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Abstract

We interpret the reciprocation process in K[[x]] as a fixed point problem related to contractive functions for certain adequate
ultrametric spaces. This allows us to give a dynamical interpretation of certain arithmetical triangles introduced herein. Later we
recognize, as a special case of our construction, the so-called Riordan group which is a device used in combinatorics. In this manner
we give a new and alternative way to construct the proper Riordan arrays. Our point of view allows us to give a natural metric on
the Riordan group turning this group into a topological group. This construction allows us to recognize a countable descending
chain of normal subgroups.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is a widely known fact that Banach’s fixed point theorem, besides its simplicity, is one of the main tools for both
the theoretical and the computational aspects in Mathematics:

A simple statement (with a simple proof in this case) with many applications.
This theorem is a theoretical framework of the successive approximation method used by Picard, even by Liouville.

The well-known statement of this theorem is:
BANACH’S FIXED POINT THEOREM (BFPT)
Let (X, d) be a complete metric space and f : X → X contractive. Then f has a unique fixed point x0 and

f n(x) → x0 for every x ∈ X .
In the above statement f n

= f ◦ f ◦ · · · ◦ f . Recall that a map is contractive, concretely c-contractive, if there is
a real number c ∈ [0, 1) such that d( f (x), f (y)) ≤ cd(x, y). We recommend, for example, [2] for the description of
some of the applications of this result.

There is a mild generalization of BFPT that we will refer to as GBFPT (for Generalized Banach Fixed Point
Theorem), which corresponds to a certain shadowing process in BFPT (for analogy to shadowing in discrete dynamical
systems [3]). GBFPT is implicitly in the Fiber Contraction Principle given by Hirsch and Pugh in [5]. In [20], see
Lemma 2 in page 212, GBFPT is explicitly stated. Sotomayor used GBFPT to get differentiability properties of vector
fields associated to differential equations. For completeness we will recall this result as it appears in [20].
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Proposition 1 (GBFPT). Let X be a complete metric space. Suppose { fn}n∈N : X −→ X is a sequence of contractive
maps with the same contraction constant α and suppose that { fn} −→ f (point to point). Then f is α-contractive
and for any point z ∈ X the sequence { fn ◦ · · · ◦ f1(z)} −−−→

n→∞
x0, where x0 is the unique fixed point of f .

The Riordan group, in the title, was so named for the first time by Shapiro et al. in [18]. In fact in [18] the authors
named a subgroup of the group treated herein as the “Riordan group”.

More general objects called Riordan arrays appear in the literature. A special kind of Riordan arrays, called renewal
arrays, were introduced before by Rogers [17]. Any element in the Riordan group is a Riordan array. The literature on
Riordan arrays originated mainly in the last decade of the last century, [8–10,18,21,22], and is still developing now, [4,
6,11–13,19,23].

Researchers in enumerative combinatorics used Riordan arrays mainly to unify many themes in enumerations. For
example Sprugnoli in [21,22] used that to find the generating function of many combinatorial sums.

The use of Riordan arrays was also related to inverse relations and to the so-called Schauder bases in [6], by using
inverses in the Riordan group. We recommend the classical text of Riordan [15] for information on combinatorial
topics and to make a comparison with the way it was treated before the Riordan arrays point of view appeared.

Although organized into six sections, including this introduction, this paper has three clearly different parts:
The first includes Sections 2–4 where we treat the elements of the Riordan group. The second coincides with

Section 5 where the group operation and some basic algebraic properties are treated and in the third part, which
is Section 6, we try to give some information about the global algebraic structure (the recognition of many normal
subgroups) providing this group with an additional structure of non-Archimedean metrizable topological group for
this aim. The guide line converting these three parts into a unit is the use of an adequate ultrametric framework.

In the first part, and after a motivation of our point of view given in Section 2, we convert, in Section 3, the problem
of finding the quotient of two series into a fixed point problem associated to a contractive function defined in a suitable
complete ultrametric space (K[[x]], d). Consequently Banach’s fixed point Theorem gets an iterative algorithm to do
that. In Section 4 we give a new algorithm to construct Riordan arrays depending on two given power series. The
main difference with those known in the literature is that we do not have to use any extra object as the A-sequence
or the Z -sequence, see for example Rogers [17], Sprugnoli [21] and Merlini et al. [8]. Anyway the A-sequence and
the Z -sequence are very interesting objects to construct Riordan array as pointed out in the papers quoted above. Our
algorithm covers, using only the initial data, the recurrence for any entry, even those entries in the first column, in the
Riordan array. Our new point of view, based on Banach’s fixed point Theorem, allows us to construct Riordan arrays
using iteratively the classical algorithm to get the coefficients in the quotient of two given series. So we show that the
structure of Riordan arrays and the reciprocation operation in the ring K[[x]] are intrinsically related where K is any
field of characteristic zero.

In the second part, Section 5, we characterize the continuous endomorphisms in (K[[x]], d) and certain matrix
representations. Analogously as in finite-dimensional Linear Algebra this representation gives us one of the main
results about Riordan arrays, see Theorem 1.1 and the previous comments in Sprugnoli [21]. As a consequence we
show that the Riordan group has a faithful representation as a group of K-linear isometries in (K[[x]], d). Using this
we get, in our own way, the known formula for the composition and the inverse in the group. We want to note that
the group operation and the action on a power series can be given in terms of the so-called Lagrangre group, see
Huang [6] and Sprugnoli [22]. Here we note that our parametrization of the elements in the Riordan group, in terms
of a pair of power series, is different from the usual one. We end this section giving, in our own way, a result on
the algebraic structure of the Riordan group in terms of a semidirect product of certain subgroups. There are some
analogous results in the literature on this topic, [4,19].

In the third part, Section 6, and motivated by the last result in the previous section we find new normal subgroups of
the Riordan group. This could help in obtaining new decomposition results. This is the reason why, motivated by the
Banach space theory and by the classical Lie groups of finite matrices, we give an ultrametric in the set of continuous
endomorphisms on (K[[x]], d). We prove later that this induces an invariant ultrametric in the group of isometries
and eventually on the Riordan group. Consequently the identity has a neighborhood base formed by open and closed
normal subgroups. We describe these groups in terms of the involved power series. Even so we think that our results
on describing new normal subgroups are still modest but we also think that the ultrametric defined on the Riordan
group could help with further developments on these and other topics.
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To finish this introduction we have to say that, as we will explain in the next section, all the work in this paper was
motivated by three simple observations:

First, the relation between Banach’s Fixed Point Theorem and the way to sum the geometric progression
∑

n≥0 xn .
Second, the relation between the Generalized Banach Fixed Point Theorem and the way to sum the

arithmetic–geometric progression
∑

n≥1 nxn .
Third, the coefficients of the above series are respectively in the first and the second columns in the Pascal Triangle.

2. Motivation: GBFPT and Pascal triangle

The usual proof of Banach’s fixed Point Theorem, see [2] for example, relies strongly on the fact that limn→∞ xn
=

0 when x ∈ R is such that |x | < 1. Also the partial sums of the geometric series are involved in the proof.
We can reverse this chain of relations. In fact, if our starting point is the Banach’s fixed point theorem, we can

obtain that limn→∞ xn
= 0 if |x | < 1 iterating the function f (t) = xt starting at t = 1. On the other hand, let us

consider the real, or complex, function f (t) = xt +1 with |x | < 1. It is obvious that f n(0) =
∑n−1

k=0 xk . Consequently
f n(0) −→

1
1−x which is the unique fixed point of f . Here again f n represents the n-iteration of f .

The next classical and easier series to sum is the arithmetic–geometric series
∑

∞

k=1 kxk . It easy to see that there
are no one-degree polynomial f (t) = g(x)t + h(x) and any point x0 such that the partial sum

∑n
k=1 kxk

= f n(x0).
But using the Generalized Fixed Point Theorem we can solve our problem by means of crossed iterations of an
equicontractive sequence of one-degree polynomials where the geometric series is involved. Consider the sequence of
one-degree polynomials

hm(t) = xt + x
m−1∑
k=0

xk (m = 0, 1, 2, . . .)

with the agreement
∑

−1
k=0 = 0.

Note that hm(t) = xt + xTm−1,1(x) where Tm−1,1 is the (m −1)-Taylor polynomial of the geometric series, it is the
first column in the Pascal triangle (see below). If |x | < 1 then {hm}m∈N∪{0} is a sequence of |x |-contractive functions
and

{hm} −→ h(t) = xt +
x

1 − x
.

Using GBFPT we obtain that

(hm ◦ · · · ◦ h0)(0) −→
x

(1 − x)2

which is the unique fixed point of the limit function h(t) = xt +
x

1−x . Now h0(0) = 0, (h1 ◦ h0)(0) = x ,
h2((h1◦h0))(0) = x+2x2. By induction (hm ◦· · · h0)(0) =

∑m
k=0 kxk . Consequently we get that

∑
∞

k=0 kxk
=

x
(1−x)2 .

One of the usual ways to describe the Pascal Triangle is by means of an infinite triangular matrix whose rows are
the coefficients of the polynomial Pn(x) = (1 + x)n

=
∑n

k=0

( n
k

)
xk . That is

1 → (1 + x)0

1 1 → (1 + x)1

1 2 1 → (1 + x)2

1 3 3 1 → (1 + x)3

1 4 6 4 1 → (1 + x)4

1 5 10 10 5 1 → (1 + x)5

1 6 15 20 15 6 1 → (1 + x)6

1 7 21 35 35 21 7 1 → (1 + x)7

.
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We can interpret the Pascal Triangle, by columns, as a countable set of powers series. In the first column
the coefficients of

∑
∞

k=0 xk appear, in the second those of
∑

∞

k=0(k + 1)xk , in the third the coefficients of∑
∞

k=0
(k+1)(k+2)

2 xk appear, and so on. But each column is shifted one step below the previous one. This means

that j-column represents the series x j−1

(1−x) j . In fact this is what really happens if we write in the triangle not only
the coefficients but the powers of x (in increasing order) in the development of (1 + x)n as it is by rows. As we
saw before, the first and the second columns in the Pascal triangle are just the coefficients of the geometric and the
arithmetic geometric series respectively.

Let us try only the next column: consider now the sequence hm(t) = xt + x
∑m−1

k=0 kxk . Note that, as before, the
independent term of the polynomial hm is just xTm−1,2(x) where Tm−1,2 is the (m − 1)-Taylor polynomial of the

second column. In this case the limit function is h(t) = xt + x x
(1−x)2 whose unique fixed point is t =

x2

(1−x)3 and

h0(0) = h1(h0(0)) = 0, h2(h1(h0(0))) = x2 and by induction (hm · · · h0)(0) =
∑m

k=0
(k−1)k

2 xk
−→

x2

(1−x)3 .
So we can conclude without a real proof yet:

Proposition 2. For n ≥ 2, the n-column in the Pascal triangle is obtained from the (n − 1)-column applying the
crossed iterations in GBFPT to the sequence {hk,n}k∈N∪{0} where hk,n(t) = xt + xTk−1,n−1(x), |x | < 1 being
Tk−1,n−1 the (k − 1)-Taylor polynomial of the (n − 1)-column.

3. Reciprocation in K[[x]] as a fixed point problem

Let K be a field (of characteristic zero). Consider the ring of power series K[[x]] with coefficients in K. Let
f ∈ K[[x]] given by f =

∑
n≥0 an xn and denote by ω( f ) the order of f . Recall that ω( f ) is the smallest non-

negative integer number p such that ap 6= 0 if any exists. Otherwise, that is if f = 0, we write ω( f ) = ∞.
Given a non-negative integer k and the series f as above we denote by Tk( f ) the corresponding Taylor polynomial

of order k.
It is well known that (K[[x]], d) is a complete ultrametric space where d( f, g) =

1
2ω( f −g) , f, g ∈ K[[x]]. In the

previous formula we understand that 1
2∞ = 0. In order to refer to this and some other related fact we put this in the

following (R+ represents the non-negative real numbers).

Proposition 3. The map d : K[[x]]×K[[x]] → R+ defined by d( f, g) =
1

2ω( f −g) is a complete ultrametric on K[[x]].

Moreover d( f, g) ≤
1

2k+1 if and only if Tk( f ) = Tk(g). Finally the sum and product of the series are continuous if we
consider the corresponding product topology in K[[x]] × K[[x]].

Remark 4. The proofs of all the facts above are easy consequences of the properties of the order of a series.
Note that if f ∈ K[[x]] then limk→∞ Tk( f ) = f in (K[[x]], d) and then the set of polynomials K[x] is,

topologically, dense in the space of the series. Moreover the relative topology induced on K[x] is discrete. The induced
metric d on Kl [x] is uniformly discrete, where the subscript l means “degree less than or equal to l”.

It is obviously known that g is a unit in the ring K[[x]] if and only if g(0) 6= 0. We want to show here that the
Banach’s fixed point Theorem allows us to give a different proof of this fact which, in addition, gives us an expression
for the reciprocal. In the next proposition f n represents the n-power of the series f .

Proposition 5. Let f, h ∈ K[[x]] with f (0) = 0 then the first-degree polynomial map P : K[[x]] → K[[x]] defined
by P(S) = f S + h is 1

2 -contractive independently on f and h. In fact d(P(S1), P(S2)) =
1

2ω( f ) d(S1, S2). Moreover

the unique fixed point of P is just h
1− f and consequently

h

1 − f
=

(∑
n≥0

f n

)
h.

Proof. Let S1, S2 ∈ K[[x]], then d(P(S1), P(S2)) =
1

2ω(P(S1)−P(S2)) but ω(P(S1) − P(S2)) = ω( f (S1 − S2)) =

ω( f ) + ω(S1 − S2) so d(P(S1), P(S2)) =
1

2ω(P(S1)−P(S2)) =
1

2ω( f ) d(S1, S2). Since f (0) = 0, then ω( f ) ≥ 1 and so
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d(P(S1), P(S2)) ≤
1
2 d(S1, S2). Using now the Banach’s fixed point theorem we obtain that the unique fixed point u

of P is just u = limn→∞ Pn(0), where Pn(0) is the n-iteration at 0. But Pn(0) = (
∑n−1

k=0 f k)h. So u = (
∑

∞

k=0 f k)h
and u =

h
1− f because it is the unique solution of f u + h = u. �

Corollary 6. If g ∈ K[[x]] and g(0) 6= 0, then g is a unit in K[[x]] and

1
g

=
1

g(0)

∑
n≥0

(
g(0) − g

g(0)

)n

.

Proof. Consider the series g(0)−g
g(0)

, then ω(
g(0)−g

g(0)
) ≥ 1. Take, as in the above proposition, P(S) = (

g(0)−g
g(0)

)S +
1

g(0)
.

So P is contractive and the unique fixed point u satisfies (
g(0)−g

g(0)
)u +

1
g(0)

= u. Using the algebraic operations in

K[[x]] one obtains that u · g = 1. Consequently g is a unit and 1
g =

1
g(0)

∑
n≥0(

g(0)−g
g(0)

)n . �

Remark 7. Note that in Proposition 5 there appears a convergent series of the series
∑

n≥0 f n . This also can be
explained by means of the ultrametric d in the following way:

In an ultrametric space, see [16], a sequence {an}n∈N is a Cauchy sequence if and only if d(an, an+1) −→ 0. Take
the sequence Sn =

∑n
k=0 f k . Since ω( f ) ≥ 1 then ω( f n) ≥ n. Consequently d(Sn+1, Sn) =

1
2ω(Sn+1−Sn ) ≤

1
2n+1 . But

Sn is just the corresponding partial sum of
∑

k≥0 f k .

The following proposition will be important for the rest of the paper. In fact it is a refined version, in our context,
of GBFPT. It gives not only convergence but controls the remainders.

Proposition 8. Let f, g ∈ K[[x]] with g(0) 6= 0. Fix the one-degree polynomial function P : K[[x]] → K[[x]]

defined by P(S) = (
g(0)−g

g(0)
)S +

f
g(0)

. Consider the sequence of one-degree polynomial functions: {Pm}m∈N :

K[[x]] → K[[x]] defined by Pm(S) = Tm(
g(0)−g

g(0)
)S + Tm(

f
g(0)

). Then {Pm}m∈N −→ P uniformly in (K[[x]], d).

Pm is 1
2 -contractive for every m ∈ N. Moreover d(Pm ◦ Pm−1 ◦ · · · ◦ P0(0), f/g) ≤

1
2m+1 and consequently

Tm(Pm ◦ Pm−1 ◦ · · · ◦ P0(0)) = Tm( f/g).

Proof. First of all note that ω(Tm(S) − S) ≥ m + 1 for any S ∈ K[[x]]. Then d(Tm(S), S) ≤
1

2m+1 .

So d(Pm(S), P(S)) =
1

2ω(Pm (S)−P(S)) , but Pm(S) − P(S) = (Tm(
g(0)−g

g(0)
) −

g(0)−g
g(0)

)S + (Tm(
f

g(0)
) −

f
g(0)

).

Consequently ω(Pm(S) − P(S)) ≥ min{ω(Tm(
g(0)−g

g(0)
) −

g(0)−g
g(0)

) + ω(S), ω(Tm(
f

g(0)
) −

f
g(0)

)} ≥ m + 1 for

any S ∈ K[[x]]. Hence d(Pm(S), P(S)) ≤
1

2m+1 independently on S. Now d(Pm ◦ Pm−1 ◦ · · · ◦ P0(0), f/g) ≤

max{d(Pm ◦ Pm−1 ◦ · · · ◦ P0(0)), Pm( f/g), d(Pm( f/g), P( f/g))} by the strong triangle inequality and the fact
that P( f/g) = f/g. So d(Pm( f/g), P( f/g)) ≤

1
2m+1 . We only have to control the number δm = d(Pm ◦

Pm−1 ◦ · · · ◦ P0(0), Pm( f/g)). Let us prove by induction that δm ≤
1

2m+1 . If m = 0 then δ0 = 0, because

P0(S) = f (0)/g(0) for any S ∈ K[[x]]. Since P1 is 1
2 -contractive we obtain that d(P1 ◦ P0(0), P1( f/g)) ≤

1
2 d(P0(0), f/g) ≤

1
22 . Suppose that δk ≤

1
2k+1 . Now d(Pk+1 ◦ Pk ◦ · · · ◦ P0(0), Pk+1( f/g)) ≤ max{d(Pk+1 ◦

Pk ◦ · · · ◦ P0(0), Pk+1(Pk( f/g))), d(Pk+1(Pk( f/g)), Pk+1( f/g))}, but d(Pk+1 ◦ Pk ◦ · · · ◦ P0(0), Pk+1(Pk( f/g))) ≤
1
2 d(Pk ◦ · · · ◦ P0(0), Pk( f/g)) ≤

1
2k+2 and d(Pk+1(Pk( f/g)), Pk+1( f/g)) ≤

1
2 d(Pk( f/g), P( f/g)) ≤

1
2k+2 . Putting

all together and using induction we have proved that δm ≤
1

2m+1 . Consequently d(Pm◦Pm−1◦· · ·◦P0(0), f/g) ≤
1

2m+1 .
So Tm(Pm−1 ◦ · · · ◦ P0(0)) = Tm( f/g). �

In order to avoid useless operations in the procedure described in Proposition 8, we can refine the obtained
recurrence process as follows:

Corollary 9. Let f, g ∈ K[[x]] with g(0) 6= 0. Then for every m ∈ N we have:

Tm( f/g) = Tm(Pm(Tm−1(Pm−1 · · · (T1(P1(T0(P0(0))))) · · · ))).
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Proof. Using the same notation as in the last proposition we have

d(Pm(Tm−1( f/g)), f/g) ≤ max{d(Pm(Tm−1( f/g)), Pm( f/g)), d(Pm( f/g), P( f/g))} ≤
1

2m+1 .

Hence Tm(Pm(Tm−1( f/g))) = Tm( f/g). Consequently one can avoid all operations related to the remainder
Rm(x) = Pm ◦ Pm−1 ◦ · · · ◦ P0(0) − Tm( f/g). �

Corollary 9 provides an algorithm that can be summarized as follows:

Tk( f/g) = Tk

((
g(0) − Tk(g)

g(0)

)
Tk−1( f/g) +

1
g(0)

Tk( f )

)
.

If we write the result above in, we will say, “coordinates” we have

Corollary 10. Let f, g ∈ K[[x]] with g(0) 6= 0. If f =
∑

n≥0 an xn and g =
∑

n≥0 bn xn and f/g =
∑

n≥0 dn xn ,

then dn = −
b1
b0

dn−1 −
b2
b0

dn−2 · · · −
bn
b0

d0 +
an
b0

, for n ≥ 1, d0 =
a0
b0

.

In the above result there are hidden known recurrences:
Bernoulli numbers
Recall that Bernoulli numbers {Bk}k∈N are defined by means of their exponential generating function: x

ex −e0 =∑
k≥0

Bk
k!

xk .

Suppose that f ≡ 1, and take g(x) =
ex

−e0

x =
∑

∞

k=0
1

(k+1)!
xk but x

ex −e0 =
1
g . Using the recurrence above we have

d0 = 1, dn =
Bn
n!

=
∑n−1

µ=0 −
1

(n−µ+1)!

Bµ

µ!
or Bn =

∑n−1
µ=0 −

n!

(n−µ+1)!µ!
Bµ. Multiplying both sides by n + 1 we obtain

(n + 1)Bn +
∑n−1

µ=0
n!

(n−µ+1)!µ!
Bµ = 0 or

∑n−1
µ=0

(
n+1
µ

)
Bµ = 0, B0 = 1 which is the usual recurrence for Bernoulli

numbers.
Generalized Fibonacci and Lucas numbers
Suppose now that g(x) = a + bx + cx2 with a 6= 0. 1

g =
1

a+bx+cx2 . In this case 1
g(0)

=
1
a , b1 = b, b2 = c, bk = 0

if k > 2. Suppose that 1
g =

∑
n∈N dn xn . So using Corollary 10 one obtains dn = −

b
a dn−1 + (− c

a )dn−2 if n ≥ 2,

d0 =
1
a and d1 = −

b
a2 . So one obtains the usual recurrence for generalized Fibonacci numbers.

As in the above example suppose now that g(x) = a + bx + cx2 a 6= 0 and f = 2a + bx . Suppose now that
2a+bx

a+bx+cx2 =
∑

n≥0 cn xn . In this case a0 = 2a, a1 = b, ak = 0 for k > 1, b0 = a, b1 = b, b2 = c, bk = 0, k > 2.

Hence, by the above recurrence, we obtain cn = −
b
a cn−1 + (− c

a )cn−2, c0 = 2, c1 = −
b
a which is the usual recurrence

of the so-called in the literature, see [7] for example, Lucas sequence {ck} associated to the generalized Fibonacci
sequence {dk} in the above example.

4. Arithmetical triangles arising from Banach’s fixed point theorem

With the next construction we are going to capture and extend, using GBFPT, the pattern of formation of the Pascal
Triangle in Section 2.

Given are f =
∑

n≥0 an xn and g =
∑

n≥0 bn xn with g(0) = b0 6= 0. We are going to construct a lower triangular
matrix that we call the arithmetical triangle of the power series f with rate g. We denote it by T ( f | g). We construct
T ( f | g) by columns. In the first column are the coefficients of the series f

g , in the second those of x f
g2 , so in the

j-column appear the coefficients of x j−1 f
g j . As one can see the j-column is the j-th term of a geometric progression

(in K[[x]]), whose rate is x
g and first term f

g . This corresponds to the following crossed iteration. To construct the

j-column, j ≥ 2, we consider 1
2 -equicontractive sequences given by

hm(S) = Tm

(
g(0) − g

g(0)

)
S + xTm−1, j−1

(
x j−2 f

g(0)g j−1

)
(1)

{hm} → h (in particular point to point) where h(S) = (
g(0)−g

g(0)
)S + x(

x j−2 f
g(0)g j−1 ). Note that h is also 1

2 -contractive and

its fixed point is x j−1 f
g j which is the j-th column.
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Note also that (
x j−2 f
g j−1 ) is just the j − 1-column. This implies that (1) gives us a recursive algorithm to construct

T ( f | g) using only the coefficients of f and g. To find this algorithm of construction we need an auxiliary column,
the 0-column, formed by the coefficients (an)n∈N of f and to follow the rule described in Corollary 10 to calculate
the coefficients of f

g which is the first column in T ( f | g). To get the second we use just the same arguments but
resting on this time in the first column, not in the 0-column. So we construct the j-th column using the algorithm in
Corollary 10 and resting on the ( j − 1)-th column.

We then obtain

a0
a1 a0/b0

a2 −
b1a0
b2

0
+

a1
b0

a0/b2
0

a3
b2

1a0

b3
0

−
b1a1
b2

0
−

b2a0
b2

0
+

a2
b0

−
2b1a0

b3
0

+
a1
b2

0
a0/b3

0

...
...

...
...

. . .

f f
g

x f
g2

x2 f
g3 · · ·

Suppose that T ( f | g) = {ci j }i ∈ N
j ∈ N

, so the element ci j depends only the elements above in its column, they are

ci−1, j · · · c1, j and the element ci−1, j−1 just to its left in the row above. Moreover ci j = 0 if j > i . Collecting all that
above we obtain:

Theorem 11. Let f =
∑

n≥0 an xn , g =
∑

n≥0 bn xn with b0 6= 0 then the matrix T ( f | g) = {ci j }i ∈ N
j ∈ N

, i, j ≥ 1, is

defined by x j−1 f
g j =

∑
∞

i=1 ci j x i−1. Consequently T ( f | g) is a Riordan array.

The general construction is very easy to understand. We have the following:
Algorithm for T ( f | g)

f =
∑

n≥0 an xn , g =
∑

n≥0 bn xn with b0 6= 0, T ( f | g) = {ci j }i ∈ N
j ∈ N

, i, j ≥ 1.

a0
a1 c11 c12 c13 c14 c15 · · ·

a2 c21 c22 c23 c24 c25 · · ·

a3 c31 c32 c33 c34 c35 · · ·

...
...

...
...

...
... · · ·

an cn1 cn2 cn3 cn4 cn5 · · ·

...
...

...
...

...
...

. . .

with ci j = 0 if j > i and the following rules for i ≥ j :
If j > 1

ci, j = −
b1

b0
ci−1, j −

b2

b0
ci−2, j · · · −

bi−1

b0
c1, j +

ci−1, j−1

b0
=

1
b0

(
ci−1, j−1 −

i−1∑
k=1

bkci−k, j

)
and if j = 1

ci,1 = −
b1

b0
ci−1,1 −

b2

b0
ci−2,1 · · · −

bi−1

b0
c1,1 +

ai−1

b0
=

1
b0

(
ai−1 −

i−1∑
k=1

bkci−k,1

)

with the agreement
∑0

k=1 = 0. Note that c11 = a0/b0.

Example 12. T (1 | 1 − x) ≡ Pascal triangle.



A. Luzón, M.A. Morón / Discrete Applied Mathematics 156 (2008) 2620–2635 2627

a0 = 1, an = 0, n ≥ 1, b0 = 1, b1 = −1, bn = 0, for n ≥ 2. In our notation ci, j =

(
i−1
j−1

)
. The recurrence in the

algorithm is ci, j = ci−1, j + ci−1, j−1, j > 1, ci,1 = 1, which is a new proof of the known recurrence of the binomial
numbers.

Example 13. Fibonacci numbers. Consider the arithmetical triangle T (1 | 1 − x − x2). In this case a0 = 1, an =

0, n ≥ 1, b0 = 1, b1 = b2 = −1, bn = 0, n ≥ 3. The corresponding recurrence is ci, j = ci−1, j + ci−2, j + ci−1, j−1,
if j > 1. Also ci,1 = ci−1,1 + ci−2,1, for i ≥ 3, and c11 = 1, c21 = 1. Note that this last one is the recurrence for
Fibonacci numbers.

Sprugnoli [21], pages 269–270, identified many generating functions associated to a Riordan array. We are going
to choose two of them, the so-called bivariate generating function and the sum by shallow diagonals, as examples of
how this can be interpreted in our context. Anyway it is a curious thing that Banach’s fixed point Theorem can explain
the fact that Fibonacci numbers are obtained from the Pascal triangle if one considers the shallow diagonals. Now it
is convenient to rename the triangles as follows. Consider the arithmetical triangle

T ( f | g) =



c00 0 0 · · · 0 0 · · ·

c10 c11 0 · · · 0 0 · · ·

c20 c21 c22 · · · 0 0 · · ·

...
...

...
. . . 0 0 · · ·

cn0 cn1 cn2 · · · cnn 0 · · ·

...
...

... · · ·
...

...
. . .


.

Bivariate generating function
Consider the bivariate generating function of T ( f | g) as defined by Sprugnoli in [21] page 269,

h(x, t) =

∑
n,k≥0

cnk xn tk .

So any column is a series in K[[x, t]]. The first column is f
g (independent on t), the second is xt f

g2 . The n-column is
(xt)n−1 f

gn . Consider the contractive map P : ((K[[x]]), d) −→ ((K[[x]]), d) given by P(S) =
x
g S +

f
g . As we saw

in Section 3, P is contractive. If we iterate P at the point S = 0 we have Pm(0) =
∑m

k=0
f

gm+1 xm which is just the

sum of the first m-columns. So limm→∞ Pm(0) =
f

g−x which is the unique solution of x
g S +

f
g = S. Now, as in the

columns of T ( f | g), change the series x by the series xt . Then one obtains that the sum, by columns, in T ( f | g)

is f
g−xt . But, obviously, if we sum by rows we have h(x, t). Consequently h(x, t) =

f
g−xt , with g(0) 6= 0. If we

describe, as we will do, T ( f | g) in the notation (d, h) of [21], we obtain (1.2) in page 269 in [21].
Shallow diagonals
If we sum along shallow diagonals in T ( f | g), we obtain the following sequence of numbers: F0( f | g) = c00,

F1( f | g) = c10, F2( f | g) = c20 +c11, F3( f | g) = c30 +c21 and so on. Consider the series h =
∑

k≥0 Fk( f | g)xk .

Since each column in T ( f | g) represents the series xn−1 f
gn , one can easily see that to sum along the shallow diagonals

corresponds to summing by column the following: the first + x(the second)+ x2(the third)+ x3(the fourth)+· · · and

so on. So we are summing f
g +

x2 f
g2 +

x4 f
g3 +

x6 f
g4 +· · ·+

x2n f
gn+1 +· · · whose partial sums in K[[x]] correspond to Hm(0),

where H : K[[x]] −→ K[[x]] is given by H(S) =
x2

g S+
f
g . H is obviously contractive, so

∑
k≥0 Fk( f | g)xk

=
f

g−x2

because f
g−x2 is the unique fixed point of H . Note that the Pascal triangle is just T (1 | 1 − x), consequently∑

k≥0 Fk(1 | 1 − x)xk
=

1
1−x−x2 . Hence {Fk(1 | 1 − x)}k∈N is the Fibonacci sequence 1, 1, 2, 3, . . . .

5. Arithmetical triangles as K-linear continuous functions

We are going to study these triangles T ( f | g), f ∈ K[[x]], g ∈ K[[x]] \ xK[[x]] considered as the matrix
representations of continuous endomorphism in (K[[x]], d). We recall here, for notational facts, that 0 ∈ N. First of
all we have:
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Proposition 14. Consider K[[x]] as a K vector space. Let { fn}n∈N ⊂ K[[x]]. Then there is a linear continuous
function Φ : (K[[x]], d) → (K[[x]], d) such that Φ(xn) = fn , n ∈ N if and only if { fn}n∈N → 0 in (K[[x]], d).
Moreover Φ is unique with the above properties and Φ(g) =

∑
n≥0 an fn where g =

∑
n≥0 an xn .

Proof. Suppose first that there is a linear continuous function Φ, such that Φ(xn) = fn . Then by continuity at 0,
fn → 0 in (K[[x]], d).

For the opposite direction suppose now that { fn} → 0. Let g =
∑

n≥0 an xn be any series. Consider the series of
the series Φ(g) =

∑
n≥0 an fn . We have to prove that

∑
n≥0 an fn converges in (K[[x]], d). So take Sm =

∑m
k=0 ak fk ,

consequently Sm+1 − Sm = am+1 fm+1. Hence limm→∞(Sm+1 − Sm) = 0. Since d is an ultrametric it implies, [16]
page 73, that Sm is a Cauchy sequence and then convergent. By this way we define Φ(g) for every g ∈ K[[x]] and
obviously Φ is linear. Moreover Φ(xn) = fn . Take now {gn} → g and ε > 0, then there is a m0 ∈ N such that

1
2m0 < ε and d( f p, 0) < ε for p ≥ m0. Consider now m1 ≥ m0 such that d(gn, g) < 1

2m0 for n ≥ m1. This means that
gn − g =

∑
k≥m0

akn xk . So we obtain Φ(gn − g) =
∑

k≥m0
akn fk . Hence d(Φ(gn),Φ(g)) ≤ maxk≥m0{d( fk, 0)} < ε

for n ≥ m1. The uniqueness of Φ is clear. �

The following is now obvious.

Proposition 15. Let Φ : (K[[x]], d) → (K[[x]], d) be a linear continuous function and suppose that fn = Φ(xn) =∑
∞

k=0 akn xk . Let g =
∑

k≥0 αk xk be any series and suppose that Φ(g) =
∑

k≥0 βk xk . Then
β0
β1
...

βn
...

 =


a00 · · · a0 j · · ·

a10 · · · a1 j · · ·

... · · ·
... · · ·

an0 · · · anj · · ·

... · · ·
... · · ·




α0
α1
...

αn
...


it is βn =

∑
∞

k=0 ankαk , where each of these sums is in fact finite.

Definition 16. We call the matrix defined above by means of Φ

M(Φ) = {ai j }i ∈ N
j ∈ N

the matrix associated to Φ.

Now we can rewrite Proposition 14 in the following way.

Corollary 17. Let M = {ai j }i ∈ N
j ∈ N

be an infinite matrix with entries in K, then M represents a continuous linear

mapping ΦM : (K[[x]], d) → (K[[x]], d) (i.e. M = M(ΦM ), ΦM continuous) if and only if for every n ∈ N there is
a m ∈ N such that a0,p = a1,p = · · · = an,p = 0 for every p ≥ m.

Corollary 18. Let M = {ai, j }i ∈ N
j ∈ N

, ai, j ∈ K be a matrix satisfying conditions as in Corollary 17. Then

(a) ΦM : (K[[x]], d) → (K[[x]], d) is an onto isometry if and only if M is lower triangular and ai,i 6= 0 for every
i ∈ N.

(b) ΦM : (K[[x]], d) → (K[[x]], d) is contractive if and only if M is lower triangular and ai,i = 0 for every i ∈ N.

Proof. (a) If ΦM is an onto isometry, we have in particular that d(xn, 0) = d(ΦM (xn), 0) since ΦM (xn) =∑
∞

i=0 ai,n x i we have that a0,n = a1,n = · · · = an−1,n = 0 but an,n 6= 0 because ω(xn) = ω(ΦM (xn)). On the
contrary suppose that M is lower triangular and ai,i 6= 0 for i ∈ N, it implies that d(xn, 0) = d(ΦM (xn), 0). Take
f =

∑
k≥0 αk xk and g =

∑
k≥0 βk xk . Then d(ΦM ( f ),ΦM (g)) =

1
2ω(ΦM ( f −g)) , ΦM ( f − g) = ΦM (

∑
k≥0(αk −

βk)xk) =
∑

k≥0(αk − βk)ΦM (xk). If α0 6= β0 then d( f, g) = 1 and since d(ΦM (1), 0) = 1 and d(ΦM (xn), 0) ≤ 1/2
for n ≥ 1 we obtain that d(Φ( f ),Φ(g)) = 1. Suppose on the contrary that α0 = β0 and let p ≥ 1 be such that
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p = ω( f − g). So d( f, g) =
1

2p . Consequently ΦM ( f − g) = (αp − βp) +
∑

k≥p+1(αk − βk)ΦM (xk) with

d((αp − βp)ΦM (x p), 0) =
1

2p and d(
∑

k≥p+1(αk − βk)ΦM (xk), 0) ≤
1

2p+1 . Since d is an ultrametric we obtain that

d(ΦM ( f − g), 0) =
1

2p = d( f, g). Consequently d(ΦM ( f ),ΦM (g)) = d( f, g). In order to prove that ΦM is an onto
map we only have to show that xn

∈ Im ΦM for every n ∈ N ∪ {0}. Using the above results we only have to prove that
for every n ∈ N there is a fn ∈ K[[x]], fn =

∑
k≥0 αn,k xk such that

a00 0 0 · · · 0 0 · · ·

a10 a11 0 · · · 0 0 · · ·

...
...

. . . · · · 0 0 · · ·

an0 an1 an2 · · · ann 0 · · ·

...
...

... · · ·
...

...
. . .




αn,0
αn,1

...

αn,n
...

 =


0
0
...

1
...


but since K is a field and al,l 6= 0, one can easily deduce the existence of fn .

By analogous arguments we can get (b). �

Let us go back to our arithmetical triangles. In the next proposition we describe the action of our T ( f | g) as a lin-
ear map, on a power series. This result was an assumption in the original definition of the Riordan group in Shapiro [18]
and it was stated as one of the main results on Riordan arrays in Sprugnoli [21], Sprugnoli [22], Merlini et al. [8].

Proposition 19. Let f, g ∈ K[[x]] with g(0) 6= 0 then the arithmetical triangle T ( f | g) of f with rate g induces a
linear continuous function, that we denote with the same symbol, T ( f | g) : (K[[x]], d) → (K[[x]], d) defined by

T ( f | g)(h) =
f

g
h

(
x

g

)
.

Moreover T ( f | g) is an onto isometry if and only if f (0) 6= 0 and T ( f | g) is contractive if and only if f (0) = 0.

Proof. First of all let us say a few words on the expression h( x
g ). It is no more than the composition of the series

h and x
g i.e. h( x

g ) = h ◦
x
g , which is defined in the following way. Let h(x) =

∑
k≥0 αk xk . Since ( x

g )(0) = 0 we

obtain that the series of the series
∑

k≥0 αk(
x
g )k converges in (K[[x]], d) because ω(( x

g )k) = kω( x
g ) and ω( x

g ) = 1

so limk→∞( x
g )k

= 0. Recall that, Theorem 11, T ( f | g) = {ci j }i ∈ N
j ∈ N

with x j−1 f
g j =

∑
∞

i=1 ci j x i−1. Suppose that

f =
∑

n≥0 an xn and g =
∑

n≥0 bn xn with b0 6= 0. Recall now the rule of construction of T ( f | g)

a0/b0

−
b1a0
b2

0
+

a1
b0

a0/b2
0

b2
1a0

b3
0

−
b1a1
b2

0
−

b2a0
b2

0
+

a2
b0

−
2b1a0

b3
0

+
a1
b2

0
a0/b3

0

...
...

...
. . .

f
g

x f
g2

x2 f
g3 · · ·

So it is a lower triangular matrix and cn,n 6= 0∀ n ∈ N if and only if f (0) 6= 0. Now T ( f | g)(h) =
∑

k≥0 αk
xk f
gk+1 =

f
g (
∑

k≥0 αk(
x
g )k) =

f
g h( x

g ) and the proof is finished. �

Using the classical definition of composition of maps and the behavior of the associated matrix, we can easily find
the formula for the product and the inverse, when it exists, of Riordan arrays. These expressions can be found in the
quoted literature.

Proposition 20. (a) The product of two arithmetical triangles is again an arithmetical triangle. In fact T ( f1 |

g1)T ( f2 | g2) = T ( f1 f2(
x
g1

) | g1g2(
x
g1

)) for f1, f2 ∈ K[[x]], g1, g2 ∈ K[[x]] \ xK[[x]].
(b) If A(K[[x]]) = {T ( f | g), f, g ∈ K[[x]] \ xK[[x]]} then (A(K[[x]]), ·) ( · being the usual product of

matrices) is a group.
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Proof. It is obvious that the matrix assignment, as the finite-dimensional vector spaces case, satisfies that if T, S :

(K[[x]], d) → (K[[x]], d) are linear continuous functions, then M(S ◦ T ) = M(S)M(T ). The product M(S)M(T )

of these infinite matrices makes sense because, for continuity, all sums are in fact finite sums.
Consider the continuous linear functions T ( f1 | g1) and T ( f2 | g2), g1(0) 6= 0, g2(0) 6= 0. Then (T ( f1 | g1)T ( f2 |

g2))(h) = T ( f1 | g1)(
f2
g2

h( x
g2

)) =
f1
g1

(
f2(

x
g1

)

g2(
x

g1
)
h( x

g1g2(
x

g1
)
)). Consequently (T ( f1 | g1) ◦ T ( f2 | g2)) = T ( f1 f2(

x
g1

) |

g1g2(
x
g1

)) and the proof of (a) is finished.
(b) Suppose now that f, g ∈ K[[x]] \ xK[[x]]. Then T ( f | g) is a linear onto isometry (then invertible). Let us

calculate (T ( f | g))−1. First of all recall that T ( f | g)(h) =
f
g h( x

g ). The series k =
x
g satisfies that k(0) = 0 and

k′(0) = D(k)(0) =
1

g(0)
6= 0, (D denotes the usual derivative). So it is invertible for composition. This means

that there is a series k−1 such that x
g ◦ k−1

= k−1
◦

x
g = x . Consider now s =

1
f ◦k−1 and t =

1
g◦k−1 then

(T ( f | g)T (s | t))(h) = T ( f | g)( s
t h( x

t )) = T ( f | g)(
g◦k−1

f ◦k−1 h(xg ◦ k−1)) =
f
g (

g◦k−1
◦

x
g

f ◦k−1◦ x
g

h( x
g (g ◦ k−1

◦
x
g ))) = h.

The same arguments prove that T (s | t) ◦ T ( f | g) ≡ I but the identity I = T (1 | 1).
Using (a) we have proved that f1, g1, f2, g2 ∈ K[[x]] \ xK[[x]] then T ( f1 | g1)(T ( f2 | g2))

−1
∈ A(K[[x]]).

Consequently A(K[[x]]) is a subgroup of the group of isometries of (K[[x]], d). �

In order to study some algebraic properties of the group (A(K[[x]]), ·) we are going to describe some special
subsets of the set of arithmetical triangles.

First of all note that the set of arithmetical triangles contains a natural algebraic copy of K[[x]]. In fact given
f =

∑
k≥0 ak xk we have that

T ( f | 1) =



a0
a1 a0
a2 a1 a0
a3 a2 a1 a0
...

...
...

...
. . .

an an−1 an−2 an−3 · · · a0
...

...
...

...
...

...
. . .


which is the matrix representation of multiplying by the series f . It is obvious that T (α f + βg | 1) = αT ( f | 1)

+ βT (g | 1) for α β ∈ K[[x]], where the sum in the right part of the equality is the usual sum of matrices (also the
usual product by scalars). Moreover T ( f · g | 1) = T ( f | 1)T (g | 1) = T (g | 1)T ( f | 1).

Related to the algebraic structure of the ring K[[x]], we can consider it as a module over the ring K[[x]]. For this
module structure there is a related concept of linear map, we will call it K[[x]]-linear map. Of course any K[[x]]-linear
map is a K-linear. In fact more can be said.

Proposition 21. For any K[[x]]-linear map Φ : K[[x]] → K[[x]] there is a f ∈ K[[x]] such that Φ(h) = f h.
Consequently the K[[x]]-linear maps are continuous in (K[[x]], d) and their matricial representations are just the
arithmetical triangles of the form T ( f | 1).

We also have the following rules of products (or compositions). Let f ∈ K[[x]] and g ∈ K[[x]] \ xK[[x]],
T ( f ( x

g ) | g) = T (1 | g)T ( f | 1). If in addition f ∈ K[[x]] \ xK[[x]], then T (1 | g f ( x
g )) = T (1 | g)T (1 | f ). Let

U (K[[x]]) denote the multiplicative group of unities of the ring K[[x]]. We have:

Proposition 22. Consider the group of arithmetical triangles (A(K[[x]]), ·) and let N = {T ( f | g) ∈

A(K[[x]]) / g ≡ 1}, M = {T ( f | g) ∈ A(K[[x]]) / f = 1}. Then: M is a subgroup and N is a normal
subgroup of A(K[[x]]), N · M = A(K[[x]]) and N ∩ M = T (1 | 1) the neutral element. Consequently
A(K[[x]]) is isomorphic to the semidirect product N ×ϕ M. ϕ : M → Aut (N ) is the homomorphism defined by
ϕ(T (1 | g))(T ( f | 1)) = T (1 | g)T ( f | 1)T (1 | g)−1 and Aut (N ) is the group of automorphism of the group N.
Moreover N is isomorphic to U (K[[x]]).
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Proof. It is obvious that N is a subgroup of A(K[[x]]). Take now T ( f | 1) ∈ N and T (s | t) ∈ A(K[[x]]). Then
(T (s | t)T ( f | 1)(T (s | t))−1)(h) = T (s | t)T ( f | 1)( t◦k−1

s◦k−1 )h(x(t ◦ k−1)) (*) where, recalling Proposition 20, k−1

is the compositional inverse of k =
x
t so (∗) = T (s | t)( f (t◦k−1)

s◦k−1 )h(x(t ◦ k−1)) =
s
t

f ( x
t )(t◦k−1

◦k)

s◦k−1◦k
h( x

t t ◦ k−1
◦ k) =

f ( x
t )h = T ( f ( x

t ) | 1) ∈ N . Consequently N is a normal subgroup. Now, in order to prove that M is a
subgroup of A(K[[x]]), let T (1 | f ), T (1 | g) ∈ M . First of all recall that, see the proof of Proposition 20,
(T (1 | f ))−1

= T (1 |
1

f ◦k−1 ) where, in this case, k−1 is the compositional inverse of k =
x
f which exists because

k(0) = 0 and D(k)(0) 6= 0. So we obtain that T (1 | g)(T (1 | f ))−1
= T (1 | g)T (1 |

1
f ◦k−1 ) = T (1 |

g
f ◦k−1( x

g )
) ∈ M .

Consequently M is a subgroup of A(K[[x]]). It is obvious that N ∩ M = T (1 | 1) and it is a standard fact in group
theory, see for example [1] page 133, that in the above conditions A(K[[x]]) ' N ×ϕ M for such a ϕ. Note also that
this is not a direct product. In particular M is not a normal subgroup of A(K[[x]]). �

In the literature there is no unified way to describe the elements in the Riordan group. It is even called Riordan
group to denote different but related things. [6,18,19,21]. In order to end this section we are going to point out that
our group A(K[[x]]) of arithmetical triangles T ( f | g), f, g ∈ K[[x]] \ xK[[x]] is in fact the Riordan group but
parametrized by (K[[x]] \ xK[[x]]) × (K[[x]] \ xK[[x]]) in a different form. To do this we have chosen a concrete
description of the Riordan group. In fact we are going to choose that in [8] or [6].

Note that in [6] an element of the Riordan group is denoted by a pair of series (u, v) where u, v,∈ K[[x]]\xK[[x]].
With this notation we have:

Corollary 23. For any f, g, u, v ∈ K[[x]] \ xK[[x]],

T ( f | g) =

(
f

g
,

1
g

)
or (u, v) = T

(
u

v
|

1
v

)
.

Consequently our group A(K[[x]]) is no more than the Riordan group.

6. Ultrametrics in spaces of linear functions: The Riordan group as a non-Archimedean topological group

It is widely known that normal subgroups are very important to clarify the algebraic structure in any group
and then for the classification problem of groups. The constructions in the following, we think that it could be of
independent interest, will allow us to recognize many normal subgroups of the Riordan group. Maybe it is still a
modest contribution but we think that it could help in further developments. This time we were inspired by the theory
of Banach spaces and the classical Lie groups of finite real or complex square matrices.

Consider the ultrametric space (K[[x]], d). Denote by Endd(K[[x]]) the set of all continuous endomorphisms in
(K[[x]], d) considered as a K-vector space. As in the case of classical Banach spaces we can define what we will call
the norm associated to d . We will denote it by ‖ ‖d .

Definition 24. Let T : (K[[x]], d) → (K[[x]], d) be a continuous endomorphism. We define the norm of T as the
number

‖T ‖d = l.u.b. f ∈K[[x]]{d(T ( f ), 0)}

where l.u.b. means the least upper bound.

Note that ‖T ‖d exists for any T ∈ End(K[[x]]) because d is bounded above by 1.
Since the unique accumulation point of the values of the metric d is zero, it follows that for any T there is a series

fT ∈ K[[x]] such that ‖T ‖d = d(T ( fT ), 0). Some elementary properties of this norm are:

Proposition 25. 1. 0 ≤ ‖T ‖d ≤ 1 for any T ∈ Endd(K[[x]]).
2. 0 = ‖T ‖d if and only if T ≡ 0.
3. ‖λT ‖d = ‖T ‖d for any λ ∈ K, with λ 6= 0.
4. ‖T1 + T2‖d ≤ max{‖T1‖d , ‖T2‖d}.

Proof. Only a proof of (4) is needed. Suppose T1, T2 ∈ Endd(K[[x]]). Choose f ∈ K[[x]] such that ‖T1 + T2‖d =

d((T1 + T2)( f ), 0). Since d((T1 + T2)( f ), 0) =
1

2ω((T1+T2)( f )) and ω(T1( f ) + T2( f )) ≥ min{ω(T1( f )), ω(T2( f ))},
we obtain that ‖T1 + T2‖d ≤ max{‖T1‖d , ‖T2‖d}. �
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So this norm satisfies also a strong version of the triangular inequality. Using the above proposition we obtain

Corollary 26. The assignment d∗
: Endd(K[[x]])× Endd(K[[x]]) → R+ given by d∗(T1, T2) = ‖T1 − T2‖d defines

an ultrametric in Endd(K[[x]]).

Remark 27. More can be said about this ultrametric, in particular about its completeness and about the property of
approximate any continuous endomorphism by a sequence of them with finite-dimensional range. We are not going
to do this at this moment because we are interested in the group of isometries (with composition as operation) and
eventually in the Riordan group.

The metric d∗ defined above can be visualized when we know the matricial representations, that given in
Definition 16 in Section 5, of two continuous endomorphisms.

Suppose that A = {ai j }i ∈ N
j ∈ N

is an infinite matrix. Remember that, for us, 0 ∈ N. Then the first row is just the

0-row {a0, j } j∈N. The first column is the 0-column {ai,0}i∈N. Let us define the following:

Definition 28. Let K be a field (of characteristic zero) and A = {ai j }i ∈ N
j ∈ N

, A ∈ MN×N(K). We define the order of A

(and we denote it again by ω(A)) as ω(A) = ∞ if A = 0. Otherwise ω(A) = k, (k ∈ N) if k is the unique natural
number with the following properties: al,m = 0 for every m ∈ N and 0 ≤ l ≤ k − 1 and there is an m0 ∈ N with
ak,m0 6= 0.

Note that ω(A) = 0 means that there is a non-zero entry in the 0-row. On the other hand ω(A) = k ≥ 1, (k ∈ N)

if the submatrix {ai j }i = 0, . . . , k − 1
j ∈ N

is the null one and the row {ak,m}m∈N is non-null.

Proposition 29. Let T, S ∈ Endd(K[[x]]). Suppose that A = {ai j }i ∈ N
j ∈ N

= M(T ) and B = {bi j }i ∈ N
j ∈ N

= M(S) are

the corresponding associated matrices as in Section 5. Then

d∗(T, S) =
1

2ω(A−B)
.

Proof. If T = S then the equality is obvious if we interpret 1
2∞ = 0. So, we can suppose that d∗(T, S) =

1
2k0

for a k0 ∈ N. In particular we have that ω((T − S)(x l)) ≥ k0 for every l ∈ N. This means that for every l ∈ N,
am,l − bm,l = 0 for 0 ≤ m ≤ k0 − 1 if k0 ≥ 1. Note also that the equality is clear if k0 = 0. Consequently
ω(A − B) ≥ k0. Hence 1

2ω(A−B) ≤ d∗(T, S). On the other hand suppose that f =
∑

k αk xk
∈ K[[x]]. Since T − S is

obviously continuous, M(T − S) = A − B. If (T − S)( f ) =
∑

k βk xk , then

β0
β1
β2
...

βn
...


=



a00 − b00 a01 − b01 a02 − b02 · · · a0n − b0n · · ·

a10 − b10 a11 − b11 a12 − b12 · · · a1n − b1n · · ·

a20 − b20 a21 − b21 a22 − b22 · · · a2n − b2n · · ·

...
...

... · · ·
... · · ·

an0 − bn0 an1 − bn1 an2 − bn2 · · · ann − bnn · · ·

...
...

... · · ·
... · · ·





α0
α1
α2
...

αn
...


.

So if ω(A − B) = k1 then β0 = β1 = · · · = βk−1 = 0. It implies that ω((T − S)( f )) ≥ 1 for every f ∈ K[[x]].
Consequently d∗(T, S) ≤

1
2ω(A−B) and the proof is finished. �

Note that the above proposition points out that d∗(T, S) can be computed using only the set of series
{1, x, x2, . . . , xn, . . .}.

Let us denote by Isomd(K[[x]]) the group, with the composition of maps as operation, of linear isometries in
(K[[x]], d). We recommend the paper [14] for the definitions and results that we will use from now on.
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Proposition 30. The metric d∗, when restricted to the group Isomd(K[[x]]) (with composition as operation), gives
rise to an invariant complete ultrametric. Moreover (Isomd(K[[x]]), d∗) is a non-Archimedean metrizable topological
group (in the sense of [14]).

Proof. We are going to prove first that d∗ is left and right invariant. That is if T1, T2, S ∈ Isomd(K[[x]]) then
d∗(T1 ◦ S, T2 ◦ S) = d∗(T1, T2) = d∗(S ◦ T1, S ◦ T2). Let f ∈ K[[x]] be such that d∗(T1, T2) = d((T1 − T2)( f ), 0).
Since S is onto we have that f = S(g) for some g ∈ K[[x]]. So d∗(T1, T2) = d((T1 − T2)(S(g)), 0) ≤

suph∈K[[x]]{d((T1 − T2)(S(h)), 0)} = ‖(T1 − T2) ◦ S‖d = d∗(T1 ◦ S, T2 ◦ S).
Suppose now that h ∈ K[[x]] in such that ‖T1 ◦S−T2 ◦S‖d = d((T1 ◦S−T2 ◦S)(h), 0) = d((T1 −T2)(S(h)), 0) ≤

‖T1 − T2‖d = d∗(T1, T2). So we have the right invariance of d∗.
Take again the series f ∈ K[[x]] satisfying d∗(T1, T2) = ‖T1 − T2‖d = d((T1 − T2)( f ), 0). Since S is a linear

isometry we have d(S(T1 − T2)( f ), 0) = d∗(T1, T2). By definition ‖S ◦ (T1 − T2)‖d = d∗(S ◦ T1, S ◦ T2) ≥

d(S ◦ (T1 − T2), 0) = ‖T1 − T2‖d = d∗(T1, T2).
Take now m ∈ K[[x]] such that d∗(S ◦ T1, S ◦ T2) = d(S ◦ (T1 − T2)(m), 0) because S is an isometry but

d((T1 − T2)(m), 0) ≤ d∗(T1, T2) by definition. So we have proved that d∗ is invariant.
To prove that Isomd(K[[x]]) is a topological group with the topology induced by d∗ we have:
Suppose that {Tn, Sn}n∈N ∈ Isomd(K[[x]]) × Isomd(K[[x]]) with Tn → T and Sn → S in (Isomd(K[[x]]), d∗).

Using the strong triangle inequality and the invariance we get d∗(Tn ◦ Sn, T ◦ S) ≤ max{d∗(Tn ◦ Sn, Tn ◦

S), d∗(Tn ◦ S, T ◦ S)} = max{d∗(Sn, S), d∗(Tn, T )}. Consequently the composition is continuous. Suppose now that
{Tn}n∈N → T in (Isomd(K[[x]]), d∗). d∗(T −1

n , T −1) is also continuous (in fact an isometry in (Isomd(K[[x]]), d∗)).
Consequently (Isomd(K[[x]]), d∗) is a non-Archimedean (or ultrametric) metrizable topological group in the sense
of [14]. Moreover d∗ is invariant.

In order to prove the completeness, consider a Cauchy sequence {Tn}n∈N ⊂ (Isomd(K[[x]]), d∗). Let f ∈ K[[x]],
then {Tn( f )}n∈N ⊂ (K[[x]], d) is a Cauchy sequence and then it converges to a series that we denote by T ( f ). So
we have defined a function T : K[[x]] → K[[x]]. The linearity of T is obvious because limn→∞(Tn(α f + βg)) =

limn→∞(αTn( f ) + βTn(g)) for f, g ∈ K[[x]], α, β ∈ K. Moreover d(T ( f ), T (g)) = limn→∞ d(Tn( f ), Tn(g)) =

d( f, g). Let us prove now that {Tn}n∈N → T in (Endd(K[[x]]), d∗). Since {Tn}n∈N is d∗-Cauchy, then for every
ε > 0 there is an n0 ∈ N such that d∗(Tn, Tm) < ε for every n, m ≥ n0. This means that d(Tn( f ), Tm( f )) < ε

for n, m ≥ n0 and for every f ∈ K[[x]]. Given a particular f ∈ K[[x]] there is a number m0( f ) ≥ n0 such
that d(Tm0( f )( f ), T ( f )) < ε. Consequently, for every f ∈ K[[x]] and n ≥ n0 we have d(Tn( f ), T ( f )) ≤

max{d(Tn( f ), Tm0( f )( f )), d(Tm0( f )( f ), T ( f ))} < ε. So, d∗(Tn, T ) < ε for n ≥ n0 in (Endd(K[[x]]), d∗).
It remains to prove only that T is a surjective isometry. First of all note that {T −1

n }n∈N is also a d∗-Cauchy
sequence. Using the same arguments as before we have a linear into isometry S : (K[[x]], d) → (K[[x]], d) with
limn→∞ T −1

n = S in (Endd(K[[x]]), d∗). It is now clear that T ◦ S = S ◦ T = I and T is an onto isometry. �

Corollary 31. For every k ∈ N, Gk = {T ∈ Isomd(K[[x]]) / d∗(T, I ) ≤
1
2k }, where I is the identity, is a nested

sequence of normal subgroups which are open and closed for the topology induced by d∗. Moreover
⋂

k∈N Gk = {I }.

Proof. Using [14] we have that Gk is a normal subgroup for any k ∈ N, because d∗ is left and right invariant.

Moreover Gk = Bc

(
I, 1

2k

)
is just the closed ball, for the metric d∗, of center the identity and radius 1

2k . Of course

it is closed in the metric space (Isomd(K[[x]]), d∗). They are also open. In fact if k = 0 then G0 = Isomd(K[[x]])

the whole space. Suppose that k ≥ 1. Take ε such that 1
2k < ε < 1

2k−1 . Obviously Gk is the open ball of center I
and radius ε and then open for the metric d∗. Finally {Gk}k∈N is a base of open neighborhoods for the identity in
(Isomd(K[[x]]), d∗). By the Hausdorff separation axiom we have

⋂
k∈N Gk = {I }. �

We are going to restrict the constructions made before to the Riordan group. Remember that for us the Riordan
group A(K[[x]]) is just A(K[[x]]) = {T ( f | g) / f, g ∈ K[[x]] with f (0), g(0) 6= 0}. Considering as a subgroup of
Isomd(K[[x]]) we have the obvious observation:

Proposition 32. (A(K[[x]]), d∗) is a non-Archimedean metrizable topological group and d∗ is an invariant metric.
Moreover Ak(K[[x]]) = A(K[[x]])

⋂
Gk is a normal subgroup for any k ≥ 1.

We are going now to recognize, in terms of f and g, when T ( f | g) ∈ Ak(K[[x]]).
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Proposition 33. Let f =
∑

k≥0 ak xk and g =
∑

k≥0 bk xk with f (0) 6= 0, g(0) 6= 0. Then

(1) T ( f | g) ∈ A1(K[[x]]) if and only if a0 = b0.
(2) T ( f | g) ∈ A2(K[[x]]) if and only if a0 = b0 = 1 and a1 = b1.
(3) If k ≥ 3, T ( f | g) ∈ Ak(K[[x]]) if and only if a0 = b0 = 1, a j = b j = 0 for 1 ≤ j ≤ k − 2 and ak−1 = bk−1.

The proof of this proposition follows easily from the algorithm for T ( f | g) at the end of Section 4.
Note also that the above proposition implies the following symmetry relation T ( f | g) ∈ Ak(K[[x]]) if and only if

T (g | f ) ∈ Ak(K[[x]]).
To finish we add the following comparison table between the standard and the T ( f | g) notations:

Name (d(t), h(t)) T ( f | g)

Pascal
(

1
1−t ,

1
1−t

)
T (1 | 1 − t)

Catalan
(

1−
√

1−4t
2t , 1−

√
1−4t

2t

)
T
(

1 |
2t

1−
√

1−4t

)
Stirling first kind

(
1, 1

t ln 1
1−t

)
T
(

−t
ln(1−t) |

−t
ln(1−t)

)
Stirling second kind

(
1, et

−1
t

)
T
(

t
et −1 |

t
et −1

)
d(t) = h(t) =

1−t−
√

1−6t+t2

2t

(
1−t−

√
1−6t+t2

2t ,
1−t−

√
1−6t+t2

2t

)
T

(
1 |

2t

1−t−
√

1−6t+t2

)
d(t) =

1
1−t−t2 , h(t) =

(1+t)
(1−t)(1−t−t2)

(
1

1−t−t2 ,
(1+t)

(1−t)(1−t−t2)

)
T

(
1−t
1+t |

(1−t)(1−t−t2)
1+t

)
Appel subgroup element (d(t), 1) T (d | 1)

Associated subgroup element (1, h(t)) T
(

1
h |

1
h

)
Bell subgroup element (d(t), d(t)) T

(
1 |

1
d

)
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