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In this paper, we present a method for obtaining a wide class of combinatorial
identities. We give several examples; some of them have already been considered
previously, and others are new.  2002 Elsevier Science (USA)

1. INTRODUCTION

In 1981, Rockett [R, Theorem 1] (see also [Pl]) proved the following. For
any nonnegative integer n,

n∑
k=0

(
n

k

)−1
= n+ 1

2n+1

n+1∑
k=1

2k

k
� (1)

In 1999, Trif [T] proved the above result using the Beta function. The
present paper can be regarded as a far-reaching generalization of the ideas
presented in [T]. Our main result, in its simplest form, can be stated as
follows.

Theorem 1.1. Let r� n ≥ k be any nonnegative integer numbers, and let
f �n� k� be given by

f �n� k� = �n+ r�!
n!

∫ u2

u1

pk�t�qn−k�t�dt�

where p�t� and q�t� are two functions defined on �u1� u2�. Let 	an
n≥0 and
	bn
n≥0 be any two sequences, and let A�x�� B�x� be the corresponding ordi-
nary generating functions. Then

∑
n≥0

[
n∑

k=0
f �n� k�akbn−k

]
xn = dr

dxr

[
xr

∫ u2

u1

A�xp�t��B�xq�t��dt
]
�
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As an easy consequence of Theorem 1.1, we get a family of identities,
including the one presented above.

Example 1.2 (see [JS]). Let an = an and bn = bn for all n ≥ 0, and
let a+ b �= 0. So the corresponding generating functions are A�x� = �1−
ax�−1 and B�x� = �1− bx�−1.
It is easy to see that(

s

r

)−1
= �s + 1�

∫ 1

0
tr�1− t�s−r dt� (2)

for all nonnegative real numbers s and r such that s ≥ r.
By Theorem 1.1 and (2),

∑
n≥0

xn
n∑

k=0
akbn−k

(
n

k

)−1
= d

dx

(
x
∫ 1

0

1
�1− axt��1− bx+ bxt� dt

)

= d

dx

(− ln�1− ax� − ln�1− bx�
a+ b− abx

)
�

and after simple transformations, we get

n∑
k=0

akbn−k

(
n

k

)−1
= n+ 1

�a+ b�
(
1
a
+ 1

b

)n+1

n+1∑
k=1

�ak + bk�
(
1
a
+ 1

b

)k

k

for any nonnegative integer n. In particular, for a = b = 1, we get (1).

Example 1.3. Let us define an = n, bn = 1 for n ≥ 0. By Theorem 1.1
and (2), it is easy to see that

∑
n≥0

[
n∑

k=0
k

(
n

k

)−1]
xn = −2x ln�1− x�

�2 − x�3 − x�3x− 4�
�2 − x�2�1− x�2 �

Hence, for any nonnegative integer n,

n∑
k=0

k

(
n

k

)−1
= 1
2n

[
�n+ 1��2n − 1� +

n−2∑
k=0

�n− k��n− k− 1�2k−1
k+ 1

]
�

In the rest of the paper, we prove Theorem 1.1 and generalize it to
functions represented by integrals over a real d-dimensional domain. We
present several examples; some of them have been considered previously,
and others are new. For combinatorial identities yields from integral rep-
resentation in the complex domain, see [E].
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2. ONE-DIMENSIONAL CASE

First of all, let us prove Theorem 1.1. Let f �n� k� be as in the statement
of the theorem. Then

n∑
k=0

f �n� k�anbn−k = �n+ r�!
n!

∫ u2

u1

n∑
k=0

akp
k�t�bn−kq

n−k�t�dt�

which means that

∑
n≥0

xn
n∑

k=0
f �n� k�anbn−k = ∑

n≥0

[
�n+ r�!xn

n!

∫ u2

u1

n∑
k=0

akp
k�t�bn−kq

n−k�t�
]
dt�

Let A�x� = ∑
n≥0 anx

n, B�x� = ∑
n≥0 bnx

n; hence

∑
n≥0

n∑
k=0

f �n� k�akbn−kx
n = dr

dxr

[
xr

∫ u2

u1

A�xp�t��B�xq�t��dt
]
�

which means that Theorem 1.1 holds.

Now, we present other applications of Theorem 1.1.

Example 2.1. Immediately, by (2) and Theorem 1.1, we get, for any
nonnegative integer numbers c and d,

∑
n≥0

xcn
n∑

k=0

(
cn

dk

)−1
= d

dx

∫ 1

0

x · dt
�1− �1− t�cxc��1− td�1− t�c−dxc� �

For c = d = 2, it is easy to get, for any nonnegative integer n,

n∑
k=0

(
2n
2k

)−1
= n�2n+ 1�

22n+2
2n+1∑
k=0

2k

k+ 1
�

Theorem 2.2. Let 	an
n≥0 and 	bn
n≥0 be two sequences, let A�x� and
B�x� be the corresponding ordinary generating functions, and let µ be the
differential operator of the first order defined by µ�f � = d

dx
�x · f �. Then, for

any positive integer m,

∑
n≥0

[
n∑

k=0

(
n

k

)−m

akbn−k

]
xn

=µm


∫ 1

0

∫ 1

0
···

∫ 1

0︸ ︷︷ ︸
m times

A�xt1t2 ···tm�B��1−t1��1−t2�···�1−tm�x�dt1dt2 ···dtm


�
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Proof. Using (2), we get(
n

k

)−m

= �n+ 1�m
[ ∫ 1

0
tk�1− t�n−k dt

]m

�

which means that(
n

k

)−m

=�n+1�m
∫ 1

0
···

∫ 1

0︸ ︷︷ ︸
m times

�t1t2 ···tm�k��1−t1��1−t2�···�1−tm��n−kdt1 ···dtm�

So, similarly to the proof of Theorem 1.1, this theorem holds.

Now let us find another representation for
(
n
k

)−m.

Proposition 2.3. For any nonnegative integers n�m,

n∑
k=0

(
n

k

)−m

= �n+ 1�m
n∑

k=0

[
k∑

i=0

�−1�i
n− k+ 1+ i

(
k

i

)]m

�

Proof. By (2), we get, for all positive integer m,(
n

k

)−m

= �n+ 1�m
( ∫ 1

0
tk�1− t�n−k dt

)m

�

which means that(
n

k

)−m

= �n+ 1�m
[ ∫ 1

0

n−k∑
i=0

�−1�i
(
n− k

i

)
tk+i dt

]m

�

hence the proposition holds.

The above proposition and (1) yield the following.

Corollary 2.4. For any nonnegative integer n,
n∑

k=0

(
n

k

)−1
= �n+ 1�

n∑
k=0

1
�n+ 1− k�2k

= �n+ 1�
n∑

k=0

k∑
j=0

�−1�j
n− k+ 1+ j

(
k

j

)
�

Corollary 2.5. For any nonnegative integer n,

n∑
k=0

(
n

k

)−2
= �n+ 1�2

n∑
k=0

[
k∑

i=0

�−1�i
n− k+ 1+ i

(
k

i

)]2

= �n+ 1�2
n∑

k=0

2
n− k+ 1

k∑
j=0

�−1�j
n+ 2 + i

(
k

i

)
�
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Proof. By Proposition 2.3, the first equality holds. Now let us prove the
second equality. By Theorem 2.2, we get

∑
n≥0

xn
n∑

k=0

(
n

k

)−2
= µ2

[ ∫ 1

0

∫ 1

0

1
�1− tux��1− �1− t��1− u�x� dudt

]


therefore,

∑
n≥0

xn
n∑

k=0

(
n

k

)−2
= µ2

[ ∫ 1

0

−2 ln�1− tx�
x�1− t�1− t�x� dt

]
�

Hence, since ln�1 − tx� = ∑
n≥1�−tnxn�/n and 1

1−t�1−t�x = ∑
n≥0 tn�1 −

t�nxn, the second equality holds.

3. GENERALIZATION: d-DIMENSIONAL CASE

The following result, which is a generalization of Theorem 1.1, gives us
a general method for obtaining combinatorial identities.

Theorem 3.1. Let X be a multiset of variables xj , where j = 1� 2� � � � �
d + 1, and let X ′ = 	xi1

� � � � � xil

 be the underlying set. Let g�t� and fj�t�,

j = 1� 2� � � � � d, be any d + 1 functions such that φ�xi1
� � � � � xil

� = g�xd+1�∏d
j=1 fj�xj� is a function defined on an l-dimensional domain D. Let r be a

nonnegative integer number, and let f �k1� k2� � � � � kd� be given by

f �k1� k2� � � � � kd� =
�k1 + · · · + kd + r�!
�k1 + · · · + kd�!

∫
D
φ�xi1

� � � � � xil
�dxi1

· · ·dxil
�

Then for any sequences 	a�j�n 
n≥0, j = 1� 2� � � � � d,

∑
n≥0

∑
k1+···+kd=n

f �k1� k2� � � � � kd�xn
d∏

j=1
a
�j�
ki

= dr

dxr

[
xr

∫
D
g�xd+1�

d∏
j=1

Aj�xfj�xj��dxi1
· · ·dxil

]
�

where Aj�x� is the ordinary generating function of the sequence 	a�j�n 
n≥0.
Another way to generalize Theorem 1.1 is the following. Let V be the

hyperplane defined by
∑d

i=1�xi

ai
�pi = 1, where xi ≥ 0 for all i = 1� 2� � � � � d.

If pi ≥ 0 for all i, then the Dirichlet’s integral is defined by

∫
V

d∏
j=1

x
αj−1
j dx1 · · ·dxd = a

α1
1 · · · aαd

d

p1 · · ·pd

�
( α1
p1

) · · ·�( αd

pd

)
�
(
1+ α1

p1
+ · · · + αd

pd

) � (3)
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So for pj = 1, aj = 1, and
∑d

j=1 αj = n, we obtain

(
n

α1�����αd

)−m

= �n+d−1�!m
n!m

(∫
x1+···+xd=1

x
α1
1 ···xαd

d dx1 ···dxd

)m

� (4)

Hence, Theorem 3.1, Theorem 1.1, and (3) yield the following.

Theorem 3.2. Let 	a�j�n 
n≥0 be any sequence for all j = 1� 2� � � � � d, and
let ν be the differential operator of the �d − 1�th order defined by νd�f � =
�dd−1/dxd−1��xd−1f �. Then

∑
n≥0

xn
∑

α1+···+αd=n

(
n

α1� � � � � αd

)−m d∏
j=1

a�j�αj

= νmd


∫

V
· · ·

∫
V︸ ︷︷ ︸

m times

d∏
j=1

Aj�xxj� 1xj� 2 · · ·xj�m�
d�m∏

i=1� j=1
dxi� j


 �

where V is the hyperplane defined by x1 + x2 + · · · + xd = 1, and Aj�x� is
the ordinary generating function of sequence 	a�j�n 
n≥0, j = 1� 2� � � � � d.

Example 3.3 (see Carlson [C, Chapter 8]). Let a
�j�
n = (2n

n

)
for n ≥ 0,

j = 1� 2� � � � � d, and m = 1. By Theorem 3.2 and (4), it is easy to see that

∑
n≥0

xn
∑

α1+···+αd=n

(
n

α1� � � � � αd

)−1 d∏
j=1

(
2αj

αj

)

= dd−1

dxd−1x
d−1

[ ∫
x1+···+xd=1

d∏
j=1

1√
1− 4xxj

d∏
j=1

dxj

]
�

As a numerical example, for d = 2, equating the coefficients at xn, we get

n∑
j=0

(
n

j

)−1(2j
j

)(
2n− 2j
n− j

)
=

n∑
j=0
2n−j

(
2j
j

)
�
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