Combinatorial Identities and Inverse Binomial Coefficients

Toufik Mansour
Department of Mathematics, University of Haifa, Haifa, Israel 31905
E-mail: tmansur@study.haifa.ac.il

Accepted July 26, 2001

In this paper, we present a method for obtaining a wide class of combinatorial identities. We give several examples; some of them have already been considered previously, and others are new. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In 1981, Rockett [R, Theorem 1] (see also [PI]) proved the following. For any nonnegative integer n,

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{-1}=\frac{n+1}{2^{n+1}} \sum_{k=1}^{n+1} \frac{2^{k}}{k} \tag{1}
\end{equation*}
$$

In 1999, Trif [T] proved the above result using the Beta function. The present paper can be regarded as a far-reaching generalization of the ideas presented in [T]. Our main result, in its simplest form, can be stated as follows.

Theorem 1.1. Let $r, n \geq k$ be any nonnegative integer numbers, and let $f(n, k)$ be given by

$$
f(n, k)=\frac{(n+r)!}{n!} \int_{u_{1}}^{u_{2}} p^{k}(t) q^{n-k}(t) d t,
$$

where $p(t)$ and $q(t)$ are two functions defined on $\left[u_{1}, u_{2}\right]$. Let $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ be any two sequences, and let $A(x), B(x)$ be the corresponding ordinary generating functions. Then

$$
\sum_{n \geq 0}\left[\sum_{k=0}^{n} f(n, k) a_{k} b_{n-k}\right] x^{n}=\frac{d^{r}}{d x^{r}}\left[x^{r} \int_{u_{1}}^{u_{2}} A(x p(t)) B(x q(t)) d t\right] .
$$

As an easy consequence of Theorem 1.1, we get a family of identities, including the one presented above.

Example 1.2 (see [JS]). Let $a_{n}=a^{n}$ and $b_{n}=b^{n}$ for all $n \geq 0$, and let $a+b \neq 0$. So the corresponding generating functions are $A(x)=(1-$ $a x)^{-1}$ and $B(x)=(1-b x)^{-1}$.

It is easy to see that

$$
\begin{equation*}
\binom{s}{r}^{-1}=(s+1) \int_{0}^{1} t^{r}(1-t)^{s-r} d t \tag{2}
\end{equation*}
$$

for all nonnegative real numbers s and r such that $s \geq r$.
By Theorem 1.1 and (2),

$$
\begin{aligned}
\sum_{n \geq 0} x^{n} \sum_{k=0}^{n} a^{k} b^{n-k}\binom{n}{k}^{-1} & =\frac{d}{d x}\left(x \int_{0}^{1} \frac{1}{(1-a x t)(1-b x+b x t)} d t\right) \\
& =\frac{d}{d x}\left(\frac{-\ln (1-a x)-\ln (1-b x)}{a+b-a b x}\right),
\end{aligned}
$$

and after simple transformations, we get

$$
\sum_{k=0}^{n} a^{k} b^{n-k}\binom{n}{k}^{-1}=\frac{n+1}{(a+b)\left(\frac{1}{a}+\frac{1}{b}\right)^{n+1}} \sum_{k=1}^{n+1} \frac{\left(a^{k}+b^{k}\right)\left(\frac{1}{a}+\frac{1}{b}\right)^{k}}{k}
$$

for any nonnegative integer n. In particular, for $a=b=1$, we get (1).
Example 1.3. Let us define $a_{n}=n, b_{n}=1$ for $n \geq 0$. By Theorem 1.1 and (2), it is easy to see that

$$
\sum_{n \geq 0}\left[\sum_{k=0}^{n} k\binom{n}{k}^{-1}\right] x^{n}=\frac{-2 x \ln (1-x)}{(2-x)^{3}}-\frac{x(3 x-4)}{(2-x)^{2}(1-x)^{2}}
$$

Hence, for any nonnegative integer n,

$$
\sum_{k=0}^{n} k\binom{n}{k}^{-1}=\frac{1}{2^{n}}\left[(n+1)\left(2^{n}-1\right)+\sum_{k=0}^{n-2} \frac{(n-k)(n-k-1) 2^{k-1}}{k+1}\right] .
$$

In the rest of the paper, we prove Theorem 1.1 and generalize it to functions represented by integrals over a real d-dimensional domain. We present several examples; some of them have been considered previously, and others are new. For combinatorial identities yields from integral representation in the complex domain, see [E].

2. ONE-DIMENSIONAL CASE

First of all, let us prove Theorem 1.1. Let $f(n, k)$ be as in the statement of the theorem. Then

$$
\sum_{k=0}^{n} f(n, k) a_{n} b_{n-k}=\frac{(n+r)!}{n!} \int_{u_{1}}^{u_{2}} \sum_{k=0}^{n} a_{k} p^{k}(t) b_{n-k} q^{n-k}(t) d t,
$$

which means that

$$
\sum_{n \geq 0} x^{n} \sum_{k=0}^{n} f(n, k) a_{n} b_{n-k}=\sum_{n \geq 0}\left[\frac{(n+r)!x^{n}}{n!} \int_{u_{1}}^{u_{2}} \sum_{k=0}^{n} a_{k} p^{k}(t) b_{n-k} q^{n-k}(t)\right] d t .
$$

Let $A(x)=\sum_{n \geq 0} a_{n} x^{n}, B(x)=\sum_{n \geq 0} b_{n} x^{n}$; hence

$$
\sum_{n \geq 0} \sum_{k=0}^{n} f(n, k) a_{k} b_{n-k} x^{n}=\frac{d^{r}}{d x^{r}}\left[x^{r} \int_{u_{1}}^{u_{2}} A(x p(t)) B(x q(t)) d t\right],
$$

which means that Theorem 1.1 holds.
Now, we present other applications of Theorem 1.1.
Example 2.1. Immediately, by (2) and Theorem 1.1, we get, for any nonnegative integer numbers c and d,

$$
\sum_{n \geq 0} x^{c n} \sum_{k=0}^{n}\binom{c n}{d k}^{-1}=\frac{d}{d x} \int_{0}^{1} \frac{x \cdot d t}{\left(1-(1-t)^{c} x^{c}\right)\left(1-t^{d}(1-t)^{c-d} x^{c}\right)}
$$

For $c=d=2$, it is easy to get, for any nonnegative integer n,

$$
\sum_{k=0}^{n}\binom{2 n}{2 k}^{-1}=\frac{n(2 n+1)}{2^{2 n+2}} \sum_{k=0}^{2 n+1} \frac{2^{k}}{k+1} .
$$

Theorem 2.2. Let $\left\{a_{n}\right\}_{n \geq 0}$ and $\left\{b_{n}\right\}_{n \geq 0}$ be two sequences, let $A(x)$ and $B(x)$ be the corresponding ordinary generating functions, and let μ be the differential operator of the first order defined by $\mu(f)=\frac{d}{d x}(x \cdot f)$. Then, for any positive integer m,

$$
\begin{aligned}
& \sum_{n \geq 0}\left[\sum_{k=0}^{n}\binom{n}{k}^{-m} a_{k} b_{n-k}\right] x^{n} \\
& =\mu^{m}[\underbrace{\int_{0}^{1} \int_{0}^{1} \cdots \int_{0}^{1}}_{m \text { times }} A\left(x t_{1} t_{2} \cdots t_{m}\right) B\left(\left(1-t_{1}\right)\left(1-t_{2}\right) \cdots\left(1-t_{m}\right) x\right) d t_{1} d t_{2} \cdots d t_{m}] .
\end{aligned}
$$

Proof. Using (2), we get

$$
\binom{n}{k}^{-m}=(n+1)^{m}\left[\int_{0}^{1} t^{k}(1-t)^{n-k} d t\right]^{m}
$$

which means that

$$
\binom{n}{k}^{-m}=(n+1)^{m} \underbrace{\int_{0}^{1} \cdots \int_{0}^{1}}_{m \text { times }}\left(t_{1} t_{2} \cdots t_{m}\right)^{k}\left(\left(1-t_{1}\right)\left(1-t_{2}\right) \cdots\left(1-t_{m}\right)\right)^{n-k} d t_{1} \cdots d t_{m} .
$$

So, similarly to the proof of Theorem 1.1, this theorem holds.
Now let us find another representation for $\binom{n}{k}^{-m}$.
Proposition 2.3. For any nonnegative integers n, m,

$$
\sum_{k=0}^{n}\binom{n}{k}^{-m}=(n+1)^{m} \sum_{k=0}^{n}\left[\sum_{i=0}^{k} \frac{(-1)^{i}}{n-k+1+i}\binom{k}{i}\right]^{m}
$$

Proof. By (2), we get, for all positive integer m,

$$
\binom{n}{k}^{-m}=(n+1)^{m}\left(\int_{0}^{1} t^{k}(1-t)^{n-k} d t\right)^{m}
$$

which means that

$$
\binom{n}{k}^{-m}=(n+1)^{m}\left[\int_{0}^{1} \sum_{i=0}^{n-k}(-1)^{i}\binom{n-k}{i} t^{k+i} d t\right]^{m}
$$

hence the proposition holds.
The above proposition and (1) yield the following.
Corollary 2.4. For any nonnegative integer n,

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}^{-1} & =(n+1) \sum_{k=0}^{n} \frac{1}{(n+1-k) 2^{k}} \\
& =(n+1) \sum_{k=0}^{n} \sum_{j=0}^{k} \frac{(-1)^{j}}{n-k+1+j}\binom{k}{j} .
\end{aligned}
$$

Corollary 2.5. For any nonnegative integer n,

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n}{k}^{-2} & =(n+1)^{2} \sum_{k=0}^{n}\left[\sum_{i=0}^{k} \frac{(-1)^{i}}{n-k+1+i}\binom{k}{i}\right]^{2} \\
& =(n+1)^{2} \sum_{k=0}^{n} \frac{2}{n-k+1} \sum_{j=0}^{k} \frac{(-1)^{j}}{n+2+i}\binom{k}{i} .
\end{aligned}
$$

Proof. By Proposition 2.3, the first equality holds. Now let us prove the second equality. By Theorem 2.2, we get

$$
\sum_{n \geq 0} x^{n} \sum_{k=0}^{n}\binom{n}{k}^{-2}=\mu^{2}\left[\int_{0}^{1} \int_{0}^{1} \frac{1}{(1-t u x)(1-(1-t)(1-u) x)} d u d t\right]
$$

therefore,

$$
\sum_{n \geq 0} x^{n} \sum_{k=0}^{n}\binom{n}{k}^{-2}=\mu^{2}\left[\int_{0}^{1} \frac{-2 \ln (1-t x)}{x(1-t(1-t) x)} d t\right] .
$$

Hence, since $\ln (1-t x)=\sum_{n \geq 1}\left(-t^{n} x^{n}\right) / n$ and $\frac{1}{1-t(1-t) x}=\sum_{n \geq 0} t^{n}(1-$ $t)^{n} x^{n}$, the second equality holds.

3. GENERALIZATION: d-DIMENSIONAL CASE

The following result, which is a generalization of Theorem 1.1, gives us a general method for obtaining combinatorial identities.
Theorem 3.1. Let X be a multiset of variables x_{j}, where $j=1,2, \ldots$, $d+1$, and let $X^{\prime}=\left\{x_{i_{1}}, \ldots, x_{i_{l}}\right\}$ be the underlying set. Let $g(t)$ and $f_{j}(t)$, $j=1,2, \ldots, d$, be any $d+1$ functions such that $\phi\left(x_{i_{1}}, \ldots, x_{i_{l}}\right)=g\left(x_{d+1}\right)$ $\prod_{j=1}^{d} f_{j}\left(x_{j}\right)$ is a function defined on an l-dimensional domain D. Let r be a nonnegative integer number, and let $f\left(k_{1}, k_{2}, \ldots, k_{d}\right)$ be given by

$$
f\left(k_{1}, k_{2}, \ldots, k_{d}\right)=\frac{\left(k_{1}+\cdots+k_{d}+r\right)!}{\left(k_{1}+\cdots+k_{d}\right)!} \int_{D} \phi\left(x_{i_{1}}, \ldots, x_{i_{l}}\right) d x_{i_{1}} \cdots d x_{i_{l}} .
$$

Then for any sequences $\left\{a_{n}^{(j)}\right\}_{n \geq 0}, j=1,2, \ldots, d$,

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{k_{1}+\cdots+k_{d}=n} f\left(k_{1}, k_{2}, \ldots, k_{d}\right) x^{n} \prod_{j=1}^{d} a_{k_{i}}^{(j)} \\
& \quad=\frac{d^{r}}{d x^{r}}\left[x^{r} \int_{D} g\left(x_{d+1}\right) \prod_{j=1}^{d} A_{j}\left(x f_{j}\left(x_{j}\right)\right) d x_{i_{1}} \cdots d x_{i_{l}}\right]
\end{aligned}
$$

where $A_{j}(x)$ is the ordinary generating function of the sequence $\left\{a_{n}^{(j)}\right\}_{n \geq 0}$.
Another way to generalize Theorem 1.1 is the following. Let V be the hyperplane defined by $\sum_{i=1}^{d}\left(\frac{x_{i}}{a_{i}}\right)^{p_{i}}=1$, where $x_{i} \geq 0$ for all $i=1,2, \ldots, d$. If $p_{i} \geq 0$ for all i, then the Dirichlet's integral is defined by

$$
\begin{equation*}
\int_{V} \prod_{j=1}^{d} x_{j}^{\alpha_{j}-1} d x_{1} \cdots d x_{d}=\frac{a_{1}^{\alpha_{1}} \cdots a_{d}^{\alpha_{d}}}{p_{1} \cdots p_{d}} \frac{\Gamma\left(\frac{\alpha_{1}}{p_{1}}\right) \cdots \Gamma\left(\frac{\alpha_{d}}{p_{d}}\right)}{\Gamma\left(1+\frac{\alpha_{1}}{p_{1}}+\cdots+\frac{\alpha_{d}}{p_{d}}\right)} . \tag{3}
\end{equation*}
$$

So for $p_{j}=1, a_{j}=1$, and $\sum_{j=1}^{d} \alpha_{j}=n$, we obtain

$$
\begin{equation*}
\binom{n}{\alpha_{1}, \ldots, \alpha_{d}}^{-m}=\frac{(n+d-1)!^{m}}{n!^{m}}\left(\int_{x_{1}+\cdots+x_{d}=1} x_{1}^{\alpha_{1}} \cdots x_{d}^{\alpha_{d}} d x_{1} \cdots d x_{d}\right)^{m} . \tag{4}
\end{equation*}
$$

Hence, Theorem 3.1, Theorem 1.1, and (3) yield the following.
Theorem 3.2. Let $\left\{a_{n}^{(j)}\right\}_{n \geq 0}$ be any sequence for all $j=1,2, \ldots, d$, and let ν be the differential operator of the $(d-1)$ th order defined by $\nu_{d}(f)=$ $\left(d^{d-1} / d x^{d-1}\right)\left(x^{d-1} f\right)$. Then

$$
\begin{aligned}
& \sum_{n \geq 0} x^{n} \sum_{\alpha_{1}+\cdots+\alpha_{d}=n}\binom{n}{\alpha_{1}, \ldots, \alpha_{d}}^{-m} \prod_{j=1}^{d} a_{\alpha_{j}}^{(j)} \\
& \quad=\nu_{d}^{m}[\underbrace{\left.\int_{V} \cdots \int_{V} \prod_{j=1}^{d} A_{j}\left(x x_{j, 1} x_{j, 2} \cdots x_{j, m}\right) \prod_{i=1, j=1}^{d, m} d x_{i, j}\right],}_{m \text { times }}
\end{aligned}
$$

where V is the hyperplane defined by $x_{1}+x_{2}+\cdots+x_{d}=1$, and $A_{j}(x)$ is the ordinary generating function of sequence $\left\{a_{n}^{(j)}\right\}_{n \geq 0}, j=1,2, \ldots, d$.

Example 3.3 (see Carlson [C, Chapter 8]). Let $a_{n}^{(j)}=\binom{2 n}{n}$ for $n \geq 0$, $j=1,2, \ldots, d$, and $m=1$. By Theorem 3.2 and (4), it is easy to see that

$$
\begin{aligned}
& \sum_{n \geq 0} x^{n} \sum_{\alpha_{1}+\cdots+\alpha_{d}=n}\binom{n}{\alpha_{1}, \ldots, \alpha_{d}}^{-1} \prod_{j=1}^{d}\binom{2 \alpha_{j}}{\alpha_{j}} \\
& \quad=\frac{d^{d-1}}{d x^{d-1}} x^{d-1}\left[\int_{x_{1}+\cdots+x_{d}=1} \prod_{j=1}^{d} \frac{1}{\sqrt{1-4 x x_{j}}} \prod_{j=1}^{d} d x_{j}\right] .
\end{aligned}
$$

As a numerical example, for $d=2$, equating the coefficients at x^{n}, we get

$$
\sum_{j=0}^{n}\binom{n}{j}^{-1}\binom{2 j}{j}\binom{2 n-2 j}{n-j}=\sum_{j=0}^{n} 2^{n-j}\binom{2 j}{j} .
$$

ACKNOWLEDGMENT

I am grateful to D. Zeilberger and especially to my advisor A. Vainshtein for their help during the preparation of the paper.

REFERENCES

[C] B. C. Carlson, "Special Functions of Applied Mathematics," Academic Press, New York, 1977.
[E] G. P. Egorychev, Integral Representation and the Computation of combinatorial sums, Transl. Math. Monogr. 59, 1984.
[JS] C. H. Jinh and L. J. Sheng, On sums of the inverses of binomial coefficients, Tamkang J. Manage. Sci. 8 (1987), 45-48.
[Pl] J. Pla, The sum of the inverses of binomial coefficients revisited, Fibonacci Quart. 35 (1997), 342-345.
[R] A. M. Rockett, Sums of the inverses of binomial coefficients, Fibonacci Quart. 19 (1981), 433-437.
[T] T. Trif, Combinatorial sums and series involving inverses of binomial coefficients, Fibonacci Quart. 38 (2000), 79-84.

