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Abstract
A family of the Apostol-type polynomials was introduced and investigated recently by
Luo and Srivastava (see (Appl. Math. Comput. 217:5702-5728, 2011)). In this paper, we
study this polynomial family on P, the algebra of polynomials in a single variable x
over all linear functional on P. By using the way of the umbral algebra, we obtain some
fundamental properties of the generalized Apostol-type polynomials. We also show
some special cases which include the corresponding results of Dere and Simsek etc.
MSC: Primary 05A40; secondary 11B68; 05A10; 05A15

Keywords: generalized Apostol-type polynomials; Sheffer sequences and Appell
sequences; umbral algebra; Stirling numbers

1 Introduction, definitions and motivation
Throughout this paper, we make use of the following conventional notations: N =
{, , , . . .} denotes the set of natural numbers, C denotes the set of complex numbers.

The classical Bernoulli polynomials Bn(x), the classical Euler polynomials En(x) and the
classical Genocchi polynomials Gn(x), together with their familiar generalizations B(α)

n (x),
E(α)

n (x) and G(α)
n (x) of order α, are usually defined by means of the following generating

functions (see, for details, [, pp.-] and []):
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It is easy to see that Bn(x), En(x) and Gn(x) are given, respectively, by

Bn(x) := B()
n (x), En(x) := E()

n (x) and

Gn(x) := G()
n (x)

(
n ∈N := N∪ {}).

(.)
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For the classical Bernoulli numbers Bn, the classical Euler numbers En and the classical
Genocchi numbers Gn of order n, we have

Bn := Bn() = B()
n (), En := En() = E()

n () and Gn := Gn() = G()
n (), (.)

respectively.
Some interesting analogues of the classical Bernoulli polynomials and numbers were

first investigated by Apostol (see [, p., Eq. (.)]) and (more recently) by Srivastava
(see [, pp.-]). We begin by recalling Apostol’s definitions as follows.

Definition . (Apostol []; see also Srivastava []) The Apostol-Bernoulli polynomials
Bn(x;λ) (λ ∈C) are defined by means of the following generating function:

zexz

λez – 
=

∞∑
n=

Bn(x;λ)
zn

n!
(|z| < π when λ = ; |z| < | logλ| when λ �= 

)
(.)

with, of course,

Bn(x) = Bn(x; ) and Bn(λ) := Bn(;λ), (.)

where Bn(λ) denotes the so-called Apostol-Bernoulli numbers.

Recently, Luo and Srivastava [] further extended the Apostol-Bernoulli polynomials as
the so-called Apostol-Bernoulli polynomials of order α.

Definition . (Luo and Srivastava []) The Apostol-Bernoulli polynomials B(α)
n (x;λ) (λ ∈

C) of order α (α ∈ N) are defined by means of the following generating function:

(
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(.)

with, of course,

B(α)
n (x) = B(α)

n (x; ) and B(α)
n (λ) := B(α)

n (;λ), (.)

where B(α)
n (λ) denotes the so-called Apostol-Bernoulli numbers of order α.

In this sequel, Luo [] gave an analogous extension of the generalized Euler polynomials
which is the so-called Apostol-Euler polynomials of order α.

Definition . (Luo []) The Apostol-Euler polynomials E (α)
n (x;λ) of order α (α,λ ∈ C)

are defined by means of the following generating function:
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with, of course,

E(α)
n (x) = E (α)

n (x; ) and E (α)
n (λ) := E (α)

n (;λ), (.)

where E (α)
n (λ) denotes the so-called Apostol-Euler numbers of order α.

On the subject of the Genocchi polynomials Gn(x) and their various extensions, a re-
markably large number of investigations have appeared in the literature (see, for example,
[–]). Moreover, Luo (see []) introduced and investigated the Apostol-Genocchi poly-
nomials of (real or complex) order α, which are defined as follows.

Definition . The Apostol-Genocchi polynomials G(α)
n (x;λ) (λ ∈ C) of order α (α ∈ N)

are defined by means of the following generating function:

(
z

λez + 

)α

· exz =
∞∑

n=

G(α)
n (x;λ)

zn

n!
(|z| <

∣∣log (–λ)
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with, of course,

G(α)
n (x) = G(α)

n (x; ), G(α)
n (λ) := G(α)

n (;λ),

Gn(x;λ) := G()
n (x;λ) and Gn(λ) := G()

n (λ),
(.)

where Gn(λ), G(α)
n (λ) and Gn(x;λ) denote the so-called Apostol-Genocchi numbers, the

Apostol-Genocchi numbers of order α and the Apostol-Genocchi polynomials, respec-
tively.

Ozden et al. [] introduced and investigated the following unification (and generaliza-
tion) of the generating functions of the three families of Apostol-type polynomials:

–κzκ

βbez – ab exz =
∞∑

n=

Yn,β (x;κ , a, b)
zn

n!
(|z| < π when β = a; |z| <

∣∣b log (β/a)
∣∣ when β �= a;κ ,β ∈C; a, b ∈C\{}). (.)

It is found from [] that Ozden further gave an extension of the above definition (.) as
follows:

Definition .

(
–κzκ

βbez – ab

)α

exz =
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n=

Y (α)
n,β (x;κ , a, b)

zn

n!
(
α ∈N; |z| < π when β = a; |z| <

∣∣b log (β/a)
∣∣ when β �= a;

κ ,β ∈ C; a, b ∈C\{}). (.)

The author [] obtained a unified relation between the Y (α)
n,β (x;κ , a, b) and the Gauss hy-

pergeometric function F(a, b; c; z), and gave some identities of Y (α)
n,β (x;κ , a, b).
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Recently, Luo and Srivastava [] introduced more general unification (and generaliza-
tion) of the above-mentioned three families of the generalized Apostol-type polynomials.

Definition . (Luo and Srivastava []) The generalized Apostol-type polynomials
F (α)

n (x;λ;μ;ν) (α ∈N; λ,μ,ν ∈C) of order α are defined by means of the following gener-
ating function:

(
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n!
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Clearly, we have

B(α)
n (x;λ) = (–)αF (α)

n (x; –λ; ; ) (α ∈N), (.)

E (α)
n (x;λ) = F (α)

n (x;λ; ; ) (α ∈C), (.)

G(α)
n (x;λ) = F (α)

n (x;λ; ; ) (α ∈N), (.)

Yn,β (x;κ , a, b) = –


ab F
()
n

(
x; –

(
β

a

)b

;  – κ ;κ
)

(.)

and

Y (α)
n,β (x;κ , a, b) = (–)α


abα

F (α)
n

(
x; –

(
β

a

)b

;  – κ ;κ
)

. (.)

In [, , , ], the authors have researched some elementary properties of the Apostol-
type polynomials, and some relationships among the Apostol-type polynomials. More in-
vestigations about this subject can be found in [, , , –].

The aim of this paper is to study the generalized Apostol-type polynomialsF (α)
n (x;λ;μ;ν)

on the umbral algebra by using the way as the reference [–]. We research some fun-
damental properties of this polynomial family. Some special cases, which include the cor-
responding results [–], are also considered.

2 Umbral algebra of Roman
We can use the following notations and definitions, which are given by Roman [,
pp.-].

Let P be the algebra of polynomials in a single variable x over the field of complex num-
bers. Let P* be the vector space of all linear functionals on P. Let 〈L|p(x)〉 be the action of a
linear functional L on a polynomial p(x). Let F denote the algebra of formal power series

f (t) =
∞∑

k=

ak

k!
tk . (.)

Such algebra is called umbral algebra. Each f ∈F defines a linear functional on P and

ak =
〈
f (t)|tk 〉 (.)

for all k ≥ .
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The order o(f (t)) of a power series f (t) is the smallest integer k for which the coefficient
of tk does not vanish. A series f (t) for which o(f (t)) =  will be called a delta series. When
we are considering a delta series f (t) in F as a linear functional, we will refer to it as a delta
functional.

It is well known that 〈tk|xn〉 = n!δn,k , where δn,k denotes the Kronecker symbol. For all
f (t) in F ,

f (t) =
∞∑

k=

〈f (t)|xk〉
k!

tk .

Let f (t) and g(t) be in F . Then we have

〈
f (t)g(t)|p(x)

〉
=

〈
f (t)|g(t)p(x)

〉
. (.)

For y ∈C, then the evaluation functional is defined to be the power series eyt . By (.), we
have

〈
eyt|p(x)

〉
= p(y) (.)

for all p(x) in P. The forward difference functional is the delta functional eyt –  and

〈
eyt – |p(x)

〉
= p(y) – p(). (.)

The Abel functional is the delta functional teyt . We have

〈
teyt|p(x)

〉
= p′(y).

The Sheffer polynomials are defined by means of the following generating function

∞∑
k=

sk(x)
k!

tk =


g(t)
ext . (.)

Roman [] proved the following theorem which is represented by the Sheffer polyno-
mials (or Sheffer sequences) explicitly.

Theorem . Let f (t) be a delta series and let g(t) be an invertible series. Then there exists
a unique sequence sn(x) of polynomials satisfying the orthogonality conditions

〈
g(t)f (t)k|sn(x)

〉
= n!δn,k (.)

for all k ∈N.

The sequence sn(x) in (.) is the Sheffer polynomials for pair (g(t), f (t)), where g(t) must
be invertible and f (t) must be delta series. The Sheffer polynomials for pair (g(t), t) is the
Appell polynomials or the Appell sequences for g(t).

The Appell polynomials, the Bernoulli polynomials, the Euler polynomials, the Genoc-
chi polynomials and the Genocchi polynomials of higher order belong to the family of the
Sheffer polynomials (cf. [, –]).
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The Sheffer polynomials satisfy the following relations:

sn(x) = g(t)–xn, (.)

derivative formula

tsn(x) = s′
n(x) = nsn–(x), (.)

recurrence formula

sn+(x) =
(

x –
g ′(t)
g(t)

)
sn(x), (.)

expansion theorem

h(t) =
∞∑

k=

〈h(t)|sk(x)〉
k!

g(t)tk , (.)

multiplication theorem, for α �= ,

sn(αx) = αn g(t)
g( t

α
)
sn(x), (.)

and

〈
h(t)|p(ax)

〉
=

〈
h(at)|p(x)

〉
. (.)

3 The Apostol-type polynomials on F
We see from Definition . and (.) that the generalized Apostol-type polynomials
F (α)

n (x;λ;μ;ν) also belong to the Sheffer polynomials where g(t) = ( λet+
μtν )

α
.

In this section, by using the properties of the Sheffer sequences and also the Appell
sequences, we prove many fundamental properties of the generalized Apostol-type poly-
nomials F (α)

n (x;λ;μ;ν) defined by (.).
By using (.) and (.), we arrive at the following lemma.

Lemma .

F (α)
n (x;λ;μ;ν) =

(
μtν

λet + 

)α

xn. (.)

Theorem .

〈
(λet + )k

tν–

∣∣∣F ()
n (x;λ;μ;ν)

〉
= μλk–n(k – )!

k–∑
j=

(
 +


λ

)k–j– S(n – , j)
(k – j – )!

, (.)

where F ()
n (x;λ;μ;ν) and S(a, b) denote the first-order generalized Apostol-type polynomi-

als and the Stirling numbers of the second kind, respectively.
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Proof By Lemma ., we obtain

〈
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∣∣∣F ()
n (x;λ;μ;ν)

〉
=
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λet + 
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〉
.

By using (.) and (.), we get
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(λet + )k
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∣∣∣∣F ()
n (x;λ;μ;ν)

〉

= μλk–n
k–∑
j=

(k – )!
(k – j – )!

(
 +


λ

)k–j–〈 (et – )j

j!

∣∣∣xn–
〉
. (.)

Setting

S(n – , j) =

j!
〈(

et – 
)j|xn–〉,

where S(n – , j) denotes the Stirling numbers of second kind (cf. [, p.]) in (.), we
arrive at the desired result. �

We deduce the following formulas.
Letting λ 
−→ –λ, taking μ =  and ν =  in (.) and noting relation (.), we deduce

the following result.

Corollary . (see [, Remark ])

〈(
 – λet)k|Bn(x;λ)

〉
= (–)kλk–n(k – )!

k–∑
j=

(
 –


λ

)k–j– S(n – , j)
(k – j – )!

, (.)

where Bn(x;λ) and S(a, b) denote the Apostol-Bernoulli polynomials and the Stirling num-
bers of the second kind, respectively.

Taking μ =  and ν =  in (.) and noting relation (.), we deduce the following result.

Corollary . (see [, Remark ])

〈
t
(
λet + 

)k|En(x;λ)
〉
= λk–n(k – )!

k–∑
j=

(
 +


λ

)k–j– S(n – , j)
(k – j – )!

, (.)

where En(x;λ) and S(a, b) denote the Apostol-Euler polynomials and the Stirling numbers
of the second kind, respectively.

Taking μ = ν =  in (.) and noting relation (.), we deduce the following result.

Corollary . (see [, Remark ])

〈(
λet + 

)k|Gn(x;λ)
〉

= λk–n(k – )!
k–∑
j=

(
 +


λ

)k–j– S(n – , j)
(k – j – )!

, (.)
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where Gn(x;λ) and S(a, b) denote the Apostol-Genocchi polynomials and the Stirling num-
bers of the second kind, respectively.

Setting λ =  in (.), we deduce Theorem  in the work [, p., Theorem ].

Corollary .

〈(
et + 

)k|Gn(x)
〉
= n(k – )!

k–∑
j=

k–j– S(n – , j)
(k – j – )!

, (.)

where Gn(x) and S(a, b) denote the Genocchi polynomials and the Stirling numbers of the
second kind, respectively.

Letting k 
→ m, taking λ = –( β

a )b, μ =  – κ , ν = κ in (.) and noting relation (.), thus
we deduce the following formulas of the polynomials Yn,β (x;κ , a, b).

Corollary .

〈[
 –

(
β

a

)b

et
]m

t–κ
∣∣∣Yn,β (x;κ , a, b)

〉

= (–)m–κβb(m–)a–bmn(m – )!
m–∑
j=

[
 –

(
a
β

)b]m–j– S(n – , j)
(m – j – )!

, (.)

where Yn,β (x;κ , a, b) and S(a, b) denote the generalization of Apostol type polynomials de-
fined by (.) and the Stirling numbers of the second kind, respectively.

By using (.), we arrive at the following lemma.

Lemma .

tF (α)
n (x;λ;μ;ν) = nF (α)

n–(x;λ;μ;ν). (.)

Remark . An alternative proof of Lemma . is also obtained from (.) by using
derivative with respect to x. By Lemma ., one can see that


t
F (α)

n (x;λ;μ;ν) =


n + 
F (α)

n+(x;λ;μ;ν). (.)

Theorem .

(
tν–

λet + 

)
F (α)

n (x;λ;μ;ν) =


μ(n + )
F (α+)

n+ (x;λ;μ;ν). (.)

Proof By Lemma ., we obtain

(
tν–

λet + 

)
F (α)

n (x;λ;μ;ν) =
tν–

λet + 

(
μtν

λet + 

)α

xn. (.)
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After some calculations in the above equation, we have

(
tν–

λet + 

)
F (α)

n (x;λ;μ;ν) =


μt

(
μtν

λet + 

)α+

xn. (.)

Using (.) and (.), we obtain the desired result. �

Letting λ 
−→ –λ, taking μ =  and ν =  in (.) and noting relation (.), we deduce the
following result.

Corollary . (see [, Remark ])

(


 – λet

)
B(α)

n (x;λ) =


n + 
B(α+)

n+ (x;λ). (.)

Taking μ =  and ν =  in (.) and noting relation (.), we deduce the following result.

Corollary . (see [, Remark ])


t(λet + )

E (α)
n (x;λ) =


(n + )

E (α+)
n+ (x;λ). (.)

Taking μ = ν =  in (.) and noting relation (.), we deduce the following result.

Corollary . (see [, Remark ])

(


λet + 

)
G(α)

n (x;λ) =


(n + )
G(α+)

n+ (x;λ). (.)

Setting λ =  in the above equation, we deduce Lemma  in [, p.].

Corollary .

(


et + 

)
G(α)

n (x) =


(n + )
G(α+)

n+ (x). (.)

Taking λ = –( β

a )b, μ =  – κ , ν = κ in (.) and noting relation (.), we deduce

Corollary .

–tκ–

ab[ – ( β

a )bet]
Y (α)

n,β (x;κ , a, b) =


–κ (n + )
Y (α+)

n+,β (x;κ , a, b). (.)

An integral representation of 〈 eta–
t |F (α)

n (x;λ;μ;ν)〉 is given by the following theorem.

Theorem .

〈
eta – 

t

∣∣∣F (α)
n (x;λ;μ;ν)

〉
=




∫ a


F (α)

n (x;λ;μ;ν) dx. (.)
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Proof By using Lemma ., we have

〈
eta – 

t

∣∣∣F (α)
n (x;λ;μ;ν)

〉
=

〈
eta – 

t

∣∣∣∣ 
n + 

tF (α)
n+(x;λ;μ;ν)

〉
.

By (.), we obtain

〈
eta – 

t

∣∣∣F (α)
n (x;λ;μ;ν)

〉
=


(n + )

〈
eta – |F (α)

n+(x;λ;μ;ν)
〉
.

Using (.), we obtain the desired result. �

Setting λ = μ = ν =  in (.) and noting relation (.), we deduce the Theorem  in [,
p.].

Corollary .

〈
eta – 

t

∣∣∣G(α)
n (x)

〉
=




∫ a


G(α)

n (x) dx. (.)

A recurrence formula for F (α)
n (x;λ;μ;ν) is given by the next theorem.

Theorem . (Recurrence formula)

F (α+)
n+ν (x;λ;μ;ν)

=
μ(n + )(n + )!

α(n + ν)!

[(
 –

αν

n + 

)
F (α)

n+(x;λ;μ;ν) + (α – x)F (α)
n (x;λ;μ;ν)

]
. (.)

Proof Setting

g(t) =
(

λet + 
μtν

)α

in (.), one can obtain

F (α)
n+(x;λ;μ;ν)

=
(

x – α +
α

λet + 
+

αν

t

)
F (α)

n (x;λ;μ;ν)

= (x – α)F (α)
n (x;λ;μ;ν) +

α

tν– · tν–

λet + 
F (α)

n (x;λ;μ;ν) + αν · 
t
F (α)

n (x;λ;μ;ν).

By using Theorem . and (.), we have

F (α)
n+(x;λ;μ;ν) = (x – α)F (α)

n (x;λ;μ;ν) +
α(n + ν)!

μ(n + )(n + )!
F (α+)

n+ν (x;λ;μ;ν)

+
αν

n + 
F (α)

n+(x;λ;μ;ν).

After some calculations in the above equation, we get the desired result. �
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Letting λ 
−→ –λ, taking μ =  and ν =  in (.) and noting relation (.), we deduce
the following known result.

Corollary . (see, e.g., [, Remark ])

B(α+)
n+ (x;λ) =


α

[
(α – n – )B(α)

n+(x;λ) + (n + )(x – α)B(α)
n (x;λ)

]
. (.)

Taking μ =  and ν =  in (.) and noting relation (.), we deduce the following known
result.

Corollary . (see, e.g., [, Remark ])

E (α+)
n (x;λ) =

(n + )

α

[
E (α)

n+(x;λ) + (α – x)E (α)
n (x;λ)

]
. (.)

Taking μ = ν =  in (.) and noting relation (.), we deduce the following known result.

Corollary . (see, e.g., [, Remark ])

G(α+)
n+ (x;λ) =


α

[
(n – α + )G(α)

n+(x;λ) + (n + )(α – x)G(α)
n (x;λ)

]
. (.)

Setting λ =  in the above equation, we have the following.

Corollary . (see [, p., Theorem ])

G(α+)
n+ (x) =


α

[
(n – α + )G(α)

n+(x) + (n + )(α – x)G(α)
n (x)

]
. (.)

Taking λ = –( β

a )b, μ =  – κ , ν = κ in (.) and noting relation (.), thus we deduce the
following result.

Corollary .

Y (α+)
n+κ ,β (x;κ , a, b) =

–κ (n + )(n + )!
αab(n + κ)!

×
[(

ακ

n + 
– 

)
Y (α)

n+,β (x; k, a, b) + (x – α)Y (α)
n,β(x;κ , a, b)

]
. (.)
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