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Abstract

In Fractional Calculus (FC), the Laplace and the Fourier integral trans-
forms are traditionally employed for solving different problems. In this pa-
per, we demonstrate the role of the Mellin integral transform in FC. We
note that the Laplace integral transform, the sin- and cos-Fourier trans-
forms, and the FC operators can all be represented as Mellin convolution
type integral transforms. Moreover, the special functions of FC are all
particular cases of the Fox H-function that is defined as an inverse Mellin
transform of a quotient of some products of the Gamma functions.

In this paper, several known and some new applications of the Mellin
integral transform to different problems in FC are exemplarily presented.
The Mellin integral transform is employed to derive the inversion formu-
las for the FC operators and to evaluate some FC related integrals and in
particular, the Laplace transforms and the sin- and cos-Fourier transforms
of some special functions of FC. We show how to use the Mellin integral
transform to prove the Post-Widder formula (and to obtain its new modi-
fication), to derive some new Leibniz type rules for the FC operators, and
to get new completely monotone functions from the known ones.
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1. Introduction

Like in the classical Calculus and in (integer order) differential equa-
tions, the Laplace and the Fourier integral transforms are routinely em-
ployed in Fractional Calculus (FC) in general, and especially in fractional
order differential equations. In some cases, this is inevitable. Thus the Riesz
and the Riesz-Feller fractional derivatives are defined as pseudo-differential
operators in terms of the Fourier and the inverse Fourier transforms (see
e.g. [6], [9] or [25]). Another prominent example is given by the Laplace
transform formulas for the Caputo and the Riemann-Liouville fractional
derivatives that are routinely used in solving of fractional differential equa-
tions ([24], [25], [31]).

The aim of this paper is to demonstrate the role of the Mellin integral
transform in FC and to show that applying the Mellin transform can essen-
tially simplify some of the FC operations and derivations. Until now, the
Mellin integral transform was only sporadically employed in the FC publi-
cations. We mention here e.g. the papers [11] and [25], where the Mellin
integral transform was used to get a representation of the Green function for
the space-time fractional diffusion equation in terms of the Mellin-Barnes
integrals (Fox H-function) and to analyze its properties. In [19], [20], the
mixed operators of the Erdélyi-Kober type were shown to be generating
operators for the integral transforms of Mellin convolution type. In partic-
ular, the hyper-Bessel differential operator is a generating operator for the
Obrechkoff transform and for the related generalized Hankel transform, see
details in [1], [4], [15, Ch.3], [20], [23], etc. Leibniz type rules for several FC
operators were deduced in [34], [36] by applying the technique of the Mellin
integral transform. Of course, the Mellin integral transform was employed
in connection with the FC special functions, like the Mittag-Leffler and the
Wright functions and their generalizations. These functions are particular
cases of the Fox H-function that can be interpreted as an inverse Mellin
transform (see e.g. [15], [16], [18], [20], [22], [25], to refer to only few of
many publications). Finally, we mention the book [36], where a theory of
the integral transforms of the Mellin convolution type and some of its ap-
plications, also in connection with the FC operators, was presented. Some
of the examples we deal with in this paper are motivated by [36].

In this paper, we first emphasize that many of the FC operators like
the Riemann-Liouville and the Erdélyi-Kober derivatives and integrals can
be interpreted as Mellin convolution type integral transforms. Using this
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interpretation, the inversion formulas as well as some important formulas
for the compositions of the FC operators can be easily deduced. Moreover,
the Laplace integral transform and the sin- and cos-Fourier transforms are
all of Mellin convolution type, too. This fact allows us, among many other
things, to evaluate the Laplace and the sin- and cos-Fourier transforms of
the FC special functions in a unified manner. Further applications of the
Mellin integral transform in FC we deal with in this paper are evaluation
of some FC related integrals and derivation of important formulas like the
Post-Widder inversion formula for the Laplace transform and the Leibniz
type rules for the FC operators. By means of the Mellin integral trans-
form, we can even easily prove that some of the special functions of FC
are completely monotone. Note that the above mentioned list of applica-
tions of the Mellin transform in FC is far from being complete, with many
others contained in our works and in the works of different authors. By
this survey paper we hope to make the Mellin transform more familiar to
the FC researchers and to activate its usage in FC. Because the primary
aim of this paper is to demonstrate how to use the Mellin transform for
FC problems, we often do manipulations with integrals, limits, series, etc.
without a rigorous mathematical justification for the following reasons: On
the one hand, once a final formula is deduced, the necessary justification
can be often easily found in the suitable spaces of functions. On the other
hand, all manipulations with the Mellin integral transform we present in
this paper are valid in the special functional spaces M−1

c,γ(L) that we do
not introduce to make the paper understandable for FC people working in
applications, too (see [36] for more details).

The remainder of this paper is organized as follows. In Section 2, basic
definitions and properties of the Mellin integral transform are given. In
particular, we specify the Mellin integral transforms of some important FC
special functions. Section 3 is devoted to representations of the FC opera-
tors in the form of Mellin convolution operators. These representations are
explored for inversion of the FC integral operators and for construction of
their compositions. In Section 4, a rather general method for evaluation of
some improper integrals is discussed. In particular, this method is applied
for evaluation of the Laplace and the sin- and cos-Fourier transforms of
some special functions of FC. In Section 5, a new method for derivation of
the Post-Widder formula by means of the Mellin transform is presented.
With this method, a new real-line inversion formula of the Post-Widder
type is deduced. Section 6 presents a very powerful method for derivation
of the Leibniz type rules for the FC operators and for other operators of
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Mellin convolution type. Finally, in Section 7, the Mellin integral trans-
form is employed to give a new proof that some of the FC special functions
are completely monotone functions.

2. Basic definitions and properties of the Mellin transform

This section is devoted to a presentation of some basic facts from the
theory of the Mellin integral transform that are used in the further dis-
cussions. For more information regarding the Mellin integral transform
including its properties and particular cases we refer the interested reader
to e.g. [2], [3], [5], [15], [20], [28], [30], [32], and [35].

The Mellin integral transform of a sufficiently well-behaved function f
is defined as

M{f(t); s} = f∗(s) =
∫ +∞

0
f(t)ts−1dt, (2.1)

and the inverse Mellin integral transform as

f(t) = M−1{f∗(s); t} =
1

2πi

∫ γ+i∞

γ−i∞
f∗(s)t−sds, t > 0, γ = �(s), (2.2)

where the integral is understood in the sense of the Cauchy principal value.
It is worth mentioning that the Mellin integral transform can be ob-

tained from the Fourier integral transform by the variables substitution
t = ex and by rotation of the complex plane by a right angle:

M{f(t); s} =
∫ +∞

0
f(t)ts−1dt =

∫ +∞

−∞
f(ex)eix(−is)dx = F{f(ex);−is},

where F{f(x);κ} denotes the Fourier transform of the function f at the
point κ. Accordingly, the inverse Mellin transform and the convolution for
the Mellin transform can be obtained by the same substitutions from the
inverse Fourier transform and the convolution for the Fourier transform.

The integral in the right-hand side of (2.1) is well defined e.g. for
the functions f ∈ Lc(ε, E) , 0 < ε < E < ∞ continuous in the intervals
(0, ε] , [E,+∞) and satisfying the estimates |f(t)| ≤ M t−γ1 for 0 < t < ε ,
|f(t)| ≤ M t−γ2 for t > E , where M is a constant and γ1 < γ2 . If these
conditions hold true, the Mellin transform f∗(s) exists and is an analytical
function in the vertical strip γ1 < �(s) < γ2.

If a function f is piecewise differentiable, f(t) tγ−1 ∈ Lc(0,+∞), and
its Mellin integral transform f∗(s) is given by (2.1) then the formula (2.2)
holds true at all points, where the function f is continuous.

The Mellin convolution

(f
M∗ g)(x) =

∫ +∞

0
f(x/t)g(t)

dt

t
(2.3)
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plays a very essential role in the further discussions. It is well known (see
e.g. [35]) that if f(t) tγ−1 ∈ L(0,∞) and g(t) tγ−1 ∈ L(0,∞) then the

Mellin convolution h = (f
M∗ g) given by (2.3) is well defined, satisfies the

important property

M

{
(f

M∗ g)(x); s
}

= M {f(t); s} · M {g(t); s} , (2.4)

and h(x)xγ−1 ∈ L(0,∞). Moreover, the Parseval equality∫ +∞

0
f(x/t)g(t)

dt

t
=

1
2πi

∫ γ+i∞

γ−i∞
f∗(s)g∗(s)x−sds (2.5)

holds true.
In the further discussions, we often use some of the elementary proper-

ties of the Mellin integral transform that are summarized in the remainder
of this section.

Denoting by M↔ the juxtaposition of a function f with its Mellin trans-
form f∗ , the main rules are:

f(at) M↔ a−sf∗(s), a > 0, (2.6)

tαf(t) M↔ f∗(s + α), (2.7)

f(tα) M↔ 1
|α|f

∗(s/α), α 	= 0, (2.8)

f (n)(t) M↔ Γ(n + 1 − s)
Γ(1 − s)

f∗(s − n) (2.9)

if lim
t→0

ts−k−1f (k)(t) = 0, k = 0, 1, . . . , n − 1,

n∏
j=1

(
α + j +

1
β

t
d

dt

)
f(t) M↔ Γ(1 + α + n − s/β)

Γ(1 + α − s/β)
f∗(s), (2.10)

n−1∏
j=0

(
α + j − 1

β
t
d

dt

)
f(t) M↔ Γ(α + n + s/β)

Γ(α + s/β)
f∗(s). (2.11)

Let us mention that the variables substitution t = 1/τ in the Parseval
equality (2.5) along with the properties (2.7), (2.8) of the Mellin integral
transform leads to a very useful representation∫ +∞

0
f(xt)g(t)dt =

1
2πi

∫ γ+i∞

γ−i∞
f∗(s)g∗(1 − s)x−sds. (2.12)

The Mellin transforms of the elementary and many of the special func-
tions can be found e.g. in [5], [28], [30], and [32]. We specify here the Mellin
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transform formulas that are used in the further discussions, namely:

e−tα M↔ 1
|α|Γ(s/α) if �(s/α) > 0, (2.13)

(1 − tβ)α−1
+

Γ(α)
M↔ Γ(s/β)

|β|Γ(s/β + α)
if �(α) > 0, �(s/β) > 0, (2.14)

(tβ − 1)α−1
+

Γ(α)
M↔ Γ(1 − α − s/β)

|β|Γ(1 − s/β)
if 0 < �(α) < 1 −�(s/β), (2.15)

sin(2
√

t)√
π

M↔ Γ(s + 1/2)
Γ(1 − s)

if |�(s)| < 1/2, (2.16)

cos(2
√

t)√
π

M↔ Γ(s)
Γ(1/2 − s)

if 0 < �(s) < 1/2, (2.17)

Eα,β(−t) M↔ Γ(s)Γ(1 − s)
Γ(β − αs)

if 0 < �(s) < 1, 0 < α < 2 (2.18)

or 0 < �(s) < min{1,�(β)/2}, α = 2,

Wλ,μ(−t) M↔ Γ(s)
Γ(μ − λs)

if 0 < �(s), λ < 1 or (2.19)

0 < �(s) < �(μ)/2 − 1/4, λ = 1,

Hm,n
p,q

(
(α, a)p
(β, b)q

∣∣∣∣t
)

M↔
∏m

j=1 Γ(βj +bjs)
∏n

j=1 Γ(1−αj−ajs)∏p
j=n+1 Γ(αj +ajs)

∏q
j=m+1 Γ(1−βj−bjs)

(2.20)

if − min
1≤j≤m

�(βj)/bj <�(s)< min
1≤j≤n

(1−�(αj))/aj

and
1) a∗ > 0 or

2) a∗ = 0, δ�(s)<
q−p

2
− 1 + �

⎛
⎝ p∑

j=1

αj−
q∑

j=1

βj

⎞
⎠ ,

where a∗ and δ are defined as in the formula (2.24).
In the formulas given above, we used the notations

tα+ :=

{
tα, t > 0,
0, t ≤ 0,

for the truncated power function,

Eα,β(z) :=
∞∑

n=0

zn

Γ(α n + β)
, α > 0

for the Mittag-Leffler function, and
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Wλ,μ(z) :=
∞∑

n=0

zn

n!Γ(λn + μ)
, λ > −1

for the Wright function. By Hm,n
p,q the Fox H-function is denoted. Because

all elementary functions and most of the special functions including the so-
called special functions of FC are known to be particular cases of the Fox H-
function, and the Mellin transform (2.20) of the H-function is represented
as a quotient of products of Gamma functions, the Mellin transforms of
most of the known functions have the same form, too (see e.g. (2.13)-
(2.20). It is exactly this fact that makes the Mellin transform technique
extremely powerful in general and in applications to the FC problems.

For the reader’s convenience, the Fox H-function is introduced and
shortly discussed in the rest of this section. It is defined by means of a
contour integral of Mellin-Barnes type ([8], [14], [15], [26], [29], [32], [33],
[36])

Hm,n
p,q

(
(α1, a1), . . . , (αp, ap)
(β1, b1), . . . , (βq, bq)

∣∣∣∣z
)

=
1

2πi

∫
L

Φ(s)z−sds, (2.21)

where z 	= 0, 0 ≤ m ≤ q, 0 ≤ n ≤ p, αi ∈ IC, ai > 0, 1 ≤ i ≤ p, βi ∈ IC,
bi > 0, 1 ≤ i ≤ q,

Φ(s) =
∏m

i=1 Γ(βi + bis)
∏n

i=1 Γ(1 − αi − ais)∏p
i=n+1 Γ(αi + ais)

∏q
i=m+1 Γ(1 − βi − bis)

, (2.22)

an empty product, if it occurs, is taken to be one, and the infinite contour
L that separates the poles of

∏m
i=1 Γ(βi + bis) from the poles of

∏n
i=1 Γ(1−

αi − ais) can be of the following three types:

1) L = Li∞ if a∗ > 0, |argz| < a∗π/2 or a∗ ≥ 0, |argz| = a∗π/2, γδ < −�μ;
2) L = L−∞ if δ > 0, 0 < |z| < ∞ or δ = 0, 0 < |z| < β

or δ = 0, |z| = β, a∗ ≥ 0, �μ < 0;
3) L = L+∞ if δ < 0, 0 < |z| < ∞ or δ = 0, |z| > β

or δ = 0, |z| = β, a∗ ≥ 0, �μ < 0.

In the conditions 1) – 3), μ, γ, and β are defined by

μ =
p − q

2
+ 1 +

q∑
i=1

βi −
p∑

i=1

αi, γ = lim
s→∞

s∈Li∞

�s, β =
p∏

i=1

a−ai
i

q∏
i=1

bbi
i , (2.23)

and a∗, δ are given by

a∗ =
n∑

i=1

ai −
p∑

i=n+1

ai +
m∑

i=1

bi −
q∑

i=m+1

bi, δ =
q∑

i=1

bi −
p∑

i=1

ai. (2.24)

The contours Li∞, L−∞, L+∞ are defined as follows:
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The contour L = L−∞ lies in a horizontal strip �(s) ≤ C and goes from
the point −∞ + iy1 to the point −∞ + iy2, y1 < y2;

The contour L = L+∞ lies in a horizontal strip �(s) ≤ C and goes from
the point +∞ + iy1 to the point +∞ + iy2, y1 < y2;

The contour L = Li∞ lies in a vertical strip �(s) ≤ C and goes from
the point γ − i∞ to the point γ + i∞.

In particular, if the inequality max
1≤i≤m

�(−βi/bi) < min
1≤i≤n

�((1 − αi)/ai)

is fulfilled, the contour Li∞ is a straight line �(s) = γ, where γ satisfies the
inequalities max

1≤i≤m
�(−βi/bi) < γ < min

1≤i≤n
�((1 − αi)/ai) and the formula

(2.21) is nothing else than the inverse Mellin transform of the function f∗
defined by the formula (2.22). In the case, the contour L is either L−∞
or L+∞, the integral in the right-hand side of (2.21) can be evaluated by
means of the Cauchy residue theorem, the Jordan lemma, and the well
known formula

Ress=−nΓ(s) =
(−1)n

n!
, n = 0, 1, 2, . . .

that leads to a series representation of the H-function as a linear combina-
tion of generalized hypergeometric series (see e.g. [28] or [32]).

For some values of the parameters of the H-function, several conditions
out of the conditions given in 1) – 3) can be simultaneously satisfied. In
this case, the corresponding integrals are equal each to other due to the
Cauchy integral theorem.

In fact, the conditions specified in 1) – 3) are nothing else than the
convergence conditions of the integral from the right-hand side of (2.21).
They can be easily obtained from the known asymptotical formulas for the
Gamma function (see e.g. [28] or [36]):

Γ(s) =
√

2πss− 1
2 e−s(1 + O(s−1)), |arg(s)| < π, |s| → ∞, (2.25)

Γ(s + α)
Γ(s + β)

= sα−β(1 + O(s−1)), |arg(s)| < π, α, β ∈ IC, |s| → ∞, (2.26)

|Γ(x+ iy)| =
√

2π|y|x− 1
2 e−π|y|/2(1+O(|y|−1)), x, y ∈ IR, |y| → ∞. (2.27)

More details and results regarding the H-function can be found e.g. in
the books [14], [15], [29], [32], [33], or [36].

For other properties of the Mellin transform and applications of the
Mellin transform technique, not mentioned here, we refer the interested
reader to the valuable works [2], [3], [27].
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3. FC operators as Mellin convolution type transforms

We start with the Erdélyi-Kober fractional integrals that are defined as
follows (see e.g. [15], [17], [36]):

(Iγ,δ
β f)(x)=

β

Γ(δ)
x−β(γ+δ)

∫ x

0
(xβ−tβ)δ−1tβ(γ+1)−1f(t)dt, β > 0, �(δ) > 0,

(3.1)

(Kτ,α
β )f(x)=

β

Γ(α)
xβτ

∫ ∞

x
(tβ−xβ)α−1t−β(τ+α−1)−1f(t)dt, β > 0, �(α) > 0.

(3.2)
When δ = 0 or α = 0, respectively, these operators are defined as the
identity operator. For β = 1, the Erdélyi-Kober fractional integrals (3.1),
(3.2) are reduced to the Riemann-Liouville fractional integrals with the
power weights:

(x−γ−δIδ
0+xγf)(x) =

1
Γ(δ)

x−γ−δ

∫ x

0
(x − t)δ−1tγf(t)dt, �(δ) > 0, (3.3)

(xτIα
−x−τ−αf)(x) =

1
Γ(α)

xτ

∫ ∞

x
(t − x)α−1t−τ−αf(t)dt, �(α) > 0. (3.4)

The operators (3.1) and (3.2) can be represented in the form of Mellin
convolutions (2.3):

(Iγ,δ
β f)(x) = (k1

M∗ f)(x), (Kτ,α
β f)(x) = (k2

M∗ f)(x), (3.5)
where

k1(x) =
β

Γ(δ)
x−β(γ+δ)(xβ − 1)δ−1

+ , k2(x) =
β

Γ(α)
xβτ (1 − xβ)α−1

+ . (3.6)

The Parseval equality (2.5) for the Mellin transform along with the formulas
(2.7), (2.14), and (2.15) readily leads to the useful representations ([15],
[36])

(Iγ,δ
β f)(x) =

1
2πi

∫ γ+i∞

γ−i∞

Γ(1 + γ − s/β)
Γ(1 + γ + δ − s/β)

f∗(s)x−sds, (3.7)

(Kτ,α
β )f(x) =

1
2πi

∫ γ+i∞

γ−i∞

Γ(τ + s/β)
Γ(τ + α + s/β)

f∗(s)x−sds (3.8)

of the Erdélyi-Kober fractional integrals.
Now, we show how to use these representations to get the inversion

formulas and formulas for compositions, say of two Erdélyi-Kober fractional
integrals. Similarly, compositions of their finite number m ≥ 2 have been
extensively studied in [15], [36], and called there as multiple Erdélyi-Kober
operators.
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First we notice that the Parseval equality (2.5) can be applied for a
composition of several operators of Mellin convolution type, say, with the
kernels k1 and k2, in the form

(K1f)(x) =
∫ +∞

0
k1(x/t)g(t)

dt

t
, (K2f)(x) =

∫ +∞

0
k2(x/t)g(t)

dt

t
,

and we get the representation

(K2 ◦ K1)(x) =
1

2πi

∫ γ+i∞

γ−i∞
k∗

2(s)k
∗
1(s)f

∗(s)x−sds (3.9)

for the composition K2 ◦ K1.
In particular, the known semigroup properties of the Erdélyi-Kober

fractional integrals (see e.g. [15])

Iγ+δ,α
β ◦ Iγ,δ

β = Iγ,δ+α, Kτ+α,δ
β ◦ Kτ,α

β = Kτ,α+δ
β

immediately follow from the representations (3.7), (3.8), and (3.9). Say, in
the case of the first formula we get

(Iγ+δ,α
β ◦Iγ,δ

β f)(x)=
1

2πi

∫ γ+i∞

γ−i∞

Γ(1 + γ + δ − s/β)
Γ(1 + γ + δ + α − s/β)

Γ(1 + γ − s/β)
Γ(1 + γ + δ − s/β)

×

f∗(s)x−sds=
1

2πi

∫ γ+i∞

γ−i∞

Γ(1 + γ − s/β)
Γ(1 + γ + δ + α − s/β)

f∗(s)x−sds=(Iγ,δ+α
β f)(x).

To obtain the inverse operator for, say, Iγ,δ
β , let us denote (Iγ,δ

β f)(x) by
g(x). Then it follows from (3.7) that

g∗(s) =
Γ(1 + γ − s/β)

Γ(1 + γ + δ − s/β)
f∗(s)

and we get the inversion formula in the Mellin transform space

f∗(s) =
Γ(1 + γ + δ − s/β)

Γ(1 + γ − s/β)
g∗(s) (3.10)

that can be represented in the form

f∗(s) =
Γ(1 + γ + δ − s/β)
Γ(1 + γ + n − s/β)

Γ(1 + γ + n − s/β)
Γ(1 + γ − s/β)

g∗(s) (3.11)

with n ∈ IN, n − 1 < δ ≤ n.

Now we use the representation (3.9) and the formulas (2.10) and (3.7)
to get the inversion of the Mellin transform (3.11) in the form

f(x)=(Dγ,δ
β g)(x) :=

n∏
j=1

(γ+j+
1
β

x
d

dx
)(Iγ+δ,n−δ

β g)(x), n ∈ IN, n−1 < δ ≤ n.

(3.12)
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The operator Dγ,δ
β is called the Erdélyi-Kober fractional derivative ([15],

[36]). The same method works for inversion of the Erdélyi-Kober fractional
integral Kτ,α

β . In this case, we apply the formulas (2.11) and (3.8) and get

f(x) = (P τ,α
β g)(x) :=

n−1∏
j=0

(τ + j − 1
β

x
d

dx
)(Kτ+α,n−α

β g)(x) (3.13)

with n ∈ IN, n−1 < α ≤ n. Of course, like in the case of the Erdélyi-
Kober fractional integrals, the Erdélyi-Kober fractional derivatives can be
represented in form of the Mellin-Barnes integrals

(Dγ,δ
β f)(x) =

1
2πi

∫ γ+i∞

γ−i∞

Γ(1 + γ + δ − s/β)
Γ(1 + γ − s/β)

f∗(s)x−sds, (3.14)

(P τ,α
β )f(x) =

1
2πi

∫ γ+i∞

γ−i∞

Γ(τ + α + s/β)
Γ(τ + s/β)

f∗(s)x−sds. (3.15)

Finally, we demonstrate how to use the Mellin transform technique to
invert the Riemann-Liouville integral

(Iα
0+f)(x) =

1
Γ(α)

∫ x

0
(x − t)α−1f(t)dt, �(α) > 0 (3.16)

that can be represented as a Mellin convolution operator

g(x) = (Iα
0+f)(x) = (k(t)

M∗ tαf(t))(x), k(t) =
1

Γ(α)
(t − 1)α−1

+ . (3.17)

The convolution formula (2.4) along with the formulas (2.7) and (2.15)
leads to the equation

g∗(s) =
Γ(1 − α − s)

Γ(1 − s)
f∗(s + α) (3.18)

that can be solved for f∗:

f∗(s) =
Γ(1 + α − s)

Γ(1 − s)
g∗(s − α). (3.19)

Let us represent the right-hand side of the last equality in the form
Γ(1 + α − s)

Γ(1 − s)
g∗(s − α) =

Γ(1 + n − s)
Γ(1 − s)

h∗(s − n) (3.20)

with

h∗(s) :=
Γ(1 + α − n − s)

Γ(1 − s)
g∗(s + n − α), n ∈ IN, n−1 < α ≤ n. (3.21)

The formula (2.9) and the representations (3.9), (3.17), (3.19)-(3.21) lead
then to the well known inversion formula

f(x) = (Dα
0+g)(x) :=

dn

dxn
(In−α

0+ g)(x), n ∈ IN, n − 1 < α ≤ n

for the Riemann-Liouville integral.
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4. Evaluation of improper integrals containing the FC functions

A very general method of evaluation of integrals of Mellin convolution
type containing special functions of hypergeometric type was suggested in
[28]. Here we demonstrate this method to evaluate some FC integrals. The
idea is a very simple one, namely, to use the Mellin convolution formula
(2.4), the Parseval equality (2.5) and its modification (see (2.12)):∫ +∞

0
f(t)g(xt)dt =

1
2πi

∫ γ+i∞

γ−i∞
f∗(1 − s)g∗(s)x−sds. (4.1)

In this case, both f and g are the functions of hypergeometric type, their
Mellin transforms are some quotients of products of Gamma functions (or
some linear combinations of such quotients) and thus the improper inte-
gral from the left-hand side of (4.1) can be represented as a Mellin-Barnes
integral or the Fox H-function from the right-hand side of (4.1). In the
reference book [32], an extensive list of particular cases of the H-function
is given, so that in many cases the H-functions can be written in form of
more simple elementary and special functions. In the general case, series
representations of the H-function as linear combinations of some hyperge-
ometric functions can be determined in explicit form. In this section, we
illustrate this method of evaluation of integrals on some examples related
to FC.

For example, let us evaluate the integral (see e.g. [31])

I1(x) =
1

Γ(ν)

∫ x

0
(x − t)ν−1Eα,β(−tα)tβ−1dt, 0 < α ≤ 2, 0 < ν.

This integral can be represented as the Mellin convolution

I1(x) = (f
M∗ g)(x), f(t) =

1
Γ(ν)

(t−1)ν−1
+ , g(t) = tβ+ν−1Eα,β(−tα). (4.2)

The formulas (2.7), (2.8), and (2.18) give us (under suitable restrictions on
the parameters) the Mellin transform correspondence

tγEα,β(−tα) M↔ 1
α

Γ((s + γ)/α)Γ(1 − (s + γ)/α)
Γ(β − γ − s)

. (4.3)

In particular, we get

tβ+ν−1Eα,β(−tα) M↔ 1
α

Γ((s + β + ν − 1)/α)Γ(1 − (s + β + ν − 1)/α)
Γ(1 − ν − s)

that together with the formulas (2.8), (4.2) and the Mellin convolution
formula (2.4) leads to the representation

I∗1 (s) =
1
α

Γ((s + β + ν − 1)/α)Γ(1 − (s + β + ν − 1)/α)
Γ(1 − ν − s)

Γ(1 − ν − s)
Γ(1 − s)
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=
1
α

Γ((s + β + ν − 1)/α)Γ(1 − (s + β + ν − 1)/α)
Γ(1 − s)

.

Finally, the last formula and the Mellin transform correspondence (4.3)
allows us to represent the integral I1 in the form

I1(x) = xβ+ν−1Eα,β+ν(−xα).

Of course, in the case of the integral I1(x) we could use the series repre-
sentation of the Mittag-Leffler function and fractional order term-by-term
integration of the series to get the same result.

Let us consider a more complicated example ([12])

I2(x) =
∫ ∞

0
Eα(−tα)Wλ,μ(−xt)dt, 0 < α ≤ 2, 0 < λ ≤ 1

with the Mittag-Leffler function Eα(z) := Eα,1(z) and the Wright function
Wλ,μ(z). Using the Parseval equality (4.1) and the Mellin transform formu-
las (2.19) for the Wright function and (4.3) for the Mittag-Leffler function,
we get

I2(x) =
1

2πi

∫ γ+i∞

γ−i∞

1
α

Γ((1 − s)/α)Γ(1 − (1 − s)/α)
Γ(s)

Γ(s)
Γ(μ − λs)

x−sds

=
1

2πi

∫ γ+i∞

γ−i∞

1
α

Γ((1 − s)/α)Γ(1 − (1 − s)/α)
Γ(μ − λs)

x−sds.

The variables substitution 1 − (1 − s)/α = p in the last integral gives us
the representation

I2(x) = xα−1 1
2πi

∫ γ+i∞

γ−i∞

Γ(1 − p)Γ(p)
Γ(μ + α − 1 − λαp)

(xα)−pdp

that along with the relation (2.18) leads to the final result

I2(x) = xα−1Eλα, μ+α−1(−xα).

In the case α = 1, the Mittag-Leffler function Eα is reduced to the ex-
ponential function and the integral I2 can be interpreted as the Laplace
transform of the Wright function Wλ,μ with 0 < λ ≤ 1. Thus we obtain
the well known result (see e.g. [12])

L {Wλ,μ(−t); p} =
1
p
Eλ,μ

(
−1

p

)
,

where

L {f(t); p} :=
∫ ∞

0
f(t) e−pt dt, �(p) > cf , (4.4)

is the Laplace transform of the function f .
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Let us mention that the Laplace transform (4.4) coincides with the left-
hand side of the Parseval equality (4.1) with the function g(t) = exp(−t)
and can be represented in the form

L {f(t); p} =
1

2πi

∫ γ+i∞

γ−i∞
f∗(1 − s)Γ(s)p−sds, (4.5)

in view of the Mellin transform formula (2.13). This representation along
with the Mellin transform formulas for the FC special functions (e.g. (2.19)
for the Wright function and (4.3) for the Mittag-Leffler function) allows us
to easily determine the Laplace transforms of the FC special functions. Say,
let us evaluate the Laplace transform of the function f(t) = tμ−1Wλ,μ(−tλ)
with −1 < λ < 0 (see e.g. [12]) that we denote by f̃(p). The Mellin
transform correspondence

tμ−1Wλ,μ(−tλ) M↔ − 1
λ

Γ((s + μ − 1)/λ)
Γ(1 − s)

(4.6)

follows from the formulas (2.7), (2.8), and (2.19). Applying the formula
(4.5) we get

f̃(p) = − 1
λ

1
2πi

∫ γ+i∞

γ−i∞

Γ((μ − s)/λ)
Γ(s)

Γ(s)p−sds

= − 1
λ

1
2πi

∫ γ+i∞

γ−i∞
Γ((μ − s)/λ)p−sds.

The Mellin transform formula (2.13) along with the formulas (2.7), (2.8)
leads to the final result:

L
{
tμ−1Wλ,μ(−tλ); p

}
= p−μexp(−p−λ), −1 < λ < 0.

Because the Mellin transform formulas for the sin- and cos-functions are
known (see (2.16) and (2.17)), the same technique we apply for the Laplace
transform allows us easily to treat the sin- and cos-Fourier transforms

Ic(x) =
1
π

∫ ∞

0
f(t) cos(xt) dt, x > 0,

Is(x) =
1
π

∫ ∞

0
f(t) sin(xt) dt, x > 0

of the special functions of FC. In this case we prefer to employ the Parseval
equality ∫ +∞

0
f(t)g(xt)dt =

1
x

1
2πi

∫ γ+i∞

γ−i∞
f∗(s)g∗(1 − s)xsds (4.7)

that is obtained from (4.1) via the variables substitution 1 − s = s1 and
then denoting s1 by s. Using (4.7) and the formulas (2.6), (2.8), (2.16),
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and (2.17), the integrals Ic and Is can be rewritten in the form

Ic(x) =
1√
πx

1
2πi

∫ γ+i∞

γ−i∞
f∗(s)

Γ(1/2 − s/2)
2sΓ(s/2)

xs ds , x > 0 , 0 < γ < 1 ,

(4.8)

Is(x) =
1√
πx

1
2πi

∫ γ+i∞

γ−i∞
f∗(s)

Γ(1 − s/2)
2sΓ(1/2 + s/2)

xs ds , x > 0 , 0 < γ < 2.

(4.9)
In particular, in [25] the representations (4.8) and (4.9) were applied to
represent the fundamental solution to the space-time-fractional diffusion-
wave equation in form of a Mellin-Barnes integral. In [11], [21], and [25],
the fundamental solution Gα to the fractional wave equation of the order
α, 1 < α < 2 was represented as the cos-Fourier transform

Gα(x, t) =
1
π

∫ ∞

0
cos(κx)Eα(−καtα) dκ, x ∈ IR, t > 0. (4.10)

Now, we demonstrate how to apply the formula (4.8) to represent Gα in
terms of elementary functions for every α, 1 < α < 2. Indeed, for x = 0
the integral from the right-hand side of (4.10) is reduced to the Mellin
integral transform of the Mittag-Leffler function Eα at the point s = 1

α . It
converges under the conditions α > 1 and its value is given by the formula
(4.3):

1
π

∫ ∞

0
Eα(−καtα) dκ =

1
παt

∫ ∞

0
Eα(−u)u

1
α
−1du (4.11)

=
1

παt

Γ( 1
α )Γ(1 − 1

α)
Γ(1 − α 1

α )
= 0, t > 0,

because the Gamma function has a pole at the point z = 0: 1/Γ(0) = 0.
Since Gα is an even function, we consider the integral from the right-

hand side of (4.10) just in the case x = |x| > 0. The formulas (2.6), (4.3),
and (4.8) lead to the representation

Gα(x, t) =
1√
παx

1
2πi

∫ γ+i∞

γ−i∞

Γ
(

s
α

)
Γ
(
1 − s

α

)
Γ(1 − s)

Γ
(

1
2 − s

2

)
2sΓ

(
s
2

) (
t

x

)−s

ds (4.12)

of the fundamental solution Gα in terms of a Mellin-Barnes integral. The
representation (4.12) can be simplified to the form

Gα(x, t) =
1

αx

1
2πi

∫ γ+i∞

γ−i∞

Γ( s
α)Γ(1 − s

α )
Γ(1 − s

2)Γ( s
2 )

(
t

x

)−s

ds (4.13)

by using the duplication formula for the Gamma function Γ(1 − s).
Now let us represent the Mellin-Barnes integral (4.13) in the form of

some convergent series that can be summated in explicit form in terms
of some elementary functions. The general theory of the Mellin-Barnes
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integrals presented e.g. in [28] (see also [26]) says that the integral in
(4.13) is convergent under the condition 0 < α < 2. For 0 < t < x, the
contour of integration in the integral (4.13) can be transformed to the loop
L−∞ starting and ending at infinity and encircling all poles sk = −αk, k =
0, 1, 2, . . . of the function Γ(s/α). Taking into account the relation

ress=−kΓ(s) =
(−1)k

k!
, k = 0, 1, 2, . . . ,

the residue theorem provides us with the desired series representation:

Gα(x, t) =
1

αx

∞∑
k=0

α(−1)k

k!
Γ(1 + k)

Γ
(−α

2 k
)
Γ
(
1 − α

2 k
) ( t

x

)αk

(4.14)

that can be transformed to the form

Gα(x, t) = − 1
πx

∞∑
k=1

sin(απk/2)
(
− tα

xα

)k

(4.15)

by using the reflection formula for the Gamma function.
Now we use the summation formula
∞∑

k=1

rk sin(ka) = �
( ∞∑

k=1

rkeika

)
= �

(
reia

1 − reia

)
=

r sin a

1 − 2r cos a + r2

(4.16)
that is valid for a ∈ IR, |r| < 1 to summate the series in (4.15) and obtain
the nice representation

Gα(x, t) =
1
π

xα−1tα sin(πα/2)
t2α + 2xαtα cos(πα/2) + x2α

(4.17)

for the Green function Gα that is valid for 0 < t < x.
In the case 0 < x < t we can transform the contour of integration in

(4.13) to the loop L+∞ encircling all poles sk = α(1 + k), k = 0, 1, 2, . . .
of the function Γ

(
1 − s

α

)
. Applying the residue theorem we arrive at the

representation

Gα(x, t) =
1

αx

∞∑
k=0

α(−1)k

k!
Γ(1 + k)

Γ
(

α
2 (k + 1)

)
Γ
(
1 − α

2 (k + 1)
) (x

t

)α(k+1)

(4.18)
that can be transformed to the form

Gα(x, t) = − 1
πx

∞∑
k=1

sin(απk/2)
(
−xα

tα

)k

(4.19)

by using the reflection formula for the Gamma function. The formula (4.16)
applied to the series from the right-hand side of (4.19) again leads to the
representation (4.17), this time for 0 < x < t. Finally, the validity of the
formula (4.17) for 0 < x = t follows from the principle of analytic contin-
uation for the Mellin-Barnes integrals. Thus the fundamental solution Gα
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for the fractional wave equation given by the improper integral (4.10) can
be represented in the form

Gα(x, t) =
1
π

|x|α−1tα sin(πα/2)
t2α + 2|x|αtα cos(πα/2) + |x|2α

, t > 0, x ∈ IR (4.20)

for 1 < α < 2.

5. The Post-Widder formula

In this section, the Mellin transform technique is applied to deduce
the Post-Widder inversion formula for the Laplace transform and its new
modification. Because the Mellin transforms of many special functions and
the Mellin convolution type integral transforms with these functions in
the kernel are related to quotients of some products of Gamma functions,
it is no wonder that the known formulas for the Gamma function play an
important role both in the theory of the special functions of hypergeometric
type and in the theory of integral transforms with these functions in the
kernel.

In this section we demonstrate how the known formula

Γ(s) = lim
n→∞

n!ns

s(s + 1) · · · (s + n)
, s 	= 0,−1,−2, . . . (5.1)

for the Gamma function leads to the Post-Widder formula ([13])

f(t) := L−1 {F (p); t} = lim
n→∞

(−1)n

n!

(n

t

)n+1
F (n)

(n

t

)
(5.2)

for the inverse Laplace transform of F (p) := L {f(t); p}.
For our aims, we need a simple consequence of the formula (5.1) in form

1
Γ(1 − s)

= lim
n→∞

(1 − s)(2 − s) · · · (n − s)
n!n−s

, s ∈ IC, (5.3)

and the representation (4.5) of the Laplace transform

F (p) := L {f(t); p} =
1

2πi

∫ γ+i∞

γ−i∞
f∗(1 − s)Γ(s)p−sds, (5.4)

from that we get the formula
F ∗(s) = f∗(1 − s)Γ(s) (5.5)

for the Mellin transforms of f and its Laplace transform F . It follows from
(5.5) that

f∗(s) =
F ∗(1 − s)
Γ(1 − s)

. (5.6)

We use now the formulas (2.6), (2.7), and (2.9) to get the Mellin transform
correspondence

(−1)n

n!

(n

t

)n+1
F (n)

(n

t

)
M↔ (1 − s)(2 − s) · · · (n − s)

n!n−s
F (1 − s),
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and thus the correspondence

lim
n→∞

(−1)n

n!

(n

t

)n+1
F (n)

(n

t

)
M↔ lim

n→∞
(1−s) · · · (n−s)

n!n−s
F (1−s) =

F ∗(1−s)
Γ(1−s)

according to the formula (5.3). Applying the formula (5.6), we arrive at
the Widder-Post formula (5.2). Note that the convolutional approach to
derive it has been a base yet in the pioneering book [13].

Now we illustrate how the Mellin transform technique can by employed
to deduce a new formula of the Post-Widder type (5.2). Again, we use the
formulas (5.3) and (5.6) that we combine to the representation

f∗(s) =
F ∗(1 − s)
Γ(1 − s)

= lim
n→∞

(1 − s)(2 − s) · · · (n − s)
n!n−s

F ∗(1 − s). (5.7)

Introducing a function H that satisfies the relation

H∗(s − n) =
F ∗(1 − s)

n−s
, (5.8)

by formulas (2.9) and (5.7) we get the representation

f(t) = lim
n→∞

1
n!

dn

dtn
H(t). (5.9)

Now let us determine the function H. From the equation (5.8) we first
obtain the formula

H∗(s) =
F ∗(1 − n − s)

n−n−s

and then the representation

H(t) =
1

2πi

∫ γ+i∞

γ−i∞
H∗(s)t−s ds =

1
2πi

∫ γ+i∞

γ−i∞

F ∗(1 − n − s)
n−n−s

t−s ds.

Variables substitution 1 − n − s = s1 leads then to the formula

H(t) =
ntn−1

2πi

∫ γ+i∞

γ−i∞
F ∗(s1)

(n

t

)−s1

ds1 = ntn−1F
(n

t

)
.

Combining this representation with the formula (5.9), we obtain a new
Post-Widder type formula for the inverse Laplace transform, namely

f(t) = lim
n→∞

1
(n − 1)!

dn

dtn

(
tn−1F

(n

t

))
. (5.10)

Real inversion formulas of Post-Widder type for convolutional type gen-
eralizations of the Laplace transform, as the Obrechkoff and the generalized
Obrechkoff transforms, using Mellin transform techniques, have been ob-
tained in other papers of ours as [1], [4], [20], etc.
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6. Leibniz type rules for the FC operators

In the theory of the special functions, some summation theorems for
the hypergeometric functions are known. Most of these summation theo-
rems can be interpreted as representations of some quotients of products
of Gamma functions in terms of infinite series. One of the most popular
summation theorem is the one for the Gauss hypergeometric function 2F1,
saying that

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, �(c − a − b) > 0, (6.1)

where the Gauss function is defined as the series

2F1(a, b; c; z) =
∞∑

n=0

(a)n (b)n
(c)n

zn

n!
(6.2)

for |z| ≤ 1 and �(c − a − b) > 0, and as an analytic continuation of this
series for other values of z. The expression (a)n := Γ(a + n)/Γ(a) stays for
the Pochhammer symbol.

For the our aims, we rewrite the summation formula (6.1) in the form

Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

=
∞∑

n=0

Γ(a + n)Γ(b + n)Γ(c)
Γ(a)Γ(b)Γ(c + n)n!

, �(c − a − b) > 0, (6.3)

and show that this representation of the quotient of the products of Gamma
functions leads to the Leibniz type formula

(Dγ,δ
β f(t) · g(t))(x) =

∞∑
n=0

(
δ

n

)
(Dα1+n,δ−n

β f)(x)
n−1∏
j=0

(
1
β

x
d

dx
−α2−j)g(x),

(6.4)
for the Erdélyi-Kober fractional derivatives, where α1, α2 are arbitrary
real numbers satisfying the relation α1 − α2 = γ,

(
δ
n

)
:= Γ(δ+1)

n!Γ(δ−n+1) is the

generalized binomial coefficient and Dγ,α
β stays for the fractional Erdélyi-

Kober derivative (3.12) if α > 0, for the Erdélyi-Kober integral (3.1) of
order −α if α < 0, and for the identity operator if α = 0.

To start with, let us write down a representation of the Mellin trans-
form of a product of two functions, say, f and g, with the known Mellin
transforms f∗ and g∗. Because of the Mellin inversion formulas

f(x) =
1

2πi

∫ γ1+i∞

γ1−i∞
f∗(s1)x−s1 ds1, g(x) =

1
2πi

∫ γ2+i∞

γ2−i∞
g∗(s2)x−s2 ds2,

we first get the representation

f(x) · g(x) =
1

(2πi)2

∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞
f∗(s1)g∗(s2)x−s1−s2 ds1ds2
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that after the variables substitution s1 + s2 = s, s1 = s1 can be rewritten
as the inverse Mellin transform

f(x) · g(x) =
1

2πi

∫ γ3+i∞

γ3−i∞

(
1

2πi

∫ γ1+i∞

γ1−i∞
f∗(s1)g∗(s − s1) ds1

)
x−s ds.

Applying the Mellin transform to the last formula we get the desired rep-
resentation for the Mellin transform of the product f · g in the form

(f · g)∗(s) =
1

2πi

∫ γ1+i∞

γ1−i∞
f∗(s1)g∗(s − s1) ds1. (6.5)

Now we remember the representation (3.14) of the Erdelyi-Kober fractional
derivative in form of a Mellin-Barnes integral and apply this representation
to the function f · g with the Mellin transform given by (6.5) to get the
formula

(Dγ,δ
β f(t) · g(t))(x) =

1
2πi

∫ γ+i∞

γ−i∞

Γ(1 + γ + δ − s/β)
Γ(1 + γ − s/β)

×
(

1
2πi

∫ γ1+i∞

γ1−i∞
f∗(s1)g∗(s − s1) ds1

)
x−sds.

The variables substitution s − s1 = s2, s1 = s1 in the integrals on the
right-hand side of the last formula leads to the representation

(Dγ,δ
β f(t) · g(t))(x) =

1
(2πi)2

∫ γ1+i∞

γ1−i∞

∫ γ2+i∞

γ2−i∞

Γ(1 + γ + δ − (s1 + s2)/β)
Γ(1 + γ − (s1 + s2)/β)

(6.6)
× f∗(s1)g∗(s2)x−s1−s2 ds1ds2

that plays the key role in derivation of the Leibniz type formula (6.4).
Indeed, let us substitute the values a = −δ, b = α2 + s2/β, and c =
1 + α1 − s1/β into the formula (6.3). Then we get the representation

Γ(1 + γ + δ − (s1 + s2)/β)
Γ(1 + γ − (s1 + s2)/β)

=
∞∑

n=0

(−δ)n
n!

Γ(1 + α1 + δ − s1/β)
Γ(1 + α1 + n − s1/β)

Γ(α2 + n + s2/β)
Γ(α2 + s2/β)

and substitute it into the formula (6.6). Interchanging the order of inte-
gration and summation in (6.6), we arrive at the representation

(Dγ,δ
β f(t)·g(t))(x) =

∞∑
n=0

(−δ)n
n!

1
2πi

∫ γ2+i∞

γ2−i∞

Γ(α2 + n + s2/β)
Γ(α2 + s2/β)

g∗(s2)x−s2 ds2

× 1
2πi

∫ γ1+i∞

γ1−i∞

Γ(1 + α1 + δ − s1/β)
Γ(1 + α1 + n − s1/β)

f∗(s1)x−s1 ds1.
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The formula (−δ)n

n! = (−1)n
(

δ
n

)
along with the representations (3.7), (3.14),

(3.14) for the Erdélyi-Kober fractional integrals and derivatives finally leads
to the Leibniz type formula (6.4) for the Erdélyi-Kober fractional deriva-
tives.

Other known representations of the quotients of products of Gamma
functions, like the Dougall formula

+∞∑
n=−∞

Γ(a+n)Γ(b+n)
Γ(c+n)Γ(d+n)

=
π2

sin(πa) sin(πb)
Γ(c+d−a−b−1)

Γ(c−a)Γ(d−a)Γ(c−b)Γ(d−b)
,

valid for �(a + b − c − d) < −1, a, b 	∈ IZ, or the integral representation∫ +∞

−∞
G(u, a, b, c) du =

Γ(a + b + c + d − 3)
Γ(a + c − 1)Γ(a + d − 1)Γ(b + c − 1)Γ(b + d − 1)

with

G(u, a, b, c) =
1

Γ(a + u)Γ(b + u)Γ(c − u)Γ(d − u)
valid for �(a+b+c+d) > 3, lead to the modified Leibniz type formulas and
their integral analogues both for the Erdélyi-Kober fractional derivatives
and for other operators of Mellin convolution type. For the details, we refer
the interested reader to [34] or [36].

7. Completely monotone FC functions

The completely monotone functions are known to play an important
role in different branches of mathematics and especially in the probability
theory ([7]). Also, the famous Bernstein theorem is well known. In FC,
completely monotone functions are used e.g. to show that fundamental
solutions to some fractional differential equations can be interpreted as
some probability densities (see e.g. [10], [25] and references therein). In this
section we demonstrate how the Mellin integral transform can be employed
to deduce some new completely monotone functions based on the known
ones.

Definition 7.1. A function f : (0,∞) → IR is called a completely
monotone function if it is of class C∞ and (−1)nf (n)(x) ≥ 0 for all n ∈ IN
and x > 0.

The basic property of the completely monotone functions that we need
in this section is the following one: A function f : (0,∞) → IR is completely
monotone if and only if it can be represented as the Laplace transform of a
non-negative measure (non-negative function or generalized function). Be-
cause the Laplace transform is a Mellin convolution type transform, the
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technique of the Mellin transform can be applied for investigation of com-
pletely monotone functions.

Let the representation

f(x) =
∫ ∞

0
e−xtF (t) dt, x > 0 (7.1)

hold true for a non-negative function F with a known Mellin transform.
Then the function f is completely monotone and its Mellin transform is
given by the formula (see (4.5))

f∗(s) = Γ(s)F ∗(1 − s) (7.2)
that leads to the formula

F ∗(s) =
f∗(1 − s)
Γ(1 − s)

. (7.3)

But if the function F (t), t > 0 is non-negative, then the function G(t) :=
tγF (t−β) is non-negative for any γ, β ∈ IR, too. Thus the function g of the
form

g(x) =
∫ ∞

0
e−xtG(t) dt, x > 0 (7.4)

is completely monotone and it follows from the relation (7.2) that

g∗(s) = Γ(s)G∗(1 − s). (7.5)

Using the formulas (2.7), (2.8), the Mellin transform G∗ can be written in
the form

G∗(s) =
1
|β|F

∗
(
−γ

β
− s

β

)
and thus from (7.5) we get the Mellin transform formula

g∗(s) =
1
|β|Γ(s)F ∗

(
s

β
− 1 + γ

β

)
.

The complete monotone function g given by (7.4) can be then evaluated as
the Mellin-Barnes type integral

g(x) =
1

2πi

∫ γ+i∞

γ−i∞

1
|β|Γ(s)F ∗

(
s

β
− 1 + γ

β

)
x−s ds, (7.6)

provided that the Mellin transform F ∗ of the complete monotone function
f is known. In many cases f is a particular case of the Fox H-function
and thus F ∗ is represented in form of a quotient of products of Gamma
functions, that means that the new complete monotone function g is a
particular case of the H-function, too.

Let us consider a simple example. It is known that the exponential
function f(x) = exp(−xα), 0 < α < 1 is complete monotone with the
Mellin transform given by the formula (2.13). The function F ∗ from (7.3)
has then the form
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F ∗(s) =
f∗(1 − s)
Γ(1 − s)

=
1
α

Γ
(

1
α − s

α

)
Γ(1 − s)

.

It follows from the arguments presented above that the function

g(x) =
1

2πi

∫ γ+i∞

γ−i∞

1
α|β|

Γ(s)Γ
(

β+γ+1
αβ − s

αβ

)
Γ
(

β+γ+1
β − s

β

) x−s ds (7.7)

is complete monotone, too. The function g given by (7.7) is evidently a
particular case of the Fox H-function. In particular, in the case β > 1

α − 1
it can be represented as the convergent series

g(x) =
1

α|β|
∞∑

n=0

Γ
(

β+γ+1
αβ + n

αβ

)
n! Γ

(
β+γ+1

β + n
β

) (−x)n. (7.8)

We can easily recognize it as a particular case of the generalized Wright
function defined by the series

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1) . . . (bq, Bq)

; z
]

=
∞∑

k=0

∏p
i=1 Γ(ai + Aik)∏q
i=1 Γ(bi + Bik)

zk

k!
(7.9)

for the z-values where the series converges, and by the analytic continuation
of this series for other z-values. Thus, we have proved that the generalized
Wright function

g(x) = 1Ψ1

⎡
⎣
(

β+γ+1
αβ , 1

αβ

)
(

β+γ+1
β , 1

β

) ;−x

⎤
⎦ (7.10)

is complete monotone under the conditions 0 < α < 1, 1
α − 1 < β. In

particular, let us take the parameter values β = 1
α , γ = − 1

α . Then the
series (7.8) takes the form

g(x) =
∞∑

n=0

Γ(1 + n)
n! Γ(α + αn)

(−x)n =
∞∑

n=0

(−x)n

Γ(α + αn)
(7.11)

that defines the Mittag-Leffler function Eα,α(−x), known to be completely
monotone for 0 < α < 1. Taking other known completely monotone func-
tions and applying the procedure described above, other new completely
monotone functions can be easily obtained.
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