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A generalization of the Gauss hypergeometric function to t variables is given, 
and the Euler identity is shown to hold for this generalized function. The 
corresponding generalization of the Saalschiitz theorem is also obtained. 

1. INTRODUCTION 

The Gauss or hypergeometric series has a long history [l] of physical and 
mathematical applications. Because of the numerous applications and its 

intrinsic interest to mathematicians, this function and its generalizations have 
been presented in many textbooks [2-91, where references to the extensive 
literature on the subject may be found. The subject is still quite active, as 
evidenced by recent publications [ 1 O-l 61. 

In this article, we present a generalization of Gauss’ series to t complex 
variables z1 , z2 ,..., xt , retaining, however, the dependence on three complex 
parameters a, b, and c. We then prove that the Euler identity holds for this 
generalization (our main result) and deduce a far-reaching generalization of the 
Saalschiitz identity [6]. 

The generalization of the Gauss function presented here was motivated by 
our investigations [17-191 of the properties of a class of polynomials which 
characterize the Wigner coefficients of the unitary unimodular group, SU(3). 
While the study of the properties of these polynomials is itself an interesting 
subject, the subsequent generalization of the hypergeometric series would 
appear to be of mathematical interest on its own. 
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For the purpose of comparison, let us recall the definition of the hyper- 
geometric series : 

where a, 6, and c are complex numbers (c # negative integer), and (J),, is 
Pochhammer’s notation for a rising factorial 

(Xb = x(x + 1) ..’ (X + n - I). (14 

As previously remarked, there are several existing generalizations of the Gauss 
series (1.1). Perhaps the best known of these generalizations are the ,F, functions 
defined by 

F ( 
a, >*.., a,. = (4, ... b%), P 

0 4 b, ,..., b, ’ ‘1 =n&Q . ..(b.J,n!’ 1n 
(1.3) 

The Lauricella functions are generalizations of the Gauss function to multiple 
parameter sets and multiple complex variables as well [3, 81. Still other general- 
izations of the Gauss function are part of the standard literature on hypergeo- 
metric series [8]. None of these generalizations appears to coincide with the one 
reported here. 

Of the many important relations satisfied by the Gauss function, we wish here 
to note only one, namely, the Euler identity 

2F,(a, b; c; z) = (1 - z)~-~-~ &(c - a, c - b; c; z). (1.4) 

This relation may also be written 

2Fl(a, 6; c; x) 2F,(c - a - b, b; b; z) = ,F,(c - a, c - b; c; z), (1.5) 

since 
,F,(c - a - b, 6; b; z) = (1 - z)~+~-~. (1.6) 

One of our goals is to prove that our generalized Gauss function satisfies Eq. 
(1.5). 

We conclude these introductory remarks by recalling that Saalschiitz’ theorem 
may be proved by equating coefficients of .zt on each side of Euler’s identity [8]. 
For reference, we state the result in the form 

Fs +!i!!+ (’ - a - 4s = (c - u)~ (c - Qc 
c $-r. s. I (C)t t! * 

T+S=t 

(1.7) 

From the proof that our generalized Gauss functions satisfy the Euler identity, 
we also derive a generalization of the Saalschiitz theorem, Eq. (I .7). 
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2. GENERALIZATION OF THE GAUSS SERIES 

Our generalization of the Gauss series depends on the definition of the Schur 
functions. Let us recall briefly the definition of these functions [20]. 

Let A, p, v,... denote partitions of length t, that is, ordered sets of nonnegative 
integers which satisfy A, > A, > ... 2 A, > 0, and let z = (zr ,..., zt). The 
Schur function (A 1 Z) may be defined [20] by 

where 1 .z”,-” 1 denotes the Vandermonde determinant 

(2.2) 

and 1 z$:+~-~ / denotes the determinant 

A,+t-1 
21 

hl+t--2 . . . 
Xl 

At 

1 .++t-k 1 = ; ; "t . (2.3) 
++-1 .$ &Tit-2 . . . it 

Zt 

The notation (A I Z) for a Schur function is particularly suited to our purposes. 
The classical Schur functions may, of course, be defined in various ways due 

to their relations to Young tableaux of shape h and to the various other symmetric 
functions [20,21]. One such relation involving the characters xoA of the symmetric 
group S, (n = A, + ... + A,) is 

(A I z> = u/4 ~47XpnS&), (2.4) 
I) 

where h, denotes the number of group elements in class p = (p1p2 ... pt) and 
S,(x) is the symmetric function defined by 

s, zrz sp **. sy, (2.5) 

S,(z) = Zlk + ... + Ztk. (2.6) 

The only property of the Schur functions which we require is the remarkable 
multiplication rule [20] given by 

where g&VA) denotes the number of times the irreducible representation X 
of the general linear group GL(t) is contained in the direct product represcnta- 
tion p X v. 
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We next define the symbol &,&(a, 6; c) i p) depending on the three complex 
parameters a, b, and c (c # t - 1, t - 2 ,..., 0, --I, -2 ,...) and the partition p: 

(&(a, b; c) I CL) = n/l-l(,) fi (a - s + I),+ (b - s + l),& - s - I),> a 
s-1 (2.8) 

where the factor M(p) is itself defined by 

(2.9) 

The reason for giving n/r(p) a separate definition is that this factor has an 
interesting interpretation in terms of Young tableaux [22]. 

With these preliminary definitions, we may now state our generalization of the 
Gauss series. We define the function 2gi(a, b; c; x) by 

(2.10) 

For t = 1, we have M(p) = p!, (aPi(a, b; c) j p) = (a),(b),/(c)Up!, and 
(CL / z) = ZP. Thus, definition (2.10) re d uces to the Gauss series for t == 1. 

In Section 4, we prove: 

THEOREM. The generalized Gauss functions obey the Euler identity 

zFI(u, b; c; x) $&(c - a - 6, b; 6; z) = &(c - a, c - b; c; x). (2.11) 

An immediate consequence of this theorem is: 

COROLLARY. Thefunctions (zSl(u, b; c) 1 p) satisfy the (generalized Suulschiitx) 
identity 

:= (2Sl(c - a, c - b; c) 1 A>. 
(2.12) 

Proof. Substitute definition (2.10) into Eq. (2.11) and use the multiplication 
rule, Eq. (2.7), of the Schur functions. 

For t = 1, we have g($) = S,+,,A , and Eq. (2.12) reduces to the Saalschtitz 
identity, Eq. (1.7). 

3. ALTERNATIVE FORMS FOR 291 

For the proof of the theorem, it is convenient first to express definition (2. IO) 
in another form involving determinants and the Gauss functions themselves. 
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For this purpose, we introduce the notations 
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ps=pLs+t-S (s=1,2 ,...) t), (3.1) 

P = (Pl > P, >.*., Pt>, 

t--l 
Zl 

. . . 
21 1 

d(z) = i . = 
t--l Zt . . . Xt i 

Multiplying definition (2.10) through by 

t 

= 

(3.2) 

J-J& 6% - 4, (3.3) 

(3.4) 

we find 

d(z) n (a - t + l)t-, (b - t + l)t-s/cc - t + l)t-s > 
SSl 

d(x) &(a, b; c; 2) fi (a - t + l>t-s (b - t + l)t-s/(c - t + l)t-, 
S=l 

(3.5) 

= c 
&) d(p; z) fi (a - t + l)Ps VJ - t + UP, 

D~>D~>...>?J&l s=1 p,! (c - t + I)& ’ 

where we have used (a - t + l)t-, (a - s + l),,+,-t = (a - t + I), , etc., 
in obtaining this result. 

We next observe what happens to the right-hand side of Eq. (3.5) when we 
extend the summation to all values co > p, > 0: 

(a) Each term having p, = p, (r # s) vanishes in consequence of the 
factor d(p). 

(b) Each term having indices~@,~ ... ptt, where & , is ,..., it is a permuta- 
tion of 1, 2,..., t, equals the term having indrces p, > p, > ... > pt . 

These two properties imply that we may replace the summation appearing in 
Eq. (3.5) by the summation 

m co 
(l/t!)1 = (l/t!) c *.. c . 

D PI=0 l)t=O 
(3.6) 

We also observe the further properties of the right-hand side of Eq. (3.5): 

(a) The factor n”,=, (a - t + l)D, (b - t + l),Jp,! (C - t + l)P, may 
be taken into the determinant O(p; z), where we take sth factor into column s. 
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(b) Using obvious column operations, we may replace d(p) by 

hII- M-2 ... hl” 
d(p) = 1 ; 

[Ptlt-1 b&2 ... ifI,) 

where the notation [xl% designates a falling factorial 

[XJn = x(x - 1) .” (x - n f I). 

We thus bring Eq. (3.5) to the form 

t! d(z) ‘$qa, b; c; x) n (a - t + l)t-, (b - t + l)t-J(c - t + l)t-s 
s-1 

[PI)-I ..* [P&J 
=I: : 

* btlt-1 ... [Ptlo 

(3.7) 

(3.8) 

P-9) 

where we have defined 

f&y = ((a - t + l), (b - t + l)& - t + IMP/k!), (3.10) 

suppressing for notational convenience the dependence on the parameters a, b, c. 
We next expand the two determinants occurring in the right-hand side of 

Eq. (3.9) to obtain 

[PA-I ... [PIIll 

r& ... tdt10 

= c,,cj ) (&,l r41:::ft~ll::::tgt-j,(z,,) ... g,-j,(Z,,) t 
gt-I@%) ... &7w zt! : . , 
gt-I(%) ... g,w 

where we have defined 

‘Y-.48 =-= f [hl,&,J,(C), s -= I,..., t. 
I,=” 

(3.11) 

(3.12) 



GAUSS HYPERGEOMETRIC SERIES 429 

Substituting for f/<(t) from Eq. (3.10), we find 

=(~--+-tl)~-~~(~--+l)~~~~t-S.~(u-~+~ b-~+$-;c-~++;~). 
(c - t + l)t-s 

3 1 

(3.13) 

Using this result in Eq. (3.1 l), we obtain the following determinantal form for 
zF&z, b; c; z): 

=~z~-“~F,(a-~++,b-~+l;c-~+l;x,)~, (3.14) 

where this notation for the t x t determinant designates the entry in row 
s (s = l,..., t) and column k (k = l,..., t). 

We may obtain a second alternative form of fii from Eq. (3.14) by using the 
recurrence relation 

((a + b - cm - 1)) z zF&, k c;x)+,F1(a- l,b- l;c- 1;z) 

=(l -z),F,(u,b;c- l;z), c#l,O,-l,.... 
(3.15) 

The simplest way to prove this relation is by equating powers of x on each side. 
Iteration of Eq. (3.15) now yields 

(I - z)s-1 p&z, b; c - s + 1; x) 
(3.16) 

=~&P,F,(u-kkl,b-R’-l;c-k+1;z) 
b=l 

for s = I, 2,..., where A:) = 1, and the detailed form of the other coefficients 
Ak’ (1 < k < s) is not required for our purposes. 

Using Eq. (3.16) and performing the appropriate column operations in the 
determinant on the right-hand side of Eq. (3.14), we obtain a second form 
of fli: 

d(z) z-q% k c; 4 

:= ( zi-k(l - zJ--l zF1(u, b; c - k + 1; &)I. (3.17) 

4=‘9/59/3-2 
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4. PROOF OF THE THEOREM 

We first bring Eq. (2.11) to the form analogous to Eq. (1.4). Littlewood’s 
analysis [20, pp. 105-1061 shows that 

ecFl(u, b; b; z) = fI (1 - z,)P. 
s=1 

(4.1) 

Thus, we may write Eq. (2.11) in the form 

B~l(c - a, c - b; c; x) = 29+, b; c; z) n (1 - ~,)a+~-~. 
s=l 

(4.2) 

It is Eq. (4.2) which we now prove, using the results of the last section. 
We multiply Eq. (3.17) by the factor @=,(I - ~~)a+~+ to obtain 

44 R (1 - 4 a+b-c zS&, b; c; z) 
SE1 

= 1 $“(I - ,z,)~+~-~+~-~ 2Fl(a, b; c - k + 1; z,J 

z 1 ,z;-“~ ,&(c - a - k i 1, c - b - k + 1, c - R + 1; z,)j 

= d(z) B9--(c - a, c - b; c; z). 

(4.3) 

The second step in this result follows from Eq. (3.16) and the properties of 
determinants; the last step utilizes the form (3.14). Canceling d(z) from each 
side of Eq. (4.3), we obtain the result, Eq. (4.2), hence, the proof of the Theorem. 

5. CONCLUDING REMARKS 

Our interest in the generalization (2.10) of the hypergeometric function was 
prompted by the need (cf. [19]) f or a proof of the generalized Saalschiitz theorem 
(2.12). Hence, for our purposes, it sufficed to consider Eq. (2.10) as a formal 
series, in which convergence questions played no role. 

The generalization (2.10), it should be emphasized, is not arbitrary, having 
been dictated, more or less, by the structure found in our group-theoretic 
problem [17-191; accordingly, we believe this generalization may prove to be a 
fruitful new approach. From this view, the present results are probably only 
fragmentary. We have been encouraged to publish in the present form in the 
hope that others, more qualified than ourselves in this field, may find the results 
suggestive, even indicative, of the usefulness of a more systematic study. 
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