)
.

PROOF. Let α ∈ S(1-3-2); if α = ∅, then there is one permutation, otherwise by Propo-

sition 2.18 we can write α = (α1, n, a1, a2, . . . , ad , αd+1, αd , . . . , α2) where all the entries

of α j are greater than all the entries of α j+1, and n > a1 > a2 > · · · > ad . Hence, for

any d = 0, 1 the generating function of these permutations in these cases is xd+1 F312(x, y).

Let d ≥ 2; if αd+1 = ∅, then the generating function of these permutations in this case is

xd+1 Fd
312(x, y), otherwise the generating function is xd+1 yFd

312(x, y)(F312(x, y)−1). Hence

F312(x, y) = 1 + (x + x2)F312(x, y) +
∑

d≥2

xd+1 Fd
312(x, y)

+
∑

d≥2

xd+1 yFd
312(x, y)(F312(x, y) − 1),

which means that

F312(x, y) = 1 + x F312(x, y) +
x2 F312(x, y)

1 − x F312(x, y)
+

x2 yF312(x, y)(F312(x, y) − 1)

1 − x F312(x, y)
,

so the rest is easy to see. ✷

4. THREE LETTERS PATTERN WITH ONE DASH

In this section, we present examples Fτ (x, y) where τ is a generalized pattern with one

dash. Theorem 2.1 yields

THEOREM 4.1. The generating function F12-3(x, y) is given by the continued fraction

1

1 − x

1−x+xy− xy

1−x+xy2− xy2

...

.

Theorem 2.9 yields

THEOREM 4.2. For any k ≥ 2,

F21-3(x, y) = 1 −
x

x − 1
1− x

xy− 1
1− x

xy2− 1

...

.

For k = 3 and l = 2 Theorem 2.24 yields
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THEOREM 4.3.

F1-23(x, y) = 1 + x F1-23(x, y) +
∑

d≥1

xd+1 y

(

d
2

)

F1-23(x, y)

d−1
∏

j=0

F1-23(xy j , y).

COROLLARY 4.4.

F1-23;0(x) =
1 − x −

√
1 − 2x − 3x2

2x2
;

F1-23;1(x) =
x − 1

2x
+

1 − 2x − x2

2x
√

1 − 2x − 3x2
;

F1-23;2(x) =
x4

(1 − 2x − 3x2)3/2
;

F1-23;3(x) = x2 − 1 +
11x7 + 43x6 + 41x5 − 7x4 − 25x3 + x2 + 5x − 1

(1 − 2x − 3x2)5/2
.

PROOF. By Theorem 4.3 and by F1−23(x, 0) = F1−23;0(x) we get

F1-23;0(x) = 1 + x F1-23;0(x) + x2 F2
1-23;0(x),

which means the first formula holds.

By Theorem 4.3 we get

d

dy
F1-23(x, 0) = x

d

dy
F1-23(x, 0)+2x2 F1-23(x, 0)

d

dy
F1-23(x, 0)+x3 F1-23(x, 0)2 F1-23(0, 0),

and by F1-23;1(x) = d
dy

F1-23(x, y)
∣

∣

y=0
and the first formula, we get the second formula.

Similarly, by Theorem 4.3 and by F1-23;r (x) = 1
r !

dr

dyr F1-23(x, y)
∣

∣

y=0
the other formulae

holds. ✷

THEOREM 4.5.

F2-13(x, y) =
1

1 − x
1− x

1− xy

1− xy

1− xy2

1− xy2

1−
...

.

PROOF. By Propositions 2.18 and 2.19, we obtain

F2-13(x, y) = 1 + x F2-13(x, y)
∑

d≥0

xd Fd
2-13(xy, y),

and the rest is easy to see. ✷

5. FURTHER RESULTS

First of all, let us denote by Gτ ;φ(x, y) the generating function for the number of permuta-

tions in Sn(1-3-2, τ ) such that contain φ exactly r times; that is

Gτ ;φ(x, z) =
∑

n≥0

xn
∑

π∈Sn(1-3-2,τ )

yaφ(π),
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where aφ(π) is the number of occurrences of φ in π . In this section, (similar to previous

sections) we find Gτ ;φ(x, y) in terms of continued fractions or by explicit formulae, for some

cases of τ and φ.

THEOREM 5.1. The generating functions G123;213(x, y) and G321;312(x, y) are given by

1

1 − x − x2(1 − y) − x2 y

1−x−x2(1−y)− x2 y

1−x−x2(1−y)− x2 y

...

,

equivalently,

1 − x − x2 + x2 y −
√

(1 − x − x2)2 − 2yx2(1 + x + x2) + x4 y2

2x2 y
.

THEOREM 5.2.

G123;231(x, y) = H(x, y) + x2(1 − y)H(x, y)2,

where H(x, y) = 1
1−x−x2 y H(x,y)

, which means the number of permutations in Sn(1-3-2, 123)

such that contain 231 exactly r ≥ 0 times is given by

(Cr+1 − Cr )

(

n − 1

2r + 1

)

+ Cr

(

n

2r + 1

)

,

where Cm is the mth Catalan number.

THEOREM 5.3. The generating functions G213;123(x, y) and G312;321(x, y) are given by

1 − x − x2 + xy −
√

(1 − x − x2)2 − 2xy(1 − x + x2) + x2 y2

2xy(1 − x)
.

As a concluding remark we note that there are many questions left to answer such as: if there

exists a bijection between, for example, the set of 1-3-2-avoiding permutations in Sn such

that contain exactly r times the generalized pattern 21-3- . . . -k, and the set of 1-3-2-avoiding

permutations in Sn such that contain exactly r times the classical pattern 1-2-3- . . . -k, where

r = 0, 1, . . . , k − 2.
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