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1. Introduction

In this paper,we dealwith two types of arithmetical triangles. Those of the first type are remainders

that appear inan iterativeprocess, thoseof the secondonecanbe interpretedas changesofvariables.All

elements in both types are invertible Riordan arrays (or Riordanmatrices) and then they are elements
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of the Riordan group. This group was first introduced in [26] but we are referring to a larger group

treated for example in [30] and [14] and also known under the name of Riordan group. Recently,

Sprugnoli in [32] has written a list of bibliography on this topic.

The usual approach to Riordan arrays is through the concept of a formal power series. This series

have been exposed, for example, by Henrici [12] or in the classical texts of Combinatorial Analysis

as Comtet [4] or Riordan [22] or more recently by Graham et al. in [11]. Formal power series cor-

respond to generating functions, and this approach, developed in the previous texts, originated the

so-called Method of Coefficients introduced by Egorychev [9], see also Merlini et al. [18] for a recent

perspective.

The main idea on the structure of Riordan arrays is to generalize, in a suitable way, the structure of

the Pascal triangle, see [28,24], for some earlier work in this direction.

In [16], we constructed the elements in the Riordan group from an iterative process to calculate f
g

using a mild generalization of the Banach Fixed Point Theorem.

There,we showed that the structure of Riordan arrays, the reciprocation operation in the ringK[[x]]
and some fixed point problems are intrinsically related. Recall:

Banach’sFixedPointTheorem(BFPT). Let (X , d)beacompletemetric spaceand f : X → X contractive.

Then f has a unique fixed point x0 and f n(x) → x0 for every x ∈ X.

In the above statement f n = f ◦ f ◦ · · · ◦ f . Recall that a map is contractive, concretely c-contractive,

if there is a real number c ∈ [0, 1) such that d(f (x), f (y)) � cd(x, y). We recommend, for example, [8]

for the description of some of the applications of this result.

To reach our goal we used, in [16], an ultrametric d in the ring of formal power series. The idea

of considering the ring of formal power series as a topological, or even metric, space goes back to

the later nineteen century or the earlier twenty century. To put more recent examples let us say

that it is implicitly or explicitly used by Rota and collaborators in their program of re-foundation of

combinatorics. In particular it is used by Roman and Rota [25] in their formulation of Umbral Calculus

which is also a suitable framework to approach Riordan arrays.

There are, at least, two usual different notations for Riordan arrays, see different authors: [2,10,14,

17,27,30,34].

A Riordan array D is traditionally represented by a pair of formal power series d(t), h(t)

D = (d(t),h(t)) or D = R(d(t),h(t)),

where d(0),h(0) /= 0. With this notation the action of D on a formal power series f (t) is given by the

formula

R(d(t),h(t))∗f (t) = d(t)f (th(t)).

The other usual notation is just as above but supposing directly that d(0) /= 0, h(0) = 0 and h′(0) /=
0, where h′ is the derivative. In this case the action is given by

R(d(t),h(t))∗f (t) = d(t)f (h(t)).

Our notation, introduced in [16], and used again herein, is different from both of them. For us

a Riordan array is represented by the symbol T(f |g) where f and g are formal power series with

f (0), g(0) /= 0. The main difference is that the action of T(f |g) on a power series m is given by

T(f |g)(m) = f

g
m

(
t

g

)
,

if t is the indeterminate. We usually do not use the indeterminate to reinforce the idea that a power

series here is just a point in a metric space. So the t in the previous formula is no more than the

generating function of the sequence (0, 1, 0, . . .). Aswe showed in [16] if f , g, d, h are power serieswith

f (0), g(0), d(0),h(0) /= 0, then the conversion formula to pass from our notation to the first traditional

one, and viceversa, is given by:

T(f |g) = R(d(t),h(t))
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where

d(t) = f (t)

g(t)
and h(t) = 1

g(t)
or f = d

h
and g = 1

h

With this formula one can construct tables of conversion from one to the other notation. For

example the following equality, basic for this work: T(f |g) = T(f |1)T(1|g) which in other notations

becomes R
(
f (x)
g(x) ,

1
g(x)

)
= R(f (x), 1) ∗ R

(
1

g(x) ,
1

g(x)

)
or R

(
f (x)
g(x) ,

x
g(x)

)
= R(f (x), x) ∗ R

(
1

g(x) ,
x

g(x)

)
. Also

the identity matrix: T(1|1) or R(1, 1) or R(1, x). Another example is the Pascal triangle P: T(1|1 − x)

orR
(

1
1−x

, 1
1−x

)
orR

(
1

1−x
, x
1−x

)
.

The main reason for our notation is the way we approached the Pascal triangle in [16] using an

iterative process related to some fixed point problems. The reason to maintain this notation herein is

because it reflects better the kind of problemswe are treating. At a first look our notation could appear

as cumbersome and complex, but just the fact to get mixed the roles of both parameters in the action

of T(f |g) allowed us to obtain an algorithm to construct T(f |g) depending only on the algorithm to

obtain the coefficients of the power series f
g .

In this paper we are not going to study some prefixed kinds of Riordan arrays, we just run into this

structure. It appearsnaturally as a reminder associated to an iterative process to calculate the reciprocal

of certain power series. Actually, we show that these remainders are generalizations of the Pascal

triangle, T(1|1 − x) according to our notation. In fact we want to state that the arithmetical pattern

used to construct the Pascal triangle is, intrinsically, in the reciprocation of any quadratic polynomial.

So, this paper describes a natural framework where Riordan arrays appear as a consequence and not

as the main objective. The other main idea is that the successive approximation method gives rise to

such pattern of behavior. To carry out the iterations we will use the Banach Fixed Point Theorem.

In Section 2, we develop, in a significant example, the theory that we will describe in the following

sections.

In Section 3, we consider the polynomial function induced by a certain polynomial P(S) ∈ K[[x]][S]
ofdegreeonewhich is contractive for a suitable completemetric inK[[x]]andwhoseuniquefixedpoint

is just the reciprocal 1
Q

of a quadratic polynomial Q (x) = a + bx + cx2, with a /= 0. Later we compare

the iterations at S = 0 of P with the Taylor polynomials of 1
Q
. In this way we define the remainder. We

identify this remainder with an element of the Riordan group. We define the family of polynomials

associated to a Riordan array (which, in some sense, is to consider those arrays by rows not by columns

as usual) and studying thosewefind that doing linear changes of variables in the polynomialswe arrive

to what we will call the Pascal triangle associated to the series 1
Q
. Finally we get the Pascal triangle

as product of certain matrices. There are similar results in the literature. See [19,20,21]. We show a

factorization of the Pascal Triangle in terms of the remainder T
(

1
Q

∣∣∣ a+bx
−c

)
and the corresponding two

changes of variables.

The remainders, T
(

1
Q

∣∣∣ a+bx
−c

)
in our notation, have been used in the literature. When Q (1) = 0 and

ac < 0, ab < 0 the corresponding remainder is related to the description of a probabilisticmodelling of

a certainmovement of a particle in the plane, see [5]. Actually all our remainders and linear changes of

variables are 7-matrices as called in [5]. Moreover the used iteration process generates all 7-matrices

if we allow to start at any series as initial condition.Wewill not treat it here. On the contrarywe always

start to iterate at S = 0.

In Section 4, we focus on the study of the change of variables obtained in Section 3. Actually, we

show that, in general, if we multiply any element of Riordan group, T(f |g) by T(1|a + bx) we are doing

a change of variables in the associated family of polynomials of T(f |g). We note that the set of treated

changes of variables has a representation as a subgroup of the Riordan group. Inside this subgroup we

find different elements of order 2 and some conjugation relations.

In Section 5, we go back to our motivating example. Using the family of polynomials associated in

this case, we get some known formulas of the sums of powers of natural numbers.

From now on, we consider N = {0, 1, 2, . . .} the natural numbers in the field K of characteristic 0.

Recall that a field K is of characteristic 0 if the minimal subfield inside K is isomorphic to the rational
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numbers. Equivalently if the n-fold sum 1 + 1 + · · · + 1 is never null. The notation f (k) represents the

kth derivative of the power series f .

2. Motivation: BFPT and the arithmetic–geometric series

There is an obvious way to sum the geometric series
∑∞

k=0 x
k using the BFPT. See [1] for a proof

withoutwords. It is natural towonder ifwe can sum the arithmetic–geometric series
∑∞

k=1 kx
k−1 using

the BFPT. It is easy to see that there are not any one-degree polynomial f (t) = g(x)t + h(x) and any

point x0 such that the partial sum
∑n

k=0(k + 1)xk = f n+1(x0). Since f (x0) = g(x)x0 + h(x) = 1, f 2(x0) =
f (f (x0)) = f (1) = g(x) + h(x) = 1 + 2x and f 3(x0) = f (f (f (x0))) = f (1 + 2x) = g(x)(1 + 2x) + h(x)weob-

tain that x0 = − 1
3
and f (x) = 3

2
xt + 1 + 1

2
x and from here f 4

(
− 1

3

)
/= 1 + 2x + 3x2 + 4x3. In view of

this, we are going to iterate a polynomial whose fixed point is the sum of the arithmetic–geometric

series, that is
∑∞

k=1 kx
k−1 = 1

(1−x)2
. Since the equality t = 1

(1−x)2
can be converted to t = 1 + (2x − x2)t,

we consider the polynomial f (t) = 1 + (2x − x2)t and we do the first iterations in t = 0:

f (0) = 1,

f 2(0) = 1 + 2x − x2,

f 3(0) = 1 + 2x + 3x2 − 4x3 + x4,

f 4(0) = 1 + 2x + 3x2 + 4x3 − 11x4 + 6x5 − x6,

f 5(0) = 1 + 2x + 3x2 + 4x3 + 5x4 − 26x5 + 23x6 − 8x7 + x8,

f 6(0) = 1 + 2x + 3x2 + 4x3 + 5x4 + 6x5 − 57x6 + 72x7 − 39x8 + 10x9 − x10.

We can observe that in each iteration the partial sum appears plus a remainder.Wewant to control

the difference with the partial sum. For it, we began to write the coefficients of the remainder, that is:

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

−4 1

−11 6 −1

−26 23 −8 1

−57 72 −39 10 −1

−120 201 −150 59 −12 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

Observing the above triangle we can see some resemblances with the Pascal Triangle as we will

prove in the last section. For example: The rule of construction is similar to that of the Pascal triangle,

each element is twice the above element minus the element above to the left side. The elements in

the first column are Eulerian numbers except for the sign. The sum of the elements in any row are

triangular numbers with negative sign. For every element, the sum of all elements in its row to the

right and all elements above in its column is zero.

Returning to the iterations, we can write the (n + 2)-iteration as

f n+2(0) = Tn+1

(
1

(1 − x)2

)
+ xn+2pn(x),

where Tn(S) is the n-degree Taylor polynomial of S(x) at x = 0 and we call (pn(x))n∈N the family of

polynomials associated to this triangle. In this case:

p0(x) = −1,

p1(x) = −4 + x,

p2(x) = −11 + 6x − x2,

p3(x) = −26 + 23x − 8x2 + x3,

p4(x) = −57 + 72x − 39x2 + 10x3 − x4.
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In general and using the recurrence of the elements of the above triangle we get

pn+1(x) = (2 − x)pn(x) − (n + 2) and pn(x) = −
n∑

k=0

(k + 1)(2 − x)n−k.

In view of the last expression we do the changes t = 2 − x and qn(t) = −pn(2 − t). If we consider

the coefficients as above, for the new family of polynomials, we obtain:

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2 1

3 2 1

4 3 2 1

5 4 3 2 1

6 5 4 3 2 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Working with this family and its derivatives we obtain the next expressions:

qn(t) =
n∑

k=0

(n + 1 − k)tk and q
(k)
n (1) = k!

(
n + 2

k + 2

)
.

Once again, in view of the last expression it is reasonable to expand qn(t) at t = 1,

qn(t) =
n∑

k=0

(
n + 2

k + 2

)
(t − 1)k.

Now we can do the change s = t − 1 and consider the family rn(s) = qn(s + 1). If we put the coeffi-

cients as above we get the Pascal triangle with the two first columns deleted:

A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3 1

6 4 1

10 10 5 1

15 20 15 6 1

21 35 35 21 7 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As we will point out, in a more general setting in the next section, the three above matrices are

Riordan arrays. In fact A1 = T
(

1
(1−x)2

∣∣∣2x − 1
)
. After the first change of variable it is transformed into

A2 = T
(

1
(1−x)2

∣∣∣1). After the second change of variable it becomes A3 = T
(

1
(1−x)2

∣∣∣1 − x
)
. We also have

the following equalities relating them:

T

(
1

(1 − x)2

∣∣∣∣2x − 1

)
= T

(
1

(1 − x)2

∣∣∣∣1) T(1|2x − 1)

and

T

(
1

(1 − x)2

∣∣∣∣1) = T

(
1

(1 − x)2

∣∣∣∣1 − x

)
T(1|1 + x).

Note that this means that thematrices T(1|2x − 1) and T(1|1 + x) can be interpreted as the changes

of variables in the family of polynomials made before.

This example motivates the next section where we will do the analogous development for any

quadratic polynomial.

3. An iterative process to calculate the reciprocal of quadratic polynomials

In this section, we want to show that the development described in the previous one is no more

than a particular example of a general phenomenon about quadratic polynomials.
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For any quadratic polynomial Q we find a contractive first degree polynomial function PQ in K[[x]]
whose unique fixed point is just 1

Q
. We iterate this function. So, in each iteration the partial sum of

1
Q

appears plus a remainder. The study of these remainders and the identification of them as Riordan

arrays is the first main aim of this section. The second main aim is the proof, by means of changes of

variables, that the structure of Pascal triangle is in each remainder. This is the reason why we define

the Pascal triangle associated to a power series.

Along this section we use [16] for notation and basic results. In particular, as supposed there, K is

always a field with characteristic zero and K[[x]] is the ring of formal power series over K. Denote

by ω(f ) the order of f = ∑
n�0 fnx

n. Recall that ω(f ) is the smallest nonnegative integer number p such

that fp /= 0 if any exist. Otherwise, that is if f = 0, we write ω(f ) = ∞. See [23] for details and for the

main properties of ultrametrics. We recall here some facts in [16] that we need:

Proposition 1. The map d : K[[x]] × K[[x]] → R+ defined by d(f , g) = 1
2ω(f−g)

is a complete ultrametric

on K[[x]]. Moreover d(f , g) � 1
2k+1 if and only if Tk(f ) = Tk(g). Finally the sum and product of series are

continuous if we consider the corresponding product topology in K[[x]] × K[[x]].

Proposition 2. Let f ,h ∈ K[[x]] with f (0) = 0. Then the first degree polynomial map P : K[[x]] → K[[x]]
defined by P(S) = fS + h is 1

2
-contractive independently on f and h. In fact d(P(S1), P(S2)) = 1

2ω(f ) d(S1, S2).

Moreover the unique fixed point of P is just h
1−f

and consequently

h

1 − f
=
⎛⎝∑

n�0

f n

⎞⎠h.

Corollary 3. Let f , g ∈ K[[x]] with g(0) /= 0. If f = ∑
n�0 fnx

n and g = ∑
n�0 gnx

n and f
g = ∑

n�0 dnx
n,

then dn = − g1
g0
dn−1 − g2

g0
dn−2 − · · · − gn

g0
d0 + fn

g0
, for n � 1, d0 = f0

g0
.

Note that in the above corollary we iterate the function P : K[[x]] → K[[x]] defined by P(S) =(
g0−g
g0

)
S + f

g0
which is at least 1

2
-contractive and whose unique fixed point is f

g .

Another of the results in [16] is the following:

Algorithm for T(f |g)

f = ∑
n�0 fnx

n, g = ∑
n�0 gnx

n with g0 /= 0, T(f |g) = (di,j) with i, j � 0.

f0
f1 d0,0 d0,1 d0,2 d0,3 d0,4 · · ·
f2 d1,0 d1,1 d1,2 d1,3 d1,4 · · ·
f3 d2,0 d2,1 d2,2 d2,3 d2,4 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

. · · ·
fn+1 dn,0 dn,1 dn,2 dn,3 dn,4 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

with di,j = 0 if j > i and the following rules for i � j:

If j > 0

di,j = −g1
g0

di−1,j − g2
g0

di−2,j − · · · − gi
g0

d0,j + di−1,j−1

g0
= 1

g0

⎛⎝di−1,j−1 −
i∑

k=1

gkdi−k,j

⎞⎠
and if j = 0

di,0 = −g1
g0

di−1,0 − g2
g0

di−2,0 − · · · − gi
g0

d0,0 + fi
g0

= 1

g0

⎛⎝fi −
i∑

k=1

gkdi−k,0

⎞⎠ .
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Since the empty sum evaluates to 0 we have that d0,0 = f0
g0
. Then, in the 0-column are just the

coefficients of f
g , i.e. di,0 = di.

If Q (x) = a + bx + cx2 with a /= 0 and from Proposition 2, we have that the first degree polynomial

function in K[[x]], PQ : K[[x]] → K[[x]] defined by PQ (S) = ((−b
a )x + (−c

a )x2)S + 1
a where S ∈ K[[x]], is

contractive and its unique fixed point is 1
Q
. Sowe iterate this function andwe compare these iterations

with the corresponding Taylor polynomial of 1
Q
, Tn(

1
Q

). In this process a lower triangle matrix (dn,k),

depending on Q , appears. This matrix describes the remainder as we did in the motivating example.

The following theoremshows, in particular, an algorithm toget the entries of thematrix (dn,k). Studying

this matrix, and using our Algorithm for T(f |g) above we realize that (dn,k) is a Riordan array.

Theorem 4. Let Q (x) = a + bx + cx2 be a polynomial with a /= 0. Consider the one degree polynomial

function in the ring K[[x]], PQ (S) =
((−b

a

)
x + (−c

a

)
x2
)
S + 1

a , where S ∈ K[[x]]. If 1
Q

= ∑
k�0 dkx

k then

Pn+1
Q

(0) = Tn

(
1
Q

)
+ xn+1

(∑∞
k=1 dn,kx

k−1
)
with

(1) d0 = 1/a, d1 = (−b/a)d0 and dn = (−b/a)dn−1 + (−c/a)dn−2,n � 2.

(2) dn,k = 0, ∀k > n. If we call dn,0 = dn for n ∈ N,we have dn,k = (−b/a)dn−1,k + (−c/a)dn−1,k−1 for

n, k � 1.

Proof. First, since PQ is at least 1
2
-contractive then Tn

(
1
Q

)
is just the n-degree polynomial in the

expression Pn+1
Q

(0), that is Tn(
1
Q

) is obtained from Pn+1
Q

(0) eliminating all powers, in the unknown,

greater than n.

Part (1) is well-known and it was proved again in the Corollary 3. We are going to use induction in

order to prove (2). Note first that PQ (0) = 1
a = T0

(
1
Q

)
. So, d0,k = 0 for k > 0, now

P2Q (0) = ((−b/a)x + (−c/a)x2)
1

a
+ 1

a
= 1

a
+ (−b/a)

1

a
x + x2(−c/a2)

consequently d1,1 = −c/a2 = (−b/a)d0,1 + (−c/a)d0,0, because d0,1 = 0 and d0,0 = d0 = 1
a and d1,k = 0

for k > 1. Suppose that the result is true for m − 1 ∈ N then

Pm+1
Q

(0) = ((−b/a)x + (−c/a)x2)

⎛⎝m−1∑
k=0

dkx
k + xm

⎛⎝ ∞∑
k=1

dm−1,kx
k−1

⎞⎠⎞⎠+ 1

a

= 1/a +
m−1∑
k=0

(−b/a)dkx
k+1 +

m−2∑
k=0

(−c/a)dkx
k+2 + (−c/a)dm−1x

m+1 + xm+1

×
⎛⎝ ∞∑

k=1

((−b/a) + (−c/a)x)dm−1,kx
k−1

⎞⎠
= 1/a + (−b/a)d0x +

m∑
k=2

((−b/a)dk−1 + (−c/a)dk−2)x
k

+ xm+1
(
(−b/a)dm−1,1 + (−c/a)dm−1 +

∞∑
k=2

(−b/a)dm−1,kx
k−1 +

∞∑
k=1

(−c/a)dm−1,kx
k

⎞⎠
= Tm(1/Q ) + xm+1×

⎛⎝ ∞∑
k=1

((−b/a)dm−1,k + (−c/a)dm−1,k−1)x
k−1

⎞⎠ .

Consequently, dm,k = (−b/a)dm−1,k + (−c/a)dm−1,k−1. Now if k > m then dm,k = (−b/a)dm−1,k +
(−c/a)dm−1,k−1. By induction hypothesis we have dm,k = 0. �
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Let CQ = (dn,k)n,k∈N. Note that it is a lower triangular matrix. Let us expand a few terms of CQ
avoiding, a priori, the null entries:

1
a−b
a2

−c
a2

b2

a3
− c

a2
2bc
a3

c2

a3
−b3

a4
+ 2bc

a3
−3cb2

a4
+ c2

a3
−3bc2

a4
−c3

a4

.

.

.
.
.
.

.

.

.
.
.
.

. . .
1
Q

1
Q

−xc
a+bx

1
Q

x2c2

(a+bx)2
1
Q

−x3c3

(a+bx)3
. . .

Let RQ = (rn,k)n,k∈N with rn,k = dn+1,k+1, that is, CQ without the first column and the first row.

As an easy and direct application of our algorithm for T(f |g) quoted above, we obtain the structure

of these matrices in the following:

Corollary 5. Let Q = a + bx + cx2 with a, c /= 0. Thematrices RQ and CQ are the following Riordan arrays:

RQ = T

(
1

Q

∣∣∣∣ a + bx

−c

)
and CQ = T

(
1

Q

a + bx

−c

∣∣∣∣ a + bx

−c

)
.

Now, we are going to find a formula for the general term of T
(

1
Q

∣∣∣ a+bx
−c

)
, that is rn,k , in terms of the

numbers {dk}k∈N. Recall that 1
Q

= ∑∞
k=0 dkx

k:

Proposition 6. Let Q (x) = a + bx + cx2 with a, c /= 0. Then

rn,k =
n−k∑
l=0

dl

(
n − l

k

)
(−c/a)k+1(−b/a)n−k−l.

Proof. It is easy to verify the equality for r0,0, r1,0, r1,1. Now by induction on n fixing k we have by part

(2) in Theorem 4:

rn,k = (−b/a)rn−1,k + (−c/a)rn−1,k−1

=
n−k−1∑
l=0

dl

(
n − 1 − l

k

)
(−c/a)k+1(−b/a)n−k−l +

n−k∑
l=0

dl

(
n − 1 − l

k − 1

)
(−c/a)k+1(−b/a)n−k−l

=
n−k−1∑
l=0

dl

((
n − 1 − l

k

)
+
(
n − 1 − l

k − 1

))
(−c/a)k+1(−b/a)n−k−l + dn−k(−c/a)k+1

=
n−k∑
l=0

dl

(
n − l

k

)
(−c/a)k+1(−b/a)n−k−l. �

One of the principal tools in this paper is:

Definition 7. Consider T(f |g) and suppose that (di,j)i,j∈N is the associated matrix to T(f |g). Then the

family of polynomials associated to T(f |g), which we denote by (pn)n∈N, is

pn(x) =
n∑

j=0

dn,jx
j with n ∈ N.
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Let us consider the sequence of polynomials associated to RQ defined by p0(x) = r0,0, pn(x) =∑n
k=0 rn,kx

k ,n ∈ Nwhere rn,k = dn+1,k+1 are those described in Theorem4 for the quadratic polynomial

Q . With this notation we can rewrite the main formula in Theorem 4 as:

Pn+2
Q

(0) = Tn+1(1/Q ) + xn+2pn(x) or pn(x) =
Pn+2
Q

(0) − Tn+1

(
1
Q

)
xn+2

.

So using Theorem 4 again, we obtain easily

Proposition 8

pn+1(x) =
(
b + cx

−a

)
pn(x) + (−c/a)dn+1, for n � 0.

Consequently

pn(x) = (−c/a)

⎛⎝ n∑
k=0

dn−k

(
b + cx

−a

)k
⎞⎠ .

In view of the above proposition it is natural to consider the change of variable, supposing c /= 0,

t = b+cx
−a . Define qn(t) = (−a/c)pn

(
at+b
−c

)
. Consequently

qn(t) =
n∑

k=0

dn−kt
k. (2)

If we consider the matrixM = (mn,k)n,k∈N where the entries in the row n are the coefficients of the

polynomial qn in increasing power order we have:

Proposition 9. M = T
(

1
Q

∣∣∣1) .

Proof. We know that T
(

1
Q

∣∣∣1) is a lower triangular Toeplitz matrix whose columns are, beginning at

the main diagonal, the coefficients of 1
Q
, that is, dn. If we now read T

(
1
Q

∣∣∣1) by rows, avoiding the a

priori null entries, we get for the first row d0, the second: d1, d0, the third d2, d1, d0 and so on, that is,

the matrixM. �

Related to the polynomials qn defined in (2) we obtain the next expression for the number q
(k)
n (1),

where q
(k)
n means the kth derivative of qn:

q
(k)
n (1) =

n∑
j=k

j!
(j − k)!dn−j.

Now, expanding qn(t) at t = 1,

qn(t) =
n∑

k=0

n∑
j=k

(
j

k

)
dn−j(t − 1)k.

Oncemore, in view of the above expression, it is natural to consider the change of variable s = t − 1.

We define the next family of polynomials: rn(s) = qn(s + 1). Consequently

rn(s) =
n∑

k=0

n∑
j=k

(
j

k

)
dn−ks

k.
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If we define the matrix L = (ln,k)n,k∈N where the nth row consists of the coefficients of rn, as before,

we get:

Proposition 10. L = T
(

1
Q

∣∣∣1 − x
)

.

Proof. We write the matrix L

d0
d0 + d1 d0
d0 + d1 + d2 2d0 + d1 d0

d0 + d1 + d2 + d3 3d0 + 2d1 + d2 3d0 + d1
. . .

↓ ↓ ↓ ↘
1
Q

1
1−x

1
Q

x
(1−x)2

1
Q

x2

(1−x)3
· · · 1

Q
xn−1

(1−x)n
· · ·

that is T
(

1
Q

∣∣∣1 − x
)

. �

Remark 11. The above proposition reflects the known ubiquity of the Pascal triangle. More concretely

the rule of construction of the Pascal triangle is in any of the remainders described before, up to some

linear changes of variables.

Given a power series f = ∑
n�0 fnx

n, if we call T(f |1 − x) the Pascal triangle associated to power series

f, then the Pascal triangle associated to the power series f ≡ 1 is just the classical Pascal triangle.

Moreover the rule of construction of T(f |1 − x) is just the same as that of Pascal triangle. Note that

T(f |1 − x) = T(f |1)T(1|1 − x). So, the last equality says that, up the changes of variables, to construct

these remainders one only has to know the coefficients of 1
Q

and the rule of construction of Pascal

triangle.

If we look again at Proposition 8 and to the first change of variable, we can say that to make this

change of variable is just the same thing as to multiply the matrix T
(

1
Q

∣∣∣ a+bx
−c

)
by T

(
1
∣∣∣ c+bx

−a

)
because

T

(
1

Q

∣∣∣∣1) = T

(
1

Q

∣∣∣∣ a + bx

−c

)
T

(
1

∣∣∣∣ c + bx

−a

)
note that T−1

(
1
∣∣∣ a+bx

−c

)
= T

(
1
∣∣∣ c+bx

−a

)
.

In a similarway the last change of variable, after Proposition 9, is the same as tomultiply thematrix

T
(

1
Q

∣∣∣1) by the Pascal triangle T(1|1 − x) because

T

(
1

Q

∣∣∣∣1 − x

)
= T

(
1

Q

∣∣∣∣1) T(1|1 − x).

We can summarize all above in the next factorization theorem:

Theorem 12.

T

(
1

Q

∣∣∣∣ a + bx

−c

)
= T

(
1

Q

∣∣∣∣1 − x

)
T−1(1|1 − x)T

(
1

∣∣∣∣a + bx

−c

)
.

Remark 13. Note that the global change of variable in the sequence of associated polynomials given

by

s = a + b + cx

−a
,

rn(s) =
(−a

c

)
pn

(
as + a + b

−c

)
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corresponds to multiply the remainder by the matrix T
(
1
∣∣∣ a+(a+b)x

−c

)
.

4. The group of generalized linear change of variables

In this section, we are going to relate the change of variables represented by T(1|a + bx), and some

mild generalizations, with some results and problems in the related literature. First, to reinforce the

idea of change of variable, we can generalize the procedure described in the previous section to a

general arithmetical triangle T(f |g):

Proposition 14. Let pn(x) = ∑n
k=0 dn,kx

k be the associated polynomials to T(f |g) with general term

(dn,k)n,k∈N. Then the associated polynomials to T(f |ag + bx), with a /= 0, are qn(t) = 1
a

∑n
k=0 dn,kt

k with

t = x−b
a .

Proof. First, we observe that T(f |ag + bx) = T(f |g)T(1|a + bx). On the other hand, it is easy to find the

general term, (lk,m)n,k∈N, of T(1|a + bx), in fact: lk,m = 1
am+1

(
k

m

)(
− b

a

)k−m
. We define the associated

polynomials to T(f |ag + bx) as p̂n(x) = ∑n
m=0 αn,mx

m where αn,m = ∑n
k=m dn,klk,m. Then

p̂n(x) =
n∑

m=0

αn,mx
m =

n∑
m=0

n∑
k=m

dn,klk,mx
m =

n∑
k=0

k∑
m=0

dn,klk,mx
m

=
n∑

k=0

k∑
m=0

dn,k

(
1

am+1

(
k

m

)(
−b

a

)k−m
)
xm =

n∑
k=0

dn,k
1

ak+1

k∑
m=0

(
k

m

)
(−b)k−mxm

=
n∑

k=0

dn,k
1

ak+1
(x − b)k = 1

a

n∑
k=0

dn,k

(
x − b

a

)k

. �

Consider now the sets LCV= {T(1|α + βx) with α,β ∈ K and α /= 0}, we call it the set of linear

changes of variable, and GLCV= {T(λ|α + βx) with λ,α,β ∈ K and λ,α /= 0}, we call it the set of

generalized linear changes of variables. For this set we have

Proposition 15. GLCV is a subgroup of the Riordan group and, of course, LCV is a subgroup of GLCV.

Proof. T(1|1) ∈ GLCV and T(λ1|α1 + β1x)T
−1(λ2|α2 + β2x) = T

(
λ1
λ2

∣∣∣ α1+(β1−β2)x
α2

)
. �

In order to compare with some results in the literature we have to say that the group LCV contains

all the Pascal-like triangle denoted by Pb in [2]. In our notation Pb = T(1|1 − bx).

It is clear that if the field K is algebraically closed (remember that we supposed always of char-

acteristic zero) then GLCV contains elements of any finite order. In fact if ωn is a primitive nth root of

unity and λ is a nth root of unity then T(λ|ωn + αx) has order n for any α ∈ K. For reasons explained by

Shapiro in [29] and Cameron and Nkwanta in [2], the researchers in combinatorics focus on Riordan

matrices of order 2.

We realize that, for combinatorial interest it is common to concentrate on elements with nonneg-

ative entries. Following [2] we considerM = T(−1| − 1) so R = T(f |g) has pseudo order 2 if and only if

RM = T(−f | − g) has order 2. Note thatM has order 2. Consider also the order 2matrix M̃ = T(1| − 1) =
−M. Obviously M̃ is not conjugated to M in the Riordan group. That is, there is not a Riordan matrix

R with M̃ = RMR−1 but it is not a negative answer to question Q8 of Shapiro in [29] because there all

elements of order 2 considered had 1 as the first entry in the main diagonal (because of the definition

of Riordan matrix considered). Our result, related to the group GLCV, is the following:
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Proposition 16. Let α ∈ K, with α /= 0. Then:

(i) The elements T(1|αx − 1) have order 2 and all of them are conjugated to M̃ in the group LCV and

hence in the Riordan group.

(ii) The elements T(−1|αx − 1) have order 2 and all of them are conjugated to M in the group GLCV

and hence in the Riordan group.

Proof. The proof of the whole proposition follows from the equality, easy to check,

T(1|αx − 1) = T(1|αx − 2)T(1| − 1)T−1(1|αx − 2).

Wefound this byusingelementaryoperations in certain relatedmatrices. In fact this equalityproves

all in (i) now T(−1|αx − 1) = T(−1|1)T(1|αx − 1) but T(−1|1) = −T(1|1) and then commutes with any

other. Then (ii) follows multiplying by the left in (i) by T(−1|1) . Note also that T(−1|1)M̃ = M. �

For elements of order 2 in the Riordan group we have some results in the next proposition but

caution: Abusing the language, order 2 in the next proposition means that the square is the iden-

tity, that is we allow the identity to have order 2. We do it to avoid some unnecessary restric-

tions.

Proposition 17. (i) T(f |g) is of order 2 if and only if T(−f |g) is of order 2.

(ii) T(f |g) is of order 2 if and only if T(f n|g) is of order 2 ∀ n ∈ Z.

(iii) T(f |g) is of order 2 if and only if T(fgn|g) is of order 2 ∀ n ∈ Z.

Proof. In our notation an element T(f |g) has order 2 if and only if T2(f |g) = T(1|1) but T2(f |g) =
T
(
ff
(
x
g

)
|gg

(
x
g

))
. So T(f |g) has order 2 if and only if gg

(
x
g

)
= 1 and ff

(
x
g

)
= 1. Let us prove only the

part (iii). Since gg
(
x
g

)
= 1 and ff

(
x
g

)
= 1, then fgnf

(
x
g

)
gn( xg ) = 1 because of the commutativity of

the product of the series. �

The above and the below propositions allow us to get more elements of order 2 in the associated

subgroup.Moreover these new elements of order 2 are also conjugated in this subgroup of the Riordan

group, to the matrixM as asked by Shapiro in [29].

Proposition 18. Let α ∈ K,with α /= 0. Then the elements, of the associated subgroup, T(αx − 1|αx − 1)

have order 2 and all of them are conjugated, inside the associated subgroup, to M = T(−1| − 1).

Proof. Recall that

T(1|αx − 1) = T(1|αx − 2)T(1| − 1)T−1(1|αx − 2)

then

T(αx − 1|αx − 1) = T(αx − 2|αx − 2)T(−1| − 1)T−1(αx − 2|αx − 2). �

Remark 19. Recently some positive answers to some problems posed by Shapiro in [29] have been

given in [6,7]. They are related to involutions in the Riordan group and to the problem of conjuga-

tion with the Matrix M. After some communications with the authors of [6] we realize that a good

choice of an invertible matrix B in their Theorem 2.5 for Riordan involutions D = (g(x), f (x)) conju-

gated to the matrix M is, using their notation, B =
(
exp

(
�(x,xf (x))

2

)
,±(1 − f (x))

)
, because the original

one proposed in [6] is not always invertible. We choose this corresponding B in the special case in

Proposition 18.
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5. A special remainder: sums of powers of natural numbers

As we mentioned in the introduction one of the applications of Riordan arrays is to use them to

find numerical or combinatorial identities, see for example [26,28,30,31,34], among many others. The

usual way to do that is by means of the action of a Riordan array to a particular power series or using

the inverses of elements in the Riordan group. We hope that our way to use the change of variables

could help, in the future, to get some other identities. But now, we want to show how the use of the

family of polynomials associated to a T(f |g) can be used to get, in a different way, some equalities. To

do that we choose our arithmetic–geometric series motivating example.

So, when we try to sum
∑∞

k=0(k + 1)xk using the corresponding iteration process, we consider

Q1(x) = (1 − x)2, and the remainder, in this case, is RQ1
= T

(
1

(1−x)2

∣∣∣2x − 1
)
. In this case

RQ1
= (rn,k) = A1,

where A1 is the matrix displayed in (1).

Recall that our matrix RQ1
is specially embedded into the matrix

CQ1
= (dn,k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2 −1

3 −4 1

4 −11 6 −1

5 −26 23 −8 1

6 −57 72 −39 10 −1

7 −120 201 −150 59 −12 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

we have the relation rn,k = dn+1,k+1 for n, k ∈ N.

Some of the main properties of the above arithmetical triangle are the following:

Theorem 20. (i) The rule of contruction is: dn,k = 2dn−1,k − dn−1,k−1 for any n, k � 1, d0,k = 0 if k � 1

and dn,0 = n + 1 for n ∈ N.

(ii) For every di,j , the sum of all elements to the right in its row and all elements above in its column is

zero. That is
∑i−1

k=0
dk,j +∑i

k=j+1 di,k = 0.

(iii) The sum of the elements in any row in RQ1
are triangular numbers with negative sign.

(iv) The general term is dn,j = n + j + 1 +∑j
k=1

(−1)k
(
n + j + 1 − k

+j + 2 − 2k

)
2n+j+2−2k.

(v) The entries in the first column of RQ1
are Eulerian numbers except for the sign.

(vi) n = ∑n
k=1(−1)k−1

(
2n − k

k − 1

)
4n−k.

Proof. (i) It is a direct consequence of Theorem 4 for a = 1, b = −2, c = 1.

(ii) Suppose first that j = 0, then using the sequence of polynomials (pn) associated to RQ1
and

the corresponding sequence (qn) obtained after the first change of variables we have that∑i−1
k=0

dk,0 = 1 + 2 + 3 + · · · + i = qi−1(1).Moreover
∑i

k=1 di,k = pi−1(1)but in this case the rela-

tion is just qn(t) = −pn(2 − t) because a = 1, b = −2, c = 1. So we have proved this particular

case.

For the rest of the cases, i.e. j � 1, let us proceed by induction on i − j. If i − j = 0 it is clear

because it is a lower triangular matrix.

Suppose now that the proposition is true for i − j = n. This means that

n∑
k=1

ai−k,j +
n∑

k=1

ai,j+k = 0,
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because it is a lower triangular matrix. From (i) above we obtain

n+1∑
k=1

ai−k,j +
n+1∑
k=1

ai,j+k

= ai−1,j +
n+1∑
k=2

ai−k,j + 2ai−1,j+1 − ai−1,j +
n+1∑
k=2

(2ai−1,j+k − ai−1,j+k−1)

=
n+1∑
k=2

ai−k,j + ai−1,j+1 + ai−1,j+1 +
n+1∑
k=2

ai−1,j+k +
n+1∑
k=2

ai−1,j+k −
n+1∑
k=2

ai−1,j+k−1.

Since ai−1,i = 0 we have that

n+1∑
k=1

ai−k,j +
n+1∑
k=1

ai,j+k =
i−j−1∑
k=1

ai−1−k,j +
i−j−1∑
k=1

ai−1,j+k ,

which is null by the induction hypothesis.

(iii) Note that this is obtained taking j = 0 in (ii).

(iv) It can be obtained from Proposition 6 after some computations.

(v) Using the formula in (iv) we see that the entries in the first column in RQ1
are the numbers

dn+1,1 = rn,0 = n + 3 − 2n+2 = −
〈
n + 2

1

〉
see the table in page 268 in [11].

(vi) Since dn,n + dn+1,n+1 = 0 and using the formula in (iv) we get the result after some minor

computations. �

We are going to obtain two different formulas for the sums of powers of natural numbers. Although

both of them are known, what is new is our way to obtain them from the family of polynomials

associated to T
(

1
(1−x)2

∣∣∣2x − 1
)
.

After our first change of the variable in the associated sequence of polynomials t = b+cx
−a , we obtain

the sequence of polynomials qn(t) = (−a/c)pn

(
at+b
−c

)
that was described as

qn(t) =
n∑

k=0

dn−kt
k.

For the particular case of Q1 this sequence is

qn(t) = (n + 1) + nt + (n − 1)t2 + · · · + 2tn−1 + tn

with the recurrence

qn+1(t) = tqn(t) + (n + 2).

In this case, q(k)
n (1) = k!

(
n + 2

k + 2

)
for n, k ∈ N. Where f (k) represents the kth derivative of f .

For this sequence of polynomials we can obtain the following formula for the sequence of the

derivatives, we leave the proof to the reader.

Proposition 21

q′
n+1(t) = (n + 1)qn(t) − 2

n−1∑
k=0

qk(t).
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Let us denote by (Qp)p∈N the sequence of the upper factorial polynomials. That is, Qp(x) = x(x +
1) · · · (x + p − 1), p ∈ N, Q0(x) ≡ 1. We have our own proof of the following fact:

Proposition 22

n∑
k=1

Qp(k) = Qp+1(n)

p + 1
.

Proof. Let p ∈ N. By differentiating p − 2 times in the expression in the previous proposition and

valuating at t = 1 we have

q
(p−1)

n+p−1
(1) = (n + p − 1)q

(p−2)

n+p−2
(1) − 2

n+p−3∑
k=0

q
(p−2)

k
(1),

so

(p − 1)!
(
n + p + 1

p + 1

)
= (n + p − 1)(p − 2)!

(
n + p

p

)
− 2

n+p−3∑
k=0

(p − 2)!
(
k + 2

p

)
.

Avoiding the null terms and changing the variable, l = k − p + 3, in the sum we have

2
∑n

l=1

(
l + p − 1

p

)
= 2 (n+p)!n

n!(p+1)! that is no more than another way to write the stated result. �

We are now going to find a formula for the sum of powers of natural numbers, using the Stirling

numbers, that is equivalent to that in [11, p. 275] (see also [15]).

Following [33, Lemma 1.3.3, p. 18], the numbers s(n, k) = (−1)n−kc(n, k) are known as the Stirling

numbers of the first kind and c(n, k) are called the signless Stirling numbers of the first kind. Where

the numbers c(n, k) satisfy the recurrence c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1) n, k � 1with the

initial conditions c(n, k) = 0 ifn � 0or k � 0except for c(0, 0) = 1.On theother hand, the Stirlingnum-

bers of the second kind satisfy the following basic recurrence: S(n, k) = kS(n − 1, k) + S(n − 1, k − 1),

n, k � 1 with the initial condition S(0, 0) = 1. Thus the matrix s = (s(n, k))n,k∈N and the matrix S =
(S(n, k))n,k∈N are mutually inverses (see [11] or [33]). Let I be the identity matrix then,

((−1)n−kc(n, k))n,k∈N · (S(n, k))n,k∈N = I.

Consequently the inverse of the matrix C = (c(n, k))n,k∈N is S = ((−1)n+kS(n, k))n,k∈N.

Corollary 23.
∑n

k=1 k
p = ∑p

j=1
(−1)p+jS(p, j)j!

(
n + j

n − 1

)
where S(p, j) are the Stirling numbers of the second

kind.

Proof. In [33], we can find that
∑p

k=0
c(p, k)xk = Qp(x).

Hence

n∑
k=1

Qp(k) =
p∑

j=0

c(p, j)

n∑
k=1

kj.

From the previous proposition, we have

p∑
j=0

c(p, j)

n∑
k=1

kj = Qp+1(n)

p + 1
.

So consider the p + 1 equalities

m∑
j=0

c(m, j)

n∑
k=1

kj = Qm+1(n)

m + 1
, m = 0, 1, . . . , p
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Then using the inverse matrix S of C we obtain the announced formula. �

We are going to finish by describing what we think a very singular way to obtain a formula for

the sum of powers using L’Hopital rule where Eulerian numbers appearwithout invoking them. Apart

from the L’Hopital rule the main tools to obtain this formula are some equalities described in [13].

For each p � 1, consider the sequence of polynomials

qn,p(t) = (n + 1)p + npt + (n − 1)pt2 + · · · + 2ptn−1 + 1ptn.

Note that for p = 1 we have the above sequence qn(t).

Proposition 24. For t /= 1,

qn−1,p(t) =
g(t) + (−1)p+1

∑p
k=1

〈
p

p − k

〉
tn+k

(1 − t)p+1
,

where g(t) is a p-degree polynomial and

〈
p

p − k

〉
are just the Eulerian numbers.

Proof. Since qn,p(t) = (n + 1)p + tqn−1,p(t) and

qn,p(t) − qn−1,p(t) =
n+1∑
k=1

(kp − (k − 1)p)tn+1−k.

Then, if t /= 1

qn−1,p(t) = np −∑n
k=1(k

p − (k − 1)p)tn+1−k

1 − t
.

So if t /= 1,

qn−1,p(t) = (1 − t)pnp −∑n
k=1((k − 1)p − kp)tn+1−k(1 − t)p

(1 − t)p+1
.

Expanding the numerator in powers of t, for our purpose we are only interested in the coefficients

from tp+1 to tn+p, and after some computations we find that the numerator is:

g(t) +
n−p∑
k=1

p+1∑
j=0

(−1)p+1−j

(
p + 1

j

)
(p + k − j)ptn+1−k

+
p∑

k=1

p−k∑
j=0

(−1)p+1−j

(
p + 1

j

)
(p + 1 − k − j)ptn+k ,

where g(t) is a p-degree polynomial. All the coefficients in the middle term are zero (see [3] or [13, p.

244]). Finally, as one can see in [11, p. 255], the coefficients in the third term of the expression are, up

the factor (−1)p+1, the Eulerian numbers

〈
p

p − k

〉
. �

Corollary 25.
∑n

k=1 k
p = ∑p

k=1

∑p−k
j=0

(−1)j
(
p + 1

j

)
(p + 1 − k − j)p

(
n + k

p + 1

)
.

Proof. Since qn−1,p(1) = ∑n
k=1 k

p, we only need to apply the L’Hopital rule p + 1-times to the formula

in the previous proposition. �
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