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1. Introduction

In this paper we obtain recurrence relations for a large class of polynomial sequences. In fact, we

get this for any family of generalized Appell polynomials [2]. Our main tool to reach our goal is the so

called Riordan group [5,12,16,17].

Thiswork is a natural consequence of our previous papers [8–10], and then it can be also considered

as a consequence of the well-known Banach’s Fixed Point Theorem. We have also to say that some

papers related to this one have recently appeared in the literature [4,18] but our approach is different

from that in those papers because, our main result herein is the discovering of a general recurrence

relation for sequences of polynomials associated, naturally, to Riordan matrices. In particular we get a

characterization of Riordan arrays by rows.

TheRiordanarraysareusuallydescribedby thegenerating functionof their columnsor, equivalently,

by the induced action on any power series. In fact a Riordan array can be defined as an infinite matrix

where the k-column is just the kth term of a geometric progression in K[[x]] with rate a power series

of order one. To get a proper Riordan array, eventually an element of the Riordan group, [16], we also

impose that the first term in the progression is a power series of order zero.

In [10, Section 3], the authors studied polynomial families associated to some particular Riordan ar-

rayswhich appeared in an iterative process to calculate the reciprocal of a quadratic polynomial. There,

we interpreted some products of Riordanmatrices as changes of variables in the associated families of

polynomials. This interpretation will be exploited herein. Earlier in [9] the authors approached Pascal

triangle by a dynamical point of view using the Banach Fixed Point Theorem. This approach is suitable

to construct any Riordan array. From this point of view it seems that our T(f |g) notation for a Riordan

array is adequate, where f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n with g0 /= 0. The notation T(f |g) represents
the Riordan array of first term

f

g
and rate x

g
. So the Pascal triangle P is just T(1|1 − x). The action on a

power series s is given by T(f |g)(s(x)) = f (x)
g(x)

s
(

x
g(x)

)
. Themixture of the role of the parameters on the

induced action allowed us to get the following algorithm of construction for T(f |g) which is essential

to get the results in this paper:

Algorithm 1. Construction of T(f |g) f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n with g0 /= 0, T(f |g) = (dn,j)

with n, j � 0,
f

g
= ∑

n� 0 dnx
n and dn,0 = dn⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0

f1 d0,0 d0,1 d0,2 d0,3 d0,4 · · ·
f2 d1,0 d1,1 d1,2 d1,3 d1,4 · · ·
f3 d2,0 d2,1 d2,2 d2,3 d2,4 · · ·
...

...
...

...
...

... · · ·
fn+1 dn,0 dn,1 dn,2 dn,3 dn,4 · · ·

...
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with dn,j = 0 if j > n and the following rules for n� j:

If j > 0

dn,j = −g1

g0
dn−1,j − g2

g0
dn−2,j · · · − gn

g0
d0,j + dn−1,j−1

g0

and if j = 0

dn,0 = −g1

g0
dn−1,0 − g2

g0
dn−2,0 · · · − gn

g0
d0,0 + fn

g0
.

Note that d0,0 = f0
g0
. Then, in the 0-column are just the coefficients of

f

g
, i.e. dn,0 = dn.
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The main recurrence relation obtained in this paper is

pn(x) =
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0
(1)

which is closely related to the algorithm. The coefficients of the polynomials (pn(x)) are, in fact, the

entries in the rows of the Riordan matrix T(f |g).
SinceourT(f |g)notation forRiordanarrays isnot themoreusualone, it is convenient to translate the

above recurrence to the notation (d(x), h(x)) with h(0) = 0 and h′(0) /= 0. Another slightly different

notation is used in [5,17]. Since the rule of conversion is (d(x), h(x)) = T
(
xd
h

∣∣∣ x
h

)
, then the coefficients

(fn) and (gn) in (1) are defined by xd
h

= ∑
n� 0 fnx

n and x
h

= ∑
n� 0 gnx

n. At the beginning of Section 3,

for the reader convenience, we display some useful formulas relating our notation with the classical

one.

The matrix notation used above in the algorithm will appear often along this work so it deserves

some explanation: really the matrix T(f |g) is what appears to the right of the vertical line. The addi-

tional column to the left of the line,whose elements are just the coefficients of the series f , is needed for

the construction of the 0-columnof thematrix T(f |g). Observe that ifwe consider thewholematrix, ig-

noring the line,weget theRiordanmatrixT(fg|g). This explanation is to avoid repetitions along the text.

The paper is organized into four sections. In Section 2 we take the Pascal triangle as our first

motivation. This example is given here to explain and to motivate the interpretation of Riordan ma-

trices by rows. In fact, the known recurrence for combinatorial numbers is the key to pass from the

columns interpretation to the rows interpretation and viceversa. In this sense our Algorithm1 is a huge

generalization of the rule

(
n + 1

k

)
=
(
n

k

)
+
(
n

k − 1

)
. Later, we choose some classical sequences of

polynomials: Fibonacci, Pell andMorgan-Voyce polynomials to point out how the structure of Riordan

matrix is intrinsically in the known recurrence relations for these families. Sowe are going to associate

to any of these classical families a Riordan matrix which determines completely the sequence of

polynomials. Using the product in the Riordan group, i. e. the matrix product, we easily recover some

known relationships between them.

In Section 3, we get our main recurrence relation (1) as a direct consequence of Algorithm 1. The

theoretical framework so constructed extends strongly and explains easily the examples in Section 2

and some relationships between these families. We also recover the generating function of a family of

polynomials by means of the action of T(f |g) on a power series. Later on, we obtain the usual umbral

composition of polynomial families simply as a translation of thematrix product in the Riordan group.

At theendof this sectionweadda tablewith someclassical families of polynomials and their associated

Riordan arrays in the classical and our notation.

In Section 4, we obtain some general recurrence relations for any family of generalized Appell

polynomials, as a consequence of our main recurrence (1), and then of Algorithm 1. In this way we get

into the so called generalized Umbral Calculus, see [13,14]. We use the Hadamard product of series to

pass from the Riordan framework to the more general framework of generalized Appell polynomials

because the sequences of Riordan type are those generalizedAppell sequences related to the geometric

series 1
1−x

, which is the neutral element for the Hadamard product. We also relate in this section the

Riordan group with the so called delta-operators introduced by Rota et al. [15].

In this paper K always represents a field of characteristic zero and N is the set of natural numbers

including 0.

2. Some classical examples as motivation

Thebest knowndescriptionof Pascal triangle is by rows.With thenext first simple classical example

wepointouthowtopass fromthecolumn-description to the row-description. Todo this for anyRiordan

array is our main aim.

Example 2 (Pascal’s triangle). The starting point of the construction of Riordan arrays is the Pascal trian-

gle. From this point of view, Pascal triangle (by columns) are the terms of the geometric progression, in
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K[[x]], of first term 1
1−x

and rate x
1−x

. So Pascal triangle P is, by columns, P =
(

1
1−x

, x

(1−x)2
, x2

(1−x)3
, . . . ,

xn

(1−x)n+1 , . . . ,
)
. Of course it is not theway to introduce Pascal triangle, or Tartaglia triangle, for the first

time to students, because in particular it requires someunderstanding of the abstraction of infinity and

order both on the number of columns and on the elements in any column. On the contrary, the non-null

elements in any row of Pascal triangle form a finite set of data. Usually Pascal triangle is introduced

by rows as the coefficients of the sequence of polynomials pn(x) = (1 + x)n. The Newton formula

(1 + x)n = ∑n
k=0

(
n

k

)
xk allows us to say that the nth row of Pascal triangle is, by increasing order of

power of x,

(
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
. Using algebra, (1 + x)n+1 = (x + 1)(1 + x)n, or combinatorics,

counting subsets, we see that

(
n + 1

k

)
=
(
n

k

)
+
(
n

k − 1

)
. This means that the Pascal triangle P =

(pn,k)n,k∈N follows the rule: pn,0 = 1 for every n ∈ N, because

(
n

0

)
= 1 and pn+1,k = pn,k + pn,k−1

for 1� k � n. Using for example the combinatorial interpretation of

(
n

k

)
we see at once that

(
n

k

)
= 0

if k > n. What is the same, the Pascal triangle (pn,k)n,k∈N is totally determined by the following

recurrence relation: If we consider pn(x) = ∑n
k=0 pn,kx

k then p0(x) = 1 and pn+1(x) = (x + 1)pn(x),∀n� 0. It is obvious because the above relations means that pn(x) = (1 + x)n.

Example 3 (The Fibonacci polynomials, The Pell polynomials, The Morgan-Voyce polynomials). The Fi-

bonacci polynomials are the polynomials defined by, F0(x) = 1, F1(x) = x and Fn(x) = xFn−1(x) +
Fn−2(x) for n� 2. If we consider the sequences (fn)n∈N, (gn)n∈N given by g0 = 1, g1 = 0, g2 =
−1, gn = 0, ∀n� 3 and f0 = 1, fn = 0 ∀n� 1, we can unify the recurrence relation with the initial

conditions because if we write

Fn(x) =
(
x − g1

g0

)
Fn−1(x) − g2

g0
Fn−2(x) − · · · − gn

g0
F0(x) + fn

g0

for n� 0 we obtain both: the recurrence relation and the initial conditions. Note that the above

recurrence for Fibonacci polynomials fits the main recurrence relation (1).

If we consider the Riordan matrix, T(f |g) for f = 1 and g = 1 − x2, T(1|1 − x2) = (dn,k) then the

polynomials associated to T(1|1 − x2) are just the Fibonacci polynomials. Using Algorithm 1, the rule

of construction is: dn,k = dn−2,k + dn−1,k−1, for k > 0, dn,0 = dn−2,0 for n� 2, d0,0 = 1 and d1,0 = 0.

The few first rows are:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

0 0 1

0 1 0 1

0 0 2 0 1

0 1 0 3 0 1
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Consequently the first associated polynomials (look at the rows of the matrix) are F0(x) = 1,

F1(x) = x, F2(x) = 1 + x2, F3(x) = 2x + x3, F4(x) = 1 + 3x2 + x4, . . . which are the Fibonacci poly-

nomials. Using the induced action of T(1|1 − x2) we get the generating function of this sequence∑
n� 0

Fn(t)x
n = T

(
1|1 − x2

) ( 1

1 − xt

)
= 1

1 − x2 − xt
.

The Pell polynomials are related to the Fibonacci polynomials. Consider P0(x) = 1 and P1(x) = 2x

with thepolynomial recurrence Pn(x) = 2xPn−1(x) + Pn−2(x). So
x−g1
g0

= 2x,
−g2
g0

= 1 then g(x) = 1
2
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− 1
2
x2 and f (x) = 1

2
. Hence the involved Riordan matrix is T

(
1
2

∣∣∣ 1
2

− 1
2
x2
)
with the rule of construc-

tion: dn,k = dn−2,k + 2dn−1,k−1, k > 0 and with generating function∑
n� 0

Pn(t)x
n = T

(
1

2

∣∣∣∣1
2

− 1

2
x2
) (

1

1 − xt

)
= 1

1 − x2 − 2xt
.

We note that:

T

(
1

2

∣∣∣∣ 1) T(1|1 − x2)T

(
1

∣∣∣∣1
2

)
= T

(
1

2

∣∣∣∣ 1
2

− 1

2
x2
)

.

So, following Proposition 14 in [10], we get that Pn(x) = Fn(2x)which is a known relation between

Pell and Fibonacci polynomials.

Another related families of polynomials that we can treat using these techniques are the

Morgan-Voyce families of polynomials. Consider now the Riordan matrices T(1|(1 − x)2) and

T(1 − x|(1 − x)2). These triangles have the same rule of construction dn,k = 2dn−1,k − dn−2,k+ dn−1,k−1 but different initial conditions. In fact they are:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

0 2 1

0 3 4 1

0 4 10 6 1
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−1 1

0 1 1

0 1 3 1

0 1 6 5 1
...

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

B0(x) = 1 b0(x) = 1
B1(x) = 2 + x b1(x) = 1 + x

B2(x) = 3 + 4x + x2 b2(x) = 1 + 3x + x2

B3(x) = 4 + 10x + 6x2 + x3 b3(x) = 1 + 6x + 5x2 + x3

In general
Bn(x) = (x + 2)Bn−1(x) − Bn−2(x) bn(x) = (x + 2)bn−1(x) − bn−2(x)

with generating functions:∑
n� 0

Bn(t)x
n = T(1|(1 − x)2)

(
1

1 − xt

)
= 1

1 − (2 + t)x + x2∑
n� 0

bn(t)x
n = T(1 − x|(1 − x)2)

(
1

1 − xt

)
= 1 − x

1 − (2 + t)x + x2

On the other hand it is known that the sequences (Bn(x))n∈N and (bn(x))n∈N are related by means of

the equalities:

Bn(x) = (x + 1)Bn−1(x) + bn−1(x),

bn(x) = xBn−1(x) + bn−1(x).

Or equivalently

Bn(x) − Bn−1(x) = bn(x), (2)

bn(x) − bn−1(x) = xBn−1(x). (3)

These equalities can be interpreted by means of the product of adequate Riordan arrays. The first of

them, (2), is

T(1 − x|1)T(1|(1 − x)2) = T(1 − x|(1 − x)2).
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For the equality (3) we consider the product of matrices

T(1 − x|1)T(1 − x|(1 − x)2) = T((1 − x)2|(1 − x)2).

3. Polynomial sequences associated to Riordan matrices and its recurrence relations

In this section we are going to obtain the basic main result in this paper as a consequence of our

algorithm in [9] and stated again in Section 1 as Algorithm 1. We use [9,10] for notation and basic

results. Since our notation is not the usual one, for the convenience of the reader we present some

relations between the classical and our notation for Riordan arrays.

Usually a Riordan array, D, is represented, up the name of the indeterminate, by D = (d(x), h(x))
or D = R(d(x), h(x)), where d(x) is a power series and the power series h(x) is such that h(0) =
0, h′(0) /= 0. If in addition d(0) /= 0 then the Riordan array D is called proper. In our notation D =
T(f |g), with g(0) /= 0, represents the Riordan array such that the generating function of the j-column

is
xjf

gj+1 , beginning at j = 0. Equivalently the action induced in K[[x]] is:

T(f |g)(s) = f

g
s

(
x

g

)
which represents the power series

f (x)

g(x)
s

(
x

g(x)

)
while, in the usual notation, see [17]:

(d(x), h(x))(s(x)) = d(x)s(h(x));
equivalently the generating function of the j column is the series d(x)hj(x).

The basic formula relating them is

(d(x), h(x)) = T

(
xd

h

∣∣∣∣ x
h

)
=
(
f (x)

g(x)
,
x

g

)
= T(f |g) = (di,j)i,j � 0.

We are going to recall here some basic relations using both terminologies.

The representation of the product and the inverse (for a proper Riordan array) are, in bothnotations:

(d1(x), h1(x))(d2(x), h2(x)) = (d1(x)d2(h1(x)), h2(h1(x))),

T(f1|g1)T(f2|g2) = T

(
f1f2

(
x

g1

)∣∣∣∣∣ g1g2
(

x

g1

))
.

The expression f1f2

(
x
g1

)
represents the power series f1(x) · f2

(
x

g1(x)

)
and analogously for g1g2

(
x
g1

)
(d(x), h(x))−1 =

(
1

d(h̄(x))
, h̄(x)

)
(h̄ ◦ h)(x) = (h ◦ h̄)(x) = x,

T−1(f |g) ≡ (T(f |g))−1 = T

(
1

f (k̄)

∣∣∣∣∣ 1

g(k̄)

)
, k = x

g
, k ◦ k̄ = k̄ ◦ k = x

or mixing both notations:

T−1(f |g) = T

(
1

f (h̄)

∣∣∣∣∣ 1

g(h̄)

)
if T(f |g) = (d(x), h(x)).

One of the main equalities is

T(f |g) = T(f |1)T(1|g)
or (

f (x)

g(x)
,

x

g(x)

)
= (f (x), x)

(
1

g(x)
,

x

g(x)

)
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or

(d(x), h(x)) =
(
xd(x)

h(x)
, x

)(
h(x)

x
, h(x)

)

3.1. The main theorem

Definition 4. Consider an infinite lower triangular matrix A = (an,j)n,j∈N. The family of polynomials

associated to A is the sequence of polynomials (pn(x))n∈N, given by

pn(x) =
n∑

j=0

an,jx
j, with n ∈ N

Note that the coefficients of the polynomials are given by the entries in the rows of A in increasing

order of the columns till themain diagonal. Note also that the degree of pn(x) is less than or equal to n.

The family pn(x) becomes a polynomial sequences, in the usual sense, when the matrix A is invertible,

that is, when all the elements in the main diagonal are non-null.

Our main result can be given in the following terms:

Theorem 5. Let D = (dn,j)n,j∈N be an infinite lower triangular matrix. D is a Riordan matrix, or an arith-

metical triangle in the sense of [9], if and only if there exist two sequences (fn) and (gn) in K with g0 /= 0

such that the family of polynomials associated to D satisfies the recurrence relation:
pn(x) =

(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0
∀n� 0.

Moreover, in this case, D = T(f |g) where f = ∑
n� 0 fnx

n and g = ∑
n� 0 gnx

n.

Proof. If D is a Riordan array we can identify this with an arithmetical triangle D = T(f |g) such that

g0 /= 0. Following Algorithm 1 we obtain that the family of polynomials associated to T(f |g) satisfies:

pn(x) =
n∑

j=0

dn,jx
j = dn,0 +

n∑
j=1

dn,jx
j

= 1

g0

⎛⎝fn −
n∑

k=1

gkdn−k,0

⎞⎠+
n∑

j=1

⎛⎝ 1

g0

⎛⎝dn−1,j−1 −
n∑

k=1

gkdn−k,j

⎞⎠⎞⎠ xj

= 1

g0

⎛⎝fn −
n∑

j=1

dn−1,j−1x
j −

n∑
k=1

gkdn−k,0 −
n∑

j=1

n∑
k=1

gkdn−k,jx
j

⎞⎠
= 1

g0

⎛⎝fn − xpn−1(x) −
n∑

j=0

n∑
k=1

gkdn−k,jx
j

⎞⎠ = 1

g0

⎛⎝fn − xpn−1(x) −
n∑

k=1

gk

n−k∑
j=0

dn−k,jx
j

⎞⎠
= 1

g0

⎛⎝fn − xpn−1(x) −
n∑

k=1

gkpn−k(x)

⎞⎠ = 1

g0

⎛⎝fn + (g1 − x)pn−1(x) −
n∑

k=2

gkpn−k(x)

⎞⎠
=
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0

On the other hand, we suppose that

pn(x) =
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0
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for two sequences (fn) and (gn). We consider D = (dn,k) such that pn(x) = ∑n
j=0 dn,jx

j . So p0(x) = f0
g0

then d0,0 = f0
g0
.

p1(x) =
(
x − g1

g0

)
p0(x) + f1

g0
= −g1

g0
d0,0 + f1

g0
+ d0,0

g0
x

then

d1,0 = −g1

g0
d0,0 + f1

g0
, d1,1 = d0,0

g0

p2(x) =
(
x − g1

g0

)
p1(x) − g2

g0
p0(x) + f2

g0

= −g1

g0
d1,0 − g2

g0
d0,0 + f2

g0
+
(
−g1

g0
d1,1 + d1,0

g0

)
x + d1,1

g0
x2

so

d2,0 = −g1

g0
d1,0 − g2

g0
d0,0, d2,1 = −g1

g0
d1,1 + d1,0

g0
, d2,2 = d1,1

g0

in general

pn(x) =
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0

then

dn,0 = −g1

g0
dn−1,0 − g2

g0
dn−2,0 · · · − gn

g0
d0,0 + fn

g0

dn,1 = −g1

g0
dn−1,1 − g2

g0
dn−2,1 · · · − gn

g0
d0,1 + dn−1,0

g0

dn,j = −g1

g0
dn−1,j − g2

g0
dn−2,j · · · − gn

g0
d0,j + dn−1,j−1

g0

and

dn,n−1 = −g1

g0
dn−1,n−1 + dn−1,n−2

g0
, dn,n = dn−1,n−1

g0

then using our algorithm the matrix D is just D = T(f |g) where f (x) = ∑
n� 0 fnx

n and

g(x) = ∑
n� 0 gnx

n. �

Corollary 6. If g(x) = g0 + g1x + g2x
2 + · · · + gmx

m with gm /= 0 be a polynomial of degree m, the

recurrence relation of Theorem 5 is eventually finite. It is,

pn(x) =
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gm

g0
pn−m(x) + fn

g0
n�m

and

pk(x) =
(
x − g1

g0

)
pk−1(x) −

k∑
i=2

gi

g0
pk−i(x) + fk

g0
0� k �m − 1.

Remark 7. Following [9] the arithmetical triangle T(f |g) above is an element of the Riordan group

when it is invertible for the product of matrices. It is obviously equivalent to the fact that f0 /= 0 in the

sequence (fn) above.
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Suppose that we have two Riordan matrices T(f |g), T(l|m) with f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n

l = ∑
n� 0 lnx

n andm = ∑
n� 0 mnx

nwithg0, m0 /= 0. Consider the correspondingpolynomial families

(pn(x))n∈N and (qn(x))n∈N associated to T(f |g) and T(l|m) respectively, as in Theorem 5. Using the

matrix representation of T(f |g) and T(l|m), [9], and theproduct ofmatrices,we candefine anoperation

� on these sequences of polynomials as follows:

We say that

(pn(x))n∈N�(qn(x))n∈N = (rn(x))n∈N

if (rn(x))n∈N is the family of polynomials associated to the Riordan matrix

T(f |g)T(l|m) = T

(
fl

(
x

g

)∣∣∣∣∣ gm
(
x

g

))
see [9].

Suppose T(f |g) = (pn,k)n,k∈N, T(l|m) = (qn,k)n,k∈N and T
(
fl
(
x
g

)∣∣∣ gm (
x
g

))
= (rn,k)n,k∈N. Conse-

quently pn(x) = ∑n
k=0 pn,kx

k , qn(x) = ∑n
k=0 qn,kx

k and rn(x) = ∑n
k=0 rn,kx

k .

So, by the product of matrices, the entries in the n-row of (rn,k), which are just the coefficients of

rn(x) in increasing order of the power of x, are given by:⎛⎝ n∑
k=0

pn,kqk,0,

n∑
k=1

pn,kqk,1, . . .
n∑

k=j

pn,kqk,j . . . pn,nqn,n, 0, . . .

⎞⎠
= pn,0(q0,0, 0, . . . , 0, . . .) + pn,1(q1,0, q1,1, 0, . . . , 0, . . .) + · · · + pn,n(qn,0, qn,1, . . . , qn,n, 0, . . .)

Consequently

rn(x) =
n∑

k=0

pn,kqk(x)

which corresponds to replace in the expression of pn(x) = ∑n
k=0 pn,kx

k the power xk by the element

qk(x) in the sequence of polynomials (qn(x))n∈N. This is in the spirit of the Blissard symbolic’smethod,

see [1] for an exposition on this topic. The product (pn(x))n∈N�(qn(x))n∈N = (rn(x))n∈N is usually

called the umbral composition of the sequences of polynomials (pn(x)) and (qn(x)). The formula for

the umbral composition is given by

(pn(x))n∈N�(qn(x))n∈N = (rn(x))n∈N, where rn,j =
n∑

k=j

pn,kqk,j

As a summary of the above construction we have:

Theorem 8. Suppose four sequences of elements ofK, (fn)n∈N, (gn)n∈N, (ln)n∈N, (mn)n∈N, with g0, m0 /=
0. Consider the sequences of polynomials (pn(x))n∈N (qn(x))n∈N satisfying the following recurrences

relations

pn(x) =
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0

with p0(x) = f0
g0
,

qn(x) =
(
x − m1

m0

)
qn−1(x) − m2

m0

qn−2(x) · · · − mn

m0

q0(x) + ln

m0

with q0(x) = l0
m0

. Then the umbral composition (pn(x))n∈N�(qn(x))n∈N = (rn(x))n∈N satisfies the fol-

lowing recurrence relation

rn(x) =
(
x − α1

α0

)
rn−1(x) − α2

α0

rn−2(x) · · · − αn

α0

r0(x) + βn

α0

,
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where (αn)n∈N, (βn)n∈N are sequences such that fl
(
x
g

)
= ∑

n� 0 βnx
n, gm

(
x
g

)
= ∑

n� 0 αnx
n, with

f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n l = ∑
n� 0 lnx

n and m = ∑
n� 0 mnx

n.

Of special interest is when we restrict ourselves to the so called proper Riordan arrays, see [17].

As noted in Remark 7 this is the case when f0 /= 0 or, equivalently, T(f |g) is in the Riordan group.

Moreover, in this case, the assignment T(f |g) → (pn(x))n∈N is injective, obviously, and since the

product of matrices converts to the umbral composition of the corresponding associated polynomial

sequences, we have the following alternative description of the Riordan group.

Theorem 9. Let K be a field of characteristic zero. Consider R = {(pn(x))n∈N} where (pn(x))n∈N is a

polynomial sequence with coefficients in K satisfying that there are two sequences (fn)n∈N, (gn)n∈N of

elements of K, depending on (pn(x))n∈N, with f0, g0 /= 0 and such that

pn(x) =
(
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0

with p0(x) = f0
g0

.

Given (pn(x))n∈N, (qn(x))n∈N ∈ R Define (pn(x))n∈N�(qn(x))n∈N = (rn(x))n∈N where rn(x) =∑n
k=0 pn,kqk(x) with pn(x) = ∑n

k=0 pn,kx
k. Then (R, �) is a group isomorphic to the Riordan group.

Moreover∑
n� 0

pn(t)x
n = f (x)

g(x) − xt

if f = ∑
n� 0 fnx

n and g = ∑
n� 0 gnx

n and (fn) and (gn) are the sequences generating the polynomial

sequence (pn(x)) in R.

Proof. Only a proof of the final part is needed. As we know, from Theorem 5, T(f |g) = (pn,k)n,k∈N is a

proper Riordan arraywhere pn(x) = ∑n
k=0 pn,kx

k , 1
1−xt

= ∑
n� 0 t

nxn. We consider, symbolically, 1
1−xt

as a power series on x with parametric coefficients an = tn. From this point of view, [9],

T(f |g)
(

1

1 − xt

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0,0
p1,0 p1,1
p2,0 p2,1 p2,2
...

...
...

. . .

pn,0 pn,1 pn,2 · · · pn,n · · ·
...

...
... · · · ...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

t

t2

...
tn

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

n∑
k=0

pn(t)x
k

T(f |g)
(

1

1 − xt

)
= f (x)

g(x)

1

1 − t x
g

= f (x)

g(x) − xt
�

Remark 10. Note that
∑n

k=0 pn(t)x
k is just the bivariate generating function of the Riordan array

T(f |g) = (pn,k)n,k∈N in the sense of [17].

3.2. Some relationships between polynomials sequences of Riordan type. Some classical examples

Nowwe are going to describe some relations between polynomial sequences associated to different

Riordan arrays. From now on we are going to use the following definition:

Definition 11. Let (pn(x))n∈N be a sequence of polynomials in K[[x]], pn(x) = ∑n
k=0 pn,kx

k . We say

that (pn(x))n∈N is a polynomial sequence of Riordan type if thematrix (pn,k) is an element of the Riordan

group.
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Using the basic equality T(f |g) = T(f |1)T(1|g) we can get some formulas.

Proposition 12. Let T(f |g) an element of the Riordan group and suppose (pn(x)) the corresponding as-

sociated family of polynomials. Let h(x) = h0 + h1x + h2x
2 + · · · + hmx

m be a m degree polynomial,

hm /= 0. Let (qn(x)) be the associated family of polynomials of T(h|1)T(f |g) then
q0(x) = h0p0(x)

q1(x) = h1p0(x) + h0p1(x)

...

qm(x) = hmpn−m(x) + · · · + h0pm(x)

qn(x) = hmpn−m(x) + · · · + h0pn(x) n�m

Remark 13. Note that to multiply by the left by the Toepliz matrix T(h|1) above corresponds even-

tually to make some fixed elementary operations by rows on the matrix T(f |g). These operations are

completely determined by the coefficients of the polynomial h. For example if h(x) = a + bx then

q0(x) = ap0(x) and qn(x) = bpn−1(x) + apn(x).

As a direct application of Proposition 12wewill obtain the known relationships between Chebysev

polynomials of the first and second kind.

Example 14 (The Chebyshev polynomials of the first and the second kind). Consider the Chebyshev

polynomials of the second kind:

U0(x) = 1

U1(x) = 2x

U2(x) = 4x2 − 1

U3(x) = 8x3 − 4x

U4(x) = 16x4 − 12x2 + 1

Un(x) = 2xUn−1(x) − Un−2(x) for n� 2 (4)

Let the sequences (ln)n∈N, (mn)n∈N given by l0 = 1
2
and ln = 0 for n� 1 andm0 = 1

2
,m2 = 1

2
and

mn = 0 otherwise. In this case (4) can be converted to

U0(x) = l0
m0

Un(x) =
(
x−m1

m0

)
Un−1(x) − m2

m0
Un−2(x) · · · − mn

m0
U0(x) + ln

m0
, for n� 1

(5)

If U = (un,k)n,k∈N where Un(x) = ∑n
k=0 un,kx

k then using our algorithm, or equivalently Theorem

5, we obtain that U = T
(
1
2

∣∣∣ 1
2

+ 1
2
x2
)
is a Riordan matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0 1

0 0 2

0 −1 0 4

0 0 −4 0 8

0 1 0 −12 0 16
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So the associated polynomials of this arithmetical triangle are the Chebyshev polynomials of the

second kind. Consequently∑
n� 0

Un(t)x
n = T

(
1

2

∣∣∣∣ 1
2

+ 1

2
x2
)(

1

1 − xt

)
= 1

1 + x2 − 2xt
.
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The first few Chebyshev polynomials of the first kind are T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1 · · · In general

Tn(x) = 2xTn−1(x) − Tn−2(x) for n� 2.

Wefirst produce a small perturbation in this classical sequence. Consider anewsequence (T̃(x))n∈N

where T̃0(x) = 1
2
and T̃n(x) = Tn(x) for every n� 1. For this new sequence we have the following

recurrence relation

T̃0(x) = 1

2

T̃1(x) = 2xT̃0(x)

T̃2(x) = 2xT̃1(x) − T̃0(x) − 1

2

T̃n(x) = 2xT̃n−1(x) − T̃n−2(x) for n� 3 (6)

to unify the above equalities we consider the sequences (fn)n∈N, (gn)n∈N given by f0 = 1
4
, f2 = − 1

4

and fn = 0 otherwise, g0 = 1
2
, g2 = 1

2
and gn = 0 otherwise. We note that the equalities in (6) can be

converted to

T̃0(x) = f0
g0

T̃n(x) =
(
x−g1
g0

)
T̃n−1(x) − g2

g0
T̃n−2(x) · · · − gn

g0
T̃0(x) + fn

g0
, for n� 1

(7)

Let T̃ = (t̃n,k) be the matrix given by T̃n(x) = ∑n
k=0 t̃n,kx

k . One can verifies that (7) converts to

t̃n,k = 0 if k > n and the following rules for n� k:

t̃n,j = −g1

g0
t̃n−1,j − g2

g0
t̃n−2,j · · · − gn

g0
t̃0,j + t̃n−1,j−1

g0
if j � 1

and if j = 0

t̃n,0 = −g1

g0
t̃n−1,0 − g2

g0
t̃n−2,0 · · · − gn

g0
t̃0,0 + fn

g0

Note that t̃0,0 = f0
g0

because the empty sum evaluates to zero.

Using our algorithm in [9], we obtain that T̃ is a Riordan matrix. In fact we get T̃ =
T
(
1
4

− 1
4
x2
∣∣∣ 1
2

+ 1
2
x2
)
in our notation, because f (x) = 1

4
− 1

4
x2 is the generating function of the

sequence (fn) and g(x) = 1
2

+ 1
2
x2 is the generating function of the sequence (gn). So⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4

0 1
2

1
4

0 1

0 −1 0 2

0 0 −3 0 4

0 1 0 −8 0 8
...

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

But now more can be said because∑
n� 0

T̃n(t)x
n = T

(
1

4
− 1

4
x2
∣∣∣∣ 1
2

+ 1

2
x2
)(

1

1 − tx

)
= 1

2

1 − x2

1 + x2 − 2tx
.

Since∑
n� 0

Tn(t)x
n = 1

2
+ ∑

n� 0

T̃n(t)x
n
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we get the generating function∑
n� 0

Tn(t)x
n = 1 − tx

1 + x2 − 2tx

of the classical Chebyshev polynomials of the first kind.

Using the involved Riordanmatriceswe canfind the known relation between Tn(x) andUn(x). Since

T

(
1

4
− 1

4
x2
∣∣∣∣ 1
2

+ 1

2
x2
)

= T

(
1

2
− 1

2
x2
∣∣∣∣ 1) T

(
1

2

∣∣∣∣ 1
2

+ 1

2
x2
)

Consequently

T̃n(x) = −1

2
Un−2(x) + 1

2
Un(x) or 2T̃n(x) = Un(x) − Un−2(x)

and then

2Tn(x) = Un(x) − Un−2(x), n� 3

As we noted in Section 4 of [8], if we delete the first row and the first column in the Riordanmatrix

T(f |g) we obtain the new Riordan matrix T
(
f

g

∣∣∣ g). On the other hand to add suitably a new column

to the left of T(f |g), one place shifted up, and complete the new first row only with zeros we have the

Riordan matrix T(fg|g). So deleting or adding, in the above sense, any amount of rows and columns to

T(f |g) we obtain the intrinsically related family of Riordan matrices

. . . , T(g3f |g), T(g2f |g), T(gf |g), T(f|g), T
(

f

g

∣∣∣∣∣ g
)
, T

(
f

g2

∣∣∣∣∣ g
)
, T

(
f

g3

∣∣∣∣∣ g
)
, . . .

We can easily obtain a recurrence to get the associated polynomials to T
(

f

gn

∣∣∣ g) in terms of that

of T(f |g). We have an analogous conclusion on T(fgn|g) n� 0. Anyway, once we know the polynomial

associated to T(f |g) we can calculate that of T(fgn|g) for n ∈ Z.

Proposition 15. Let f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n be two power series such that f0 /= 0, g0 /= 0.
Suppose that (pn(x))n∈N is the associated polynomial sequence of the Riordan array T(f |g), then

(a) If (qn(x))n∈N is the associated sequence to T(fg|g) we obtain

qn(x) = xpn−1(x) + fn if n� 1

and q0(x) = f0.

(b) If (rn(x))n∈N is the associated polynomial sequence to T
(
f

g

∣∣∣ g) then
rn−1(x) = pn(x) − pn(0)

x
for n� 1.

Proof. (a) T(fg|g) = T(g|1)T(f |g). Using the umbral composition we have

qn(x) = gnp0(x) + gn−1p1(x) + · · · + g0pn(x).

Using now our Theorem 5 we obtain

qn(x)=gnp0(x) + gn−1p1(x) + · · ·
+ g0

((
x − g1

g0

)
pn−1(x) − g2

g0
pn−2(x) · · · − gn

g0
p0(x) + fn

g0

)
.

Consequently

qn(x) = xpn−1(x) + fn.
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(b) Now T(g|1)T
(
f

g

∣∣∣ g) = T(f |g). So
pn(x) = gnr0(x) + gn−1r1(x) + · · · + g0rn(x)

using again Theorem 5 for the sequences rn(x) we obtain

pn(x)=gnr0(x) + gn−1r1(x) + · · ·
+ g0

((
x − g1

g0

)
rn−1(x) − g2

g0
rn−2(x) · · · − gn

g0
r0(x) + dn

g0

)
,

where the dn is the n-coefficient of the series
f

g
. Consequently pn(x) = xrn−1(x) + dn. Note that

pn(0) = dn, so

rn−1(x) = pn(x) − pn(0)

x
if n� 1 �

Corollary 16. Suppose g = ∑
n� 0 gnx

n with g0 /= 0. Let (pn(x))n∈N be the polynomial sequence associ-

ated to T(1|g) and (qn(x))n∈N that associated to T(g|g). Then:
qn(x) = xpn−1(x) for n� 1 and q0(x) = 1.

Example 17. AsanapplicationofProposition15andaswenoted inSection2, the relationshipsbetween

both kind of Morgan-Voyce polynomial families are

Bn(x) − Bn−1(x) = bn(x) and bn(x) − bn−1(x) = xBn−1(x).

That in terms of Riordan arrays means

T(1 − x|1)T(1|(1 − x)2) = T(1 − x|(1 − x)2),

T(1 − x|1)T(1 − x|(1 − x)2) = T((1 − x)2|(1 − x)2)

because (T(1|(1 − x)2)) gives rise to (Bn(x)) and T(1 − x|(1 − x)2) gives rise to (bn(x)).

In the following expressions we consider (pn(x)) as the family of polynomials associated to T(f |g),
andwedenoteby (qn(x)) the familyof polynomials associated toeachof thematrixproducts.Moreover

a, b are constant series with b /= 0:

T(a|1)T(f |g) = T(af |g), then qn(x) = apn(x),

T(1|b)T(f |g) = T

(
f

(
x

b

)∣∣∣∣ bg ( x

b

))
, then qn(x) = 1

bn+1
pn(x),

T(f |g)T(a|1) = T(af |g), then qn(x) = apn(x),

T(f |g)T(1|b) = T(f |bg), then qn(x) = 1

b
pn

(
x

b

)
.

The above results can be summarized and extended in the following way:

Proposition 18. Let T(f |g) and T(l|m) be two elements of the Riordan group. Suppose that (pn(x)) and

(qn(x)) are the corresponding associated families of polynomials. If

T(l|m) = T(γ |α + βx)T(f |g)T(c|a + bx)

where α, γ , a, c /= 0. Then

qn(x) = γ c

αa

⎛⎝ n∑
k=0

(
n

k

)(
−β

α

)n−k
1

αk
pk

(
x − b

a

)⎞⎠
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Proof. Using Theorem5wehave that if (sn(x)) is the family of polynomials associated to T(γ |α + βx)
then

s0(x) = γ

α
and sn(x) =

(
x − β

α

)
sn−1(x) ∀n� 1

consequently

sn(x) = γ

α

(
x − β

α

)n

n ∈ N

Proposition14 in [10] says that if (rn(x)) is the familyofpolynomials associated toT(f |g)T(c|a + bx)
then

rn(x) = c

a
pn

(
x − b

a

)
Since (qn(x)) = (sn(x))�(rn(x)) we obtain that

(qn(x)) =
⎛⎝γ

α

n∑
k=0

(
n

k

)(
−β

α

)n−k
1

αk
xk

⎞⎠ �

(
c

a
pn

(
x − b

a

))
.

Hence

qn(x) = γ c

αa

⎛⎝ n∑
k=0

(
n

k

)(
−β

α

)n−k
1

αk
pk

(
x − b

a

)⎞⎠ �

Example 19. As we noted in Section 2 the relation between the Pell and the Fibonacci polynomials

is Pn(x) = Fn(2x). Recall that T
(
1
2

∣∣∣ 1) T(1|1 − x2) T (1| 1
2

)
= T

(
1
2

∣∣∣ 1
2

− 1
2
x2
)
and T

(
1
2

∣∣∣ 1
2

− 1
2
x2
)

gives rise to the Pell polynomials and T(1|1 − x2) gives rise to the Fibonacci polynomials.

Example 20. The Fermat polynomials are the polynomials given by F0(x) = 1, F1(x) = 3x and

Fn(x) = 3xFn−1(x) − 2Fn−2(x) for n� 2. Using our Theorem 5 this means that Fermat polynomials

are the polynomials associated to the Riordan matrix T
(
1
3

∣∣∣ 1
3

+ 2
3
x2
)
. For this case, g0 = 1

3
, g1 =

0, g2 = 2
3
, gn = 0, ∀n� 3 and f0 = 1

3
, fn = 0 ∀n� 1. The construction rule of this triangle is:

dn,k = −2dn−2,k + 3dn−1,k−1 for k > 0. The few first Fermat polynomials are F0(x) = 1, F1(x) = 3x,

F2(x) = −2 + 9x2, F3(x) = −12x + 27x3, F4(x) = 4 − 54x2 + 81x4, . . . Since

T

(
1

3

∣∣∣∣ 1
3
(1 + 2x2)

)
= T

(
1

∣∣∣∣∣ 1√
2

)
T

(
1

2

∣∣∣∣ 1
2
(1 + x2)

)
T

(
2

3

∣∣∣∣∣2
√

2

3

)
and using Proposition 18 we obtain the following relation to the Chebysev polynomials of the second

kind:

Fn(x) =
(√

2
)n

Un

(
3x

2
√

2

)
Recently, it has been introduced a special family of polynomials in [3,7] related to the so called spray

pyrolysis techniques. Now we are going to find a relation of these polynomials with the Chebyshev

polynomials of the secondkindand thenalsowith theFermatpolynomials. Thisnewsequencesofpoly-

nomials is given byB0(x) = 1,B1(x) = x,B2(x) = 2 + x2 andBn(x) = xBn−1(x) − Bn−2(x) for n� 3.

Using our Theorem 5, we find that Bn(x) polynomials are the polynomials associated to the Riordan

matrix T(1 + 3x2|1 + x2). For this case, g0 = 1, g1 = 0, g2 = 1, gn = 0, ∀n� 3 and f0 = 1, f1 =
0, f2 = 3 fn = 0 ∀n� 3. And the rule of construction of this triangle is: dn,k = −dn−2,k + dn−1,k−1,

with generating function∑
n� 0

Bn(t)x
n = T

(
1 + 3x2|1 + x2

) ( 1

1 − xt

)
= 1 + 3x2

1 − xt + x2
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Table 1

Polynomial families, their associated Riordan arrays in both notation, and their generating functions.

Polynomial family (d(x), h(x)) T(f |g) ∑
pn(t)x

n

Pascal
(

1
1−x

, x
1−x

)
T(1|1 − x) 1

1−x−t

Fibonacci
(

1

1−x2
, x

1−x2

)
T(1|1 − x2) 1

1−x2−tx

Pell
(

1

1−x2
, 2x

1−x2

)
T

(
1
2

∣∣∣∣∣ 12 − x2

2

)
1

1−x2−2tx

Morgan-Voyce (1)
(

1

(1−x)2
, x

(1−x)2

)
T(1|(1 − x)2) 1

1+x2−(2+t)x

Morgan-Voyce (2)
(

1
(1−x)

, x

(1−x)2

)
T(1 − x|(1 − x)2) 1−x

1+x2−(2+t)x

Chebyshev 2◦ kind
(

1

1+x2
, 2x

1+x2

)
T

(
1
2

∣∣∣∣∣ 12 + x2

2

)
1

1+x2−2tx

∗ Chebyshev 1◦ kind
(

1−x2

2(1+x2)
, 2x

1+x2

)
T

(
1
4

− x2

4

∣∣∣∣∣ 12 + x2

2

)
1−x2

2(1+x2−2tx)
+ 1

2

∗

Fermat
(

1

1+2x2
, 3x

1+2x2

)
T

(
1
3

∣∣∣∣∣ 13 + 2x2

3

)
1

1+2x2−3tx

∗ See Example 14.

Since

T
(
1 + 3x2|1 + x2

)
= T

(
1 + 3x2|1

)
T

(
1

2

∣∣∣∣1
2
(1 + x2)

)
T(2|2)

and using Proposition 12 and Proposition 18 we obtain the following relation to the Chebysev polyno-

mials of the second kind:

Bn(x) = Un

(
x

2

)
+ 3Un−2

(
x

2

)
for n� 2.

On the other hand we can relate these polynomials and Fermat polynomials:

T
(
1 + 3x2|1 + x2

)
= T

(
1 + 3x2|1

)
T
(
1|√2

)
T

(
1

3

∣∣∣∣ 1
3
(1 + 2x2)

)
T

(
3

∣∣∣∣∣ 3√
2

)
and using again Proposition 12 and 18 we obtain

Bn(x) = 1(√
2
)n Fn

(√
2x

3

)
+ 3(√

2
)n−2

Fn−2

(√
2x

3

)
for n� 2.

4. Some applications to the generalized umbral calculus: the associated polynomials and its

recurrence relations.

There are many other types of polynomial sequences in the literature that can be constructed

by means of Riordan arrays. We are going to characterize by means of recurrences relations all the

polynomial sequences called generalized Appell polynomials in Boas–Buck [2, pp. 17–18].Wewill follow

their definitions there.

We first introduce some concepts. Suppose we have any polynomial sequence (pn(x))n∈N with

pn(x) = ∑n
k=0 pn,kx

k and let h(x) = ∑
n� 0 hnx

n any power series, we call the Hadamard h-weighted

sequence generated by (pn(x)) to the sequence phn(x) = (pn�h)(x) where � means the Hadamard
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product of series. Recall that if f = ∑
n� 0 fnx

n and g = ∑
n� 0 gnx

n, then the Hadamard product f�g

is given by f�g = ∑
n� 0 fngnx

n.

Note that phn is a polynomial for every n ∈ N and h ∈ K[[x]]. In fact phn(x) = ∑n
k=0 pn,khkx

k .

Note also that the original definition of generalized Appell polynomials defined by Boas–Buck in

[2] can be rewritten in terms of Riordan matrices in the following way:

Proposition 21. A sequence of polynomials (sn(x)) is a family of generalized Appell polynomials if and

only if there are three series f , g, h ∈ K[[x]], f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n and h(x) = ∑
n� 0 hnx

n

with f0, g0 /= 0, and hn /= 0 for all n such that

T(f |g)h(tx) = ∑
n� 0

sn(t)x
n.

Moreover in this case, sn(x) = phn(x) in the above sense where (pn(x)) is the associated polynomial

sequence of T(f |g). Consequently∑
n� 0

sn(t)x
n = ∑

n� 0

(pn�h)(t)xn = f (x)

g(x)
h

(
t

x

g(x)

)
.

Proof. If T(f |g)(h(tx)) = ∑
n� 0 sn(t)x

n then obviously (sn(x)) is a generalized Appell sequence be-

cause
∑

n� 0 sn(t)x
n = f (x)

g(x)
h
(
t x
g(x)

)
. Suppose now that (sn(x)) is a generalized Appell sequence, then

there are three series A, B,� where A = ∑
n� 0 Anx

n, A0 /= 0, B = ∑
n� 1 Bnx

n, B1 /= 0 and � =∑
n� 0 �nx

n with�n /= 0, ∀n ∈ N such that
∑

n� 0 sn(t)x
n = A(x)�(tB(x)). If we take� = h, g(x) =

x
B(x)

and f (x) = xA(x)
B(x)

we are done. �

Remark 22. Note that if h(x) = 1
1−x

the family of

(
p

1
1−x
n (x)

)
is exactly the associated polynomials

(pn(x)) of T(f |g), because 1
1−x

is the neutral element in the Hadamard product.

Example 23 (The Sheffer polynomials). Following the previous proposition we have that (Sn(x)) is a

Sheffer sequence if and only if there is a Riordan matrix T(f |g) such that

T(f |g)(etx) = ∑
n� 0

Sn(t)x
n.

The usualway to introduce Sheffer sequences is bymeans of the corresponding generating function∑
n� 0

Sn(t)x
n = A(x)etH(x),

where A = ∑
n� 0 Anx

n, H = ∑
n� 1 Hnx

n with A0 /= 0,H1 /= 0. Note that for this case the correspond-

ing Riordan matrix is

T

(
xA(x)

H(x)

∣∣∣∣∣ x

H(x)

)
.

The general term of a Sheffer sequence, Sn(x) is given by

Sn(x) = pn(x)�ex,

where (pn(x)) are the associated polynomials to T(f |g). Consequently

Sn(x) =
n∑

k=0

pn,k

k! xk

if pn(x) = ∑n
k=0 pn,kx

k .
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WARNING.Note that inmany places [13–15] they call a Sheffer sequence to the sequence (n!Sn(x))n∈N

where (Sn(x))n∈N is our Sheffer sequence.

In the following example we can note that applying a fixed T(f |1) to different series h gives rise to

some classical families of polynomials.

Example 24 (The Brenke polynomials). Following [2], (Bn(x)) is in the class of Brenke polynomials if

T(f |1)(h(tx)) = ∑
n� 0

Bn(t)x
n.

Some particular cases are:

T(f |1)
(

1

1 − tx

)
= ∑

n� 0

T∗
n (t)xn,

where (T∗
n ) are the reversed Taylor polynomial of f .

T(f |1)(etx) = ∑
n� 0

An(t)x
n,

where (An(x)) are the Appell polynomials of f .

Using analogous arguments as in the previous section for polynomials of Riordan type, we can get

some relationships between some classical Sheffer sequences once we know, easily, some relation

between their corresponding Riordan matrices.

Using our main theorem in Section 3 we can obtain the following recurrence relations for the

generalized Appell polynomials, which is the main result in this section.

Theorem 25. Let (sn(x))n∈N be a sequence of polynomials with sn(x) = ∑n
k=0 sn,kx

k. Then (sn(x))n∈N

is a family of generalized Appell polynomials if and only if there are three sequences (fn), (gn), (hn) ∈ K
with f0, g0 /= 0 and hn /= 0 ∀n ∈ N such that

sn(x)= 1

g0
(xsn−1(x)�ĥ(x)) − g1

g0
sn−1(x) − · · · − gn

g0
s0(x) + h0fn

g0
∀n∈N with s0(x) = h0f0

g0

where ĥ(x) = ∑∞
k=1

hk
hk−1

xk. Moreover the coefficients of this family of polynomials satisfy the following

recurrence:
If k � 1

sn,k = −g1

g0
sn−1,k − · · · − gn

g0
s0,k + hk

hk−1

sn−1,k−1.

If k = 0

sn,0 = −g1

g0
sn−1,0 − · · · − gn

g0
s0,0 + h0fn

g0
, s0,0 = h0f0

g0
.

Proof. If (sn(x)) is a family of generalized Appell polynomials then there are three sequence (fn), (gn),
(hn) of elements inKwith f0, g0 /= 0 and hn /= 0∀n ∈ N, such that if f = ∑

n� 0 fnx
n, g = ∑

n� 0 gnx
n

and h = ∑
n� 0 hnx

n then

T(f |g)h(tx) = ∑
n� 0

sn(t)x
n

since sn(x) = phn(x) = pn(x)�h(x), the family of polynomials (pn(x)) associated to T(f |g) obeys the

recurrence relation of Theorem 5: Using the distributivity of Hadamard product we get

pn(x)�h(x) =
(
x − g1

g0

)
pn−1(x)�h(x) − g2

g0
pn−2(x)�h(x) · · · − gn

g0
p0(x)�h(x) + fn

g0
�h(x)
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= phn(x) = x

g0
pn−1(x)�h(x) − g1

g0
phn−1(x) − g2

g0
phn−2(x) · · · − gn

g0
ph0(x) + fnh0

g0

since

xpn−1(x)�h(x) = pn−1,0h1x + pn−1,1h2x
2 + · · · + pn−1,n−1hnx

n

then

xpn−1(x)�h(x)=pn−1,0h0
h1

h0
x + pn−1,1h1

h2

h1
x2 + · · · + pn−1,n−1hn−1

hn

hn−1

xn

=xphn−1(x)�ĥ(x)

so we get the result.

On the other hand if there are three sequences (fn), (gn), (hn) ∈ Kwith f0, g0 /= 0 and hn /= 0∀n ∈
N such that

sn(x)= 1

g0
(xsn−1(x)�ĥ(x)) − g1

g0
sn−1(x) − · · · − gn

g0
s0(x) + h0fn

g0
∀n ∈ N

with s0(x) = h0f0

g0
,

where ĥ(x) = ∑∞
k=1

hk
hk−1

xk . Let

pn(x) = sn(x)�h(−1)�(x)

where h(−1)�(x) = ∑
n� 0

1
hn
xn. Then

sn(x)�h(−1)�(x)= 1

g0
(xsn−1(x)�ĥ(x))�h(−1)�(x) − g1

g0
sn−1(x)�h(−1)�(x)

− · · · − gn

g0
s0(x)�h(−1)�(x) + h0fn

g0
�h(−1)�(x),

pn(x) = 1

g0
(xsn−1(x)�ĥ(x))�h(−1)� − g1

g0
pn−1(x) − · · · − gn

g0
p0(x) + fn

g0

since

xsn−1(x)�ĥ(x) = sn−1,0

h1

h0
x + sn−1,1

h2

h1
x2 + · · · + sn−1,n−1

hn

hn−1

xn

then

xsn−1(x)�ĥ(x)�h(−1)�(x) = xsn−1(x)�h(−1)�(x) = xpn−1(x)

consequently

pn(x) = 1

g0
(xpn−1(x)) − g1

g0
pn−1(x) − · · · − gn

g0
p0(x) + fn

g0

so (pn(x)) obeys Theorem 5 and then (pn(x)) is the associated polynomials to T(f |g). Hence (sn(x)) is
a family of generalized Appell polynomials.

The second part of the result is an easy consequence of our Algorithm 1 in the Introduction. �

Remark 26. Note that if k � 1, some terms in the recurrence are null, in fact sl,k = 0 if l < k. Conse-

quently:
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sn,k = −g1

g0
sn−1,k − · · · − gn−k

g0
sk,k + hk

hk−1

sn−1,k−1.

A consequence that we can obtain from the recurrence relation for the generalized Appell se-

quences is the following relation between the Hadamard h-weighted and h′-weighted sequences for a

polynomials sequence of Riordan type. For notational convenience we represent now by D(α) to the

derivative of any series α. The result obtained belowwhenwe consider the classical Appell sequences,

is just what Appell took as the definition for these classical sequences.

Corollary 27. Let T(f |g) be any element of the Riordan group with f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n, and

with associated sequence (pn(x)). Suppose that h ∈ K[[x]] is Hadamard invertible. Then the D(h) is

Hadamard invertible and

p
D(h)
n−1 (x) =

n∑
k=0

gkD(phn−k)(x).

Proof. We know that

phn(x) = 1

g0
(xphn−1(x)�ĥ(x)) − g1

g0
phn−1(x) − · · · − gn

g0
ph0(x) + h0fn

g0
.

Applying the derivative in both sides we obtain

D(phn)(x) = 1

g0
D(xphn−1(x)�ĥ(x)) −

n∑
k=1

gk

g0
D(phn−k)(x).

Consequently

D(xphn−1(x)�ĥ(x)) =
n∑

k=0

gkD(phn−k)(x).

It is easy to prove that

D(m(x)�l(x)) = m(x) − m(0)

x
�D(l(x)) = D(m(x))�

(l(x) − l(0)

x

for any series l, m ∈ K[[x]]. Using the first equality above we get

phn−1�D(ĥ)(x) =
n∑

k=0

gkD(phn−k)(x)

but

(pn−1(x)�h(x))�D(ĥ)(x) = pn−1(x)�(h(x)�(D(ĥ)(x))

and since ĥ(x) = ∑
k � 1

hk
hk−1

xk we obtain that

h(x)�D(ĥ)(x) = D(h)(x)

and so we have the announced equality. �

In some cases the above formulas allow us to compute easily some generalized Appell sequences

in terms of the associated sequences of Riordan type.

Example 28 (Some easy computations related to the geometric series).As an easy application of the above

result we have: let (pn(x)) be a polynomial sequence of Riordan type. Then

(i) p

1

(1−x)2

n (x) = xp′
n(x) + pn(x) = (xpn(x))

′ ∀n� 0.
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(ii) If a /= 0 then

pa−log(1−x)
n (x) = apn(0) +

∫ x

0

pn(t) − pn(0)

t
∀n� 0.

The previous results convert to the following formulas in the important class of Sheffer sequences.

Example 29 (The recurrence relation for the Sheffer polynomials. Some classical examples). Since for Shef-

fer polynomials h(x) = ex = ∑
n� 0

xn

n! and ĥ(x) = ∑
n� 1

xn

n
= − log(1 − x), the recurrence relation

is:

Sn(x) = 1

g0
(xSn−1(x)�(− log(1 − x))) − g1

g0
Sn−1(x) − · · · − gn

g0
S0(x) + fn

g0
∀n ∈ N

with S0(x) = f0

g0

and the recurrence relations for the coefficients are

If k � 1

Sn,k = −g1

g0
Sn−1,k − · · · − gn

g0
S0,k + 1

k
Sn−1,k−1.

If k = 0

Sn,0 = −g1

g0
Sn−1,0 − · · · − gn

g0
S0,0 + fn

g0
, S0,0 = f0

g0
.

For its derivatives. Since

(xSn−1(x)�(− log(1 − x)))′ = Sn−1(x)�
1

1 − x
= Sn−1(x).

Then

S′
n(x) = 1

g0
Sn−1(x) − g1

g0
S′
n−1(x) − · · · − gn

g0
S′
0(x) So Sn−1(x) =

n∑
k=0

gkS
′
n−k(x).

Pidduck and Mittag-Leffler polynomials. Consider the sequence (Pn(x)) satisfying

∑
n� 0

Pn(t)x
n = T

⎛⎝ x

(1 − x) log
(
1+x
1−x

)
∣∣∣∣∣∣ x

log
(
1+x
1−x

)
⎞⎠ (etx)

in matricial form:

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · ·
1 2 0 0 0 · · ·
1 2 4 0 0 · · ·
1 8

3
4 8 0 · · ·

...
...

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

t

t2

2

t3

6

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

1

2t + 1

2t2 + 2t + 1
4
3
t3 + 2t2 + 8

3
t + 1

...

⎞⎟⎟⎟⎟⎟⎟⎠ .

Ifwe take P̃n(x) = n!Pn(x), then P̃n(x) are the usual Pidduck polynomials: P̃0(x) = 1, P̃1(x) = 2x +
1, P̃2(x) = 4x2 + 4x + 2, P̃3(x) = 8x3 + 12x2 + 16x + 6, . . . On the other hand we get the Mittag-

Leffler polynomials, in the following way. If (Mn(x)) is given by the formula:

∑
n� 0

Mn(t)x
n = T

⎛⎝ x

log
(
1+x
1−x

)
∣∣∣∣∣∣ x

log
(
1+x
1−x

)
⎞⎠ (etx)
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then, if we take now M̃n(x) = n!Mn(x), then M̃n(x) are the usual Mittag-Leffler polynomials: M̃0(x) =
1, M̃1(x) = 2x, M̃2(x) = 4x2, M̃3(x) = 8x3 + 4x, . . .. Both families of polynomials are related because:

T

⎛⎝ x

(1 − x) log
(
1+x
1−x

)
∣∣∣∣∣∣ x

log
(
1+x
1−x

)
⎞⎠ = T

(
1

1 − x

∣∣∣∣ 1) T

⎛⎝ x

log
(
1+x
1−x

)
∣∣∣∣∣∣ x

log
(
1+x
1−x

)
⎞⎠ .

So

Pn(x) =
n∑

k=0

Mk(x) or equivalently P̃n(x) =
n∑

k=0

(
n

k

)
(n − k)!M̃k(x).

The following twoparticular examples are Sheffer polynomialswhich canbe easily describedwith a

different representation as generalizedAppell polynomial.We choose, in particular, Laguerre sequence

because it is very close to the Pascal triangle.

The Laguerre polynomials. We consider

T(−1|x − 1)(etx) = T(1|1 − x)T(−1| − 1)(etx) = T(1|1 − x)(e−tx) =
n∑

k=0

Ln(t)x
n,

where Ln(x) are the Laguerre polynomials. Note that T(1|1 − x) is the Pascal triangle. From the

definition of the polynomials we obtain easily the well-known general term:

Ln(x) = pn(x)�e−x =
n∑

k=0

(
n

k

)
xk�

∑
k � 0

(−1)k

k! xk =
n∑

k=0

(−1)k
1

k!
(
n

k

)
xk

Our recurrence relation for Laguerre polynomials is:

Ln(x) = xLn−1(x)�(− log(1 − x)) + Ln−1(x)

and the recurrence relations for the coefficients are

If k � 1, Ln,k = Ln−1,k − 1
k
Ln−1,k−1 and Ln,0 = Ln−1,0, L0,0 = 1.

Using Corollary 27 we have:

L′n(x) = L′n−1(x) − Ln−1(x) consequently L′n(x) = −
n−1∑
k=0

Lk(x).

The Hermite polynomials.We consider∑
n� 0

Hn(t)x
n= T

(
1

2ex
2

∣∣∣∣ 1
2

)
(etx)= T

(
1

ex
2

∣∣∣∣ 1) T

(
1

2

∣∣∣∣ 1
2

)
(etx) = T

(
1

ex
2

∣∣∣∣ 1) (e2tx) = e2tx−x2 .

If H̃n(x) = n!Hn(x), we obtain H̃n(x) are the usual Hermite polynomials: H̃0(x) = 1, H̃1(x) = 2x,

H̃2(x) = 4x2 − 2, H̃3(x) = 8x3 − 12x, H̃4(x) = 16x4 − 48x2 + 12,· · ·. Since
∑

n� 0 Hn(t)x
n =

T
(

1

ex
2

∣∣∣ 1) (e2tx), the recurrence for the (Hn(x)) is: Hn(x) = xHn−1(x)�ĥ(x) + fn where

ĥ(x) = ∑
n� 1

2

n
xn = −2 log(1 − x) and fn =

⎧⎨⎩0, if n is odd;
(−1)

n
2

( n
2 )! , if n is even

and the recurrence relations for the coefficients are: If k � 1,Hn,k = 2
k
Hn−1,k−1 andHn,0 = fn, H0,0 = 1.

Using Corollary 27 we obtain H′
n(x) = 2Hn−1(x) or equivalently, the known relation H̃′

n(x) =
2nH̃n−1(x). We can also obtain the general term for the Hermite polynomials:

H2m(x) =
m∑
j=0

(−1)m−j22j

(m − j)!(2j)!x
2j , H2m+1(x) =

m∑
j=0

(−1)m−j22j+1

(m − j)!(2j + 1)!x
2j+1
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From here the known equality H̃n(−x) = (−1)nH̃n(x) is obvious.

Nowwearegoing to translate theoperations in theRiordangroupto thesetofHadamardh-weighted

familiesofpolynomials. Suppose that (pn(x)) is theassociated sequencesofpolynomials to theelement

of the Riordan group T(f |g). If pn(x) = ∑n
k=0 pn,kx

k , T(f |g) = (pn,k)n,k∈N. Let h(x) = ∑
n� 0 hnx

n be

such that hn /= 0 ∀n ∈ N. So, h admits a reciprocal for the Hadamard product, we represent it by

h(−1)� . In fact h(−1)�(x) = ∑
n� 0

1
hn
xn.

Consider the set Rh = {(phn(x))n∈N / (pn(x))n∈N ∈ R}, we can prove:

Proposition 30. The function

Hh : R −→ Rh

(pn(x))n∈N �−→ (phn(x))n∈N

is bijective if h is a Hadamard unit in K[[x]]. Consequently the umbral composition � defined in R is

transformed into an operation �h converting so (Rh, �h) into a group and Hh converts into a group

isomorphism. Moreover if (sn(x))n∈N, (tn(x))n∈N ∈ Rh with sn(x) = ∑n
k=0 sn,kx

k, tn(x) = ∑n
k=0 tn,kx

k

∈ Rh, (rn(x))n∈N = (sn(x))n∈N�h(tn(x))n∈N with rn(x) = ∑n
k=0 rn,kx

k then

rn,j =
n∑

k=j

1

hk
sn,ktk,j

Proof. The first part is obvious, because if the function

G
h
(−1)� : Rh −→ R

(sn(x))n∈N �−→ (sn(x)�h(−1)�)n∈N

is the inverse, for the composition of Hh.

Now given (sn(x))n∈N, (tn(x))n∈N ∈ Rh we define (sn(x))n∈N�h(tn(x))n∈N = (rn(x))n∈N where

rn(x) = Hh(pn(x)�qn(x))where sn(x) = phn(x), tn(x) = qhn(x) for every n ∈ N. If pn(x) = ∑n
k=0 pn,kx

k

and qn(x) = ∑n
k=0 qn,kx

k then if (pn(x))�(qn(x)) = (un(x)) with un(x) = ∑n
k=0 un,kx

k then un,j =∑n
k=j pn,kqk,j . Consequently rn,j = un,jhj then

rn,j =
n∑

k=j

pn,khkqk,jhj

hk
=

n∑
k=j

sn,ktk,j

hk
�

Another important kind of polynomial sequences in the literature are the sequences of binomial

type [15] or the closely related sequences, of convolution polynomials, see [6]. In fact (sn(x))n∈N is a

convolution polynomial family if and only if (n!sn(x))n∈N is a sequence of binomial type.

As one can deduce from [6] a polynomial sequence (sn(x))n∈N forms a convolution family if and

only if there is a formal power series b(x) = ∑
n� 1 bnx

n with b1 /= 0 such that etb(x) = ∑
n� 0 sn(t)x

n.

So the convolution condition

sn(t + r) =
n∑

k=0

sn−k(t)sk(r)

come directly from the fact that

etb(x)erb(x) = e(t+r)b(x).

So, symbolically, the Cauchy product⎛⎝∑
n� 0

sn(t)x
n

⎞⎠⎛⎝∑
n� 0

sn(r)x
n

⎞⎠ = ∑
n� 0

sn(t + r)xn

is just the convolution condition.
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Now suppose again a power series g = ∑
n� 0 gnx

n with g0 /= 0. Then

T(g|g)(etx) = ∑
n� 0

sn(t)x
n = e

tx
g .

Consequently we have:

Theorem 31. A polynomial sequence (sn(x))n∈N is a convolution sequence if and only if there is a sequence

(gn)n∈N in K with g0 /= 0 such that

sn(x) = 1

g0
(xsn−1(x)�(− log(1 − x))) − g1

g0
sn−1(x) − · · · − gn−1

g0
s1(x) for n� 2

and s0(x) = 1, s1(x) = x
g0

.

Proof. (sn(x))n∈N is a convolution family if andonly if there is a series
∑

n� 0 gnx
nwithg0 /= 0such that

T(g|g)(etx) = ∑
n� 0 sn(t)x

n. So (sn(x))n∈N is the ex-Hadamard weighted sequence generated by the

Riordan sequence (qn(x))n∈N associated, as in Theorem5, to the T(g|g). Consequently q0(x) = g0
g0

= 1

qn(x) =
(
x − g1

g0

)
qn−1(x) − g2

g0
qn−2(x) · · · − gn−1

g0
q1(x) − gn

g0
q0(x) + gn

g0

so q1(x) = x

g0
, and qn(x) =

(
x − g1

g0

)
qn−1(x) − g2

g0
qn−2(x) · · · − gn−1

g0
q1(x) for n� 2.

The result follows directly multiplying Hadamard by ex . �

The polynomial sequences of binomial types are closely related to the so called delta-operator,

see [15]. In [12,17,11] it was introduced the so called A-sequence associated to a Riordan array. In

our notation the A-sequence associated to the Riordan array T(f |g) is just the unique power series

A = ∑
n� 0 anx

n with a0 /= 0 such that A
(
x
g

)
= 1

g
. As a consequence of the results in [8] we get that A

is the A-sequence of T(g|g) if and only if T(A|A) = T−1(g|g)where the inverse is taken in the Riordan

group. So A is the A-sequence of T(g|g) if and only if g is the A-sequence of T(A|A). Let us denote by D
to the derivative operator on polynomials. Using Theorem 1 and Corollary 3 in [15] we have

Theorem 32. Suppose that (sn(x))n∈N is the convolution sequences associated to theRiordanarrayT(g|g).
Consider the corresponding sequence (rn(x))n∈N of binomial type, i.e. rn(x) = n!sn(x). Then the delta-

operator Q having (rn(x))n∈N as its basic sequences is just x
A(x)

(D)where A is the A-sequence of T(g|g).On
the opposite, if we have the delta-operator x

g(x)
(D) and (rn(x))n∈N is the basis sequence then

(
rn(x)
n!
)
n∈N

is the convolution sequence associated to the Riordan array T(A|A) where A is the A-sequence of T(g|g).
We would like to say that in [8] it is described a recurrence process, related to Banach Fixed Point

Theorem and to the Lagrange inversion formula, to get x
A
using only the series g.

Nowwe are going to give a characterization of a generalized Appell sequence using linear transfor-

mations in the K-linear space K[[x]].
Usually a Riordanmatrix is defined bymeans of the natural linear action onK[[x]], in fact, amatrix

A = (an,k) is a Riordan matrix T(f |g) if and only if the action of A on any power series α is given by

T(f |g)(α) = f

g
α
(
x
g

)
. In these terms we have

Proposition 33. A matrix s = (sn,k) has as associated sequence of polynomials a generalized Appell se-

quence if and only if there are three power series f = ∑
n� 0 fnx

n, g = ∑
n� 0 gnx

n, h = ∑
n� 0 hnx

n, with

f0, g0 /= 0 and hn /= 0, ∀ n ∈ N such that the natural linear action induced by s is given by s(α) =
f (x)
g(x)

(h�α)
(
x
g

)
for any α ∈ K[[x]].
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Remark 34. From the above proposition we could develop the exponential Riordan arrays or more

generally the generalized Riordan matrices, see [18].
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