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A b s t r a c t - - T h i s  paper presents some relationships between Pascal matrices, Stirling numbers, 
and Bernouilli numbers. 

K e y w o r d s - - C o m b i n a t o r i a l  identities, Pascal matrices, Stirling numbers. 

This paper begins with a well-known combinatorial expression for the the cube of a number 

which can be extended to a solution for 

(1) 

13 + 2 3 -[- 3 3 + 4 3 -{- . . .  -{- n 3, 

or just 

$3 = E k  3. 
k=l 

Evaluation of (2) can be done simply by using Pascal's triangle identity 

and (1), resulting in 

(kl) = ( k l l ) + ( ~ )  

k=l 

k=l 2 k=l 3 k=l 

( n + l )  + 6 ( n 3  + 6 ( n  

(2) 
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Simplification yields the result 

ss= 
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n 2 ( n +  1) 2 = ( n ( n +  1 ) }  2 

4 2 ' 

which proves the well-known, but remarkable formula 

I a + 2  3 + . . .  + n  3 = (1 + 2  + . . .  + n )  2. 

As an aside, substituting N = (n(n + 1))/2 - 1 in (3) gives 

N 

Sa = g ( g +  1) + g +  1 = E ( 2 i  + 1), 
i=0 

which proves the theorem of Nicomachus [1]. 
This suggests a means of finding a solution for the sums of the first n k th powers 

n 
sk(~) = ~ i  ~ 

i=l 

based on repeated use of the binomial expansion 

k-1 ak={(a-1)+l}k=E(~)(a--1)i+(a-1)k 
i=O 

= ~ (k i ) (a-1) '+ ~1 ( ~ ) ( a _  2)i + , . ,  + ~ ( ~ ) ( 1 ) '  + 1 
i=0 i=O i=O 

= ~..,l(m)' + 1 
i=0 
k-1 

= E ( ~ ) S i ( a - 1 ) +  1. 
i=O 

Substituting a = n + 1 in the last expression for a k gives 

k-1 

i = 0  

This expression can be represented as a triangular system of equations 

where for k = 5, the matrices are 

P S  = P n ,  

and 

o Oil ooo 2 0 0 1 0 0 
15= 3 3 0 , P =  3 1 0 

4 6 4 6 4 1 
L1 5 10 10 L5 10 10 5 

/ s ' ( n ) /  '~ 
s = / s ~ ( n ) / ,  n = ,~ 

is , ( . ) /  . ,  
LS4(n) J M 

o] 

(3) 

(4) 

(s) 
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P is a Pascal matrix [2] with the first row and column deleted, 

0, otherwise. 

/3 is the 'reverse' of P with 

Pij  = i - j + 1  ' - 

O, otherwise. 

The inverse of P,  Q = p - 1  is just the inverse of the corresponding Pascal matrix, with the first 
row and column deleted 

{ C) Qij  = ( - 1 ) i - J  J ' 

0, otherwise. 

Q can easily be derived using the methods in [2,3]. Multiplying (4) by Q gives 

/58 = n, (6) 

where /5  = Q/5 is given by 

/sij = ( -1 ) i - J  i - j ÷ 1  ' 

O, 

if/_> j, 

otherwise• 

For k = 5, we have 
1 0 

- 1  2 
/ 5 =  1 - 3  

- 1  4 
1 - 5  °°i] 0 0 

3 0 . 
- 6  4 
10 - 1 0  

The triangular system of equations (6) can easily be solved to obtain an infinite number of 
useful expressions 

S o ( n )  = n 

- S o ( n )  + 2S1(n) = n 2 

S o ( n )  - 3S1(n) + 3S2(n) = n 3 

- S o ( n )  +4S1(n)  - 6S2(n) +4S3(n)  = n 3 

n2 -q- n 
S l ( n )  - 2 

==~ S2(n) = n ( n  + 1)(2n + 1) 
6 

n 4 + 2 n 3 + n  2 { n ( n +  1)}  2 
=~ S3(n) = a - 2 

• ° 

Perhaps more interesting is the fact that  /5 can be used to derive relationships between the 
binomial coefficients and Stirling numbers of the first and second kind, s l ( i , j )  and s 2 ( i , j ) ,  

respectively. Let N1 denote the matrix with entries s l ( i , j ) ,  and N2, the matrix with entries 
s2(i ,  j ) .  These matrices can be obtained using the recursive constructions for the Stirling numbers 

s l ( i  + 1, j )  = s l ( i , j  - 1) - i s l ( i , j ) ,  

with s l ( i , i )  = 1, s l ( i , O )  = 0 for i > 0, and s l ( i , j )  = 0 for j < 0 and j > i, 

s2( i  + 1, j )  = s 2 ( i , j  - 1) + j s 2 ( i , j ) ,  
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with s2(i,i) = 1, s2(i, 0) = 0 for i > 0, and s2(i,j) = 0 for j < 0 and j > i. [1 00 [ 000 
- 1  1 0 0 1 0 0 

N1 = 2 - 3  1 0 , N2 = 3 1 0 
- 6  11 - 6  1 7 6 1 
24 -50  35 -10  15 25 10 

gives 

from which can be illustrated the interesting result for Stirling numbers [4] 

For i , j  < 5, this 

O] 

Oo 

NIN2 = N2N1 = I. 

Now define a matrix A composed of the eigenvalues of/5, which for the example is [ 000 ] 
2 0 0 
0 3 0  
O O 4  
0 0 0 

Then 

and 

/5N2 = N2A (7) 

P = N~AN1. (8) 

Equation (7) can be proven via a simple combinatorial interpretation. Equating the entries in 
row i, column j of the two matrices gives 

. . . .  

' + i - j + 1  

(9) 

The right side of (9) can be interpreted as the number of ways to partition the set {1, 2 , . . . , i }  
into j nonempty subsets, and then choose one of these j subsets to be distinguished from the 
others in some way. Now for 1 < k < i, let Ak be the set of all such partitions in which k is an 
element of the distinguished subset. Then, 

i 

js2(i , j )  = kU=lAk. 

The cardinality of this union can also be computed by the inclusion-exclusion formula. First note 
that  if 1 < kl < k2 < - "  < kn _< i, then 

since a partition in which kl, k2,. • •, k~ are all elements of the distinguished subset can be formed 
by first grouping kl, k2 , . . . ,  k,~ together and treating them as a single element, and then forming a 
partition of the resulting set of size i - n  4-1 into j nonempty subsets, taking the subset containing 
kl, k2 , . . . ,  k~ to be the distinguished subset. There are (~) such intersections of n of the Ak'S, 
so the inclusion-exclusion formula gives the left side of (9). This proves (9) by showing that  the 
two sides of the equation represent two ways of counting the same thing. 
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Generalizing (8), there exists an infinite number of such relations given by 

/Sin = N2AmN1, 

which for m -- - 1  gives 

]5-1 _ N2A-1N1, 

N1 -- AN~-lP -1, 

N2 = p-INflA.  

Using the previous matrices corresponding to k = 5 gives 

p - l =  

1 0 0 0 0" 
1 1 

0 0 0 
2 2 
1 1 1 

0 0 
6 2 3 

1 1 1 
0 0 

4 2 4 
1 1 1 1 

-~ '~  0 3 2 5 

Returning to (5), multiplication by ]5-1 = Q gives 

(10) 

S = R n ,  (11) 

which for k = 5 is equal to (10) (the proof that  R = /5-1 is straightforward). One will note 

immediately that  the first column of R contains the Bernoulli numbers Bi, as in Bernoulli's 

table [5]. Inverting ]5 gives for k = 5 

5 - 1 =  

1 0 0 0 
1 1 

o o 

1 1 1 
6 2 o 

1 1 1 
0 

4 2 
1 1 1 

0 
30 3 2 

which is the same as R, except that  now the diagonal 
Thus, the first column of 15-1 contains the Bi as they 

° 

0 

0 

0 

1 

5 

below the main diagonal has value - 1 / 2 .  

are now defined [5,6]. 
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