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A b s t r a c t  In this paper, the authors establish some explicit formulas and representations for the  

NSrlund polynomial B(~ ~) and b(~ ~). Several identities involving Bernoulli numbers, NSrlund numbers, 
Stifling numbers and the associated Stirling numbers are also presented. @ 2006 Elsevier Ltd. All 
rights reserved. 
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1. I N T R O D U C T I O N  A N D  D E F I N I T I O N S  

For a real  or comp lex  p a r a m e t e r  a ,  the  generalized Bernoulli polynomials B!~ ) (x) and the  gen- 

eralized Euler polynomials E(~ ~) (x), each of degree  n in x as well as in a ,  are def ined by means  

of the  fol lowing gene ra t i ng  funct ions  (see, for detai ls ,  [1, p. 253 et seq.; 2, Sec t ion  2.8; 3, Sect ion 

1.6]): 

( t ) ~ ~ t~ C at ~ B}F ) (z) ~ (Itl < 27r; 1 ~ :=  1) (1.1) 

and 
2 ) a oc tn 

e xt e~ ~ = ~ E(~ ~) (z) ~ (Itl < 7r; 1 ~ :=  1),  (1.2) 
7~,=0 

respect ively.  Clearly,  we have 

S O) (x) = B,~ (x) and E (l) (x) = En  (x) ( n E N o : = N U { 0 } ) ,  (1.3) 
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in terms of the classical Bernoulli polynomials B,~ (x) and the classical Euler polynomials 
E,~ (x), N being the set of positive integers. When x = 0, we also have 

B!? ) := B!•)(0) and E (a) := E!2)(0) (n • No), (1.4) 

where B~ (~) and E(~ ~) denote the Bernoulli numbers of order a and the Euler numbers of order a, 
respectively. Thus, the classical Bernoulli numbers B,~ and the classical Euler numbers En are 
given by 

Bn : B,~(O) = B(~I) and E~ := 2'~ En ( 1 )  (nCN0) .  (1.5) 

Numerous interesting (and useful) properties and relationships involving each of these families 
of polynomials and numbers can be found in many books and tables (see, for example, [1-3]). For 
various explicit representations and other results for these and their closely-related families, the 
reader may be referred to some recent works by (for example) Srivastava et al. ([4-6]) and Luo 
and Srivastava [7] (see also many of the references cited in each of these recent works). The main 
subjects of our investigation in this paper are the so-called N6rlund polynomials B(~ ~) and b(~ ~), 
which are defined by (see [8-10]) 

= ~-~B(X)P~ n!  (1.6) 
n=O 

and 

( t ) x =  f i  b~ x)tn, (1.7) 
log(i + t) 

n = 0  

respectively. These polynomials and numbers have many important applications. In fact, B(~ k) 
(k • N) are the above-mentioned Bernoulli numbers of order k (k • N) (see also [11,12]), b(~ k) (k • 
N) are the Bernoulli numbers of the second kind of order k (k E N) (see [13]). The numbers 

B(~ 1) = Bn and b(~ 1) = bn 

are the ordinary Bernoulli numbers given by (1.5) and the Bernoulli numbers of the second kind, 
respectively, and B,(~ ) are called the N6rlund numbers (see [10,12,14]). 

We now turn to the Stirling numbers s(n, k) of the first kind, which are usually defined by (see, 
for example, [3, p. 56 et seq.; I0,14,15 D 

x ( x  - 1 ) ( x -  2) . . .  ( x -  n + 1) = f i  s ( n , k ) x  k (1.8) 
k=O 

or by means of the following generating function: 

O0 X n  

(log(1 + x)) k = k! ~ s(n, k) ~.I" (1.9) 
n = k  

It follows from (1.8) or (1.9) that  

s ( n , k )  = s ( n  - 1, k - 1) - (n- -  1)s(n - 1,k) (1.10) 

and that 
s(n, 0) = a+,0 (~ • No), s ( + , n ) = l ,  
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s(n, I )  = ( - 1 )  ' z - I  ( n  - I ) ]  (7% • N) and s(T~, k) = 0 (k > n or k < 0), 

where (and in what follows) 6 ..... denotes the Kronecker symbol. 
The associated Stirling numbers d(n, k) of the first kind and the associated Stirling numbers 

b(n, k) of the second kind are defined, respectively, by (see [10,15]) 

and 

It follows from (1.11) tha t  

X n  
( - l og (1  - x) - x) k = k! d(n,k)-m-~.t 

n = 2 k  

(1.11) 

x n  
(e ~ - 1 -- x) k = k! b(n, k)-~. . (1.12) 

n = 2 k  

d(n,k)  = ( n -  1 ) d ( n -  2, k - 1) ÷ ( n -  1 ) d ( n -  1, k) 

d(n, 1) = ( n - -  1)! 

( 2 k > n  or k < 0 ) .  

and that 

dtn, O)=Sn,o ( n • N o ) ,  

and 
d(~, k) = 0 

Similarly, we find flom (1.12) tha t  

(~ • N \ {1)), 

b(n, k) = ( n -  1)b(Tz- 2, k - 1) + kb(n - 1, k) 

~(.,  0) = ~.,o (~ c No), 

b(n, 1) = 1 (n • l~l \ {1}), 

and that 

(1.13) 

(1.14) 

and 

b(n,k) = 0  ( 2 k > n o r  k<O). 

The main purpose of this paper is to prove several explicit formulas and representations for the 
NSrlund polynomials B(~ x) and b~f ). We also obtain some identities involving Bernoulli numbers, 
N6rlund numbers, Stirling numbers, and the associated Stirling numbers. 

2. A S E T  O F  M A I N  R E S U L T S  

One of our main results is contained in Theorem 1 below. 

THEOREM 1. Let n >= k (n ,k  C IN) and 

~(~, k):= ( -1)  ~ 
n!  

j=k (,n + j)! s ( j , k )  b(n + j , j ) .  (2.1) 

Tile1]  
n 

B(~x) = E c@~, k)x k. (2.2) 
k = l  

REMARK 1. By setting x = 1, 1 in Theorem 1 and noting tha t  

B~_I) _ 1 
n + l '  

we immediately deduce the following consequence of Theorem 1. 
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COROLLARY 1. L e t h e  N. Then, 

1 
~(~, k) = B .  a~d Z ( - 1 )  ~ ~(~, k) - 

n + l  
k=l k=l 

(2.3) 

THEOREM 2. Let n >= k (n, k e N). Suppose also tha t  ~(n, k) is defined by (2.1). Then 

cr(n,k) =- ( - 1 )  *~-k n'l v l+ .~k=n  B,,__A..:_Bvk - 
k! (vl...vk) vl! . . .vg" 

V l  , . . .  ,V  k ~ N 

(2.4) 

REMARK 2. By means of (2.1) and (2.4), we can easily deduce the following interesting sum- 
mation identity involving the Bernoulli numbers,  the Stirling numbers  of the first kind, and the 
associated Stirling numbers  of the second kind. 

COROLLARY 2. Let n >= k (n, k E N). Then 

Yl-t-"*-~-vk=n~'% ~Vl ' " B ~ k  = (--1) n k! ~ s(j ,k)  b ( n + j , j )  
(2.5) 

A...w (Vl . . .  vk) vll . . .  vk! ~ (n + j)!  
vl,...,vkCN j=k  

REMARK 3. 

and tha t  

s(k, k) = 1, 

we get 

and 

THEOREM 3. 

Upon setting n = k, k + 1, k + 2 in (2.5), if we note tha t  (see [3,10,12,14]) 

1 1 
S l  - -  2 '  B2 = ~,  Ba = 0, 

s(k + l , k ) = - ( k  + l )  
2 ' 

and 3 + 3  4 ' 

b(2k, k) - (2k)! 
2 k k!' b ( 2 k + l , k )  = 

4.  (2k + 1)! 
3 -2  k+2 ( k -  i)!' 

b(2k + 2,k) = (2k + 1).  (2k + 2)! 
9- 2 k+2 ( k -  1)! " 

Let n > k (n, k e N) and 

Then 

REMARK 4. 

r(n,k)  := ( - 1 )  n-k  ~ s(j ,k) d ( n + j , j )  
j=k (n + j)[ 

b!:) = ~ ~(n, k)x k 
k=l 

Setting x = 1 , - 1  in Theorem 3 and noting tha t  

b(-1)_ (-1) "~ 
n + l '  

we deduce the following immediate  consequence of Theorem 3. 

COROLLARY 3. Let n E N. Then 
n Tt (-1)" 

n + l  
k : X  k = l  

(2.6) 

(2.7) 

(2.8) 
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THEOREM 4. Let n >= k (n, k E N). Then 

T(n, k) -- (-l)k 
~! E (Vl .  " ,Uk ) y l ! . . . ,Uk  ! ' 

"Vl , . . .  , vk  EN 

(2.9) 

where r(n, k) is defined as in Theorem 3. 
REMARK 5. By applying (2.6) and (2.9), we can readily derive the following consequence of 
Theorem 4. 

COROLLARY 4. Let n > k (n, k E N). Then, 

~ + . + ~ : -  B ( ? ) . . . B ~ p  ~ 
E (vl-[[ .---~k-) vl~[[ :vk!  = ( - 1 ) ~  k! s(j,k) d (n+j , j )  

. . . . . . . .  k e n  J=]~ (n + j)! 
(2.10) 

REMARK 6. By setting n = k, k + 1, k + 2 in (2.10) and noting tha t  (see [3,10,12,14]) 

and tha t  

s(k, k) = 1, 

we get 

and 

1 B~2) 5 B(3) 9 B1 = - ~ ,  = g ,  = - ~ ,  

and s(h +2'k) = 2(k  -32) + 3 ( k + 2 )  

d(2k, k) - (2k)! 
2 k k! '  

(2k + 1)! 
d(2k + 1, k) = a .  2 k-1 (k - 1)! '  

d(2k + 2, k) = (4k + 5) .  (2k + 2)! 
9 - 2  k+l ( k -  1)! 

REMARK 7. Setting n = 1, 2, 3, 4 in Theorem 1, we get 

B[ x) : --~x,1 B~z) _ l AI2 z +  l z 2  ' B ~ z ) = l x z _ l z 3  ' 

and 

REMARK 8. 

and 

REMARK 9. 

B ~ )  = 1 i ~  x + 1 x 2 - 1 x a + l x 4 " 1 6  

Setting n = 1, 2, 3, 4 in Theorem 3, we get 

b~ ~ ) l = ~ x ,  b~ x)=--~x5 + lx2  ' b ~ ) = 8  x-5x2+lxa'48 48 

b~Z) 251 97 x2 _ _  . 
+ 11 2 - 1 @  3+ x4 

Setting k 1 in Corollary 2 and Corollary 4, we obtain 

n 

B,~ = n .  n[ E ( - 1 )  n - j - 1  (j - 1)! b(n+j,3) 
j=l  (n + j ) !  

(n c N) (2.11) 

and 
7l 

B (rO =n .n !  E ( - 1 )  n j-1 ( j - 1 ) ! d ( n + j , j )  
j=l (n+j)!  (~ c N), (2.12) 

respectively. 
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3. P R O O F S  O F  T H E O R E M S  1 - 4  

In this section, we present an outline of the proof of each of our main results stated in Section 2. 

PROOF OF THEOREM 1. By (1.6) and (1.12), we have 

n = O  

1 )x 
1 + (1/t)(e t - 1 - t) 

=E(-1)J x+j . -1  (e t _ l _ t )  j t - j  
j=0 3 

az ( ) e c  tn_ j x + j - 1 ,  j! < 
j = 0  "} n = 2 j  

= E ( _ I )  j x + j - 1 ,  j! b ( n + j , j ) - -  
j =0 J n = j  

t 7z 

(n + j)! 

E ( _ I ) J j !  x + j - 1  b(n + j , j )  (n + j)! 
n=O j=o 3 

(3.1) 

which readily yields 

o ( ) 
B ( x ) = E ( _ I ) j  n! j! x + j - 1  b(n + j , j )  

j=0 (n+j ) !  j 
n 

_ E ( _ I )  j n! b ( n + j , j ) . ( x + j - 1 ) ( x + j - 2 ) . . . ( x + l ) x  
j=0 (n + j)! 

n 

= E ( _ I ) j  n! J (~ + j)~ b(n + j, j) 3 - ~ ( 1 )  j-k s(j, k)x ~ 
j=o k=l 
n ~ n! n 

= E (  1)k (n+j)-------~. s(j ,k) b ( n + j , j ) x  k = E c r ( n , k ) x k .  
k = l  j = k  k = l  

This completes the proof of Theorem 1. 

PROOF OF THEOREM 2. By applying Theorem 1, we have 

k! ~(~, k) = ~ } x=o (3.2) 

On the other hand, it follows from (1.6) that  

n = k  x = 0  

n! log (3.3) 

Thus, by (3.2) and (3.3), we have 

k! ~(~,k) 7., = log ~ , 
n = k  

(3.4) 

which, in view of the following known result (see [9]), 

k B,, ( - t )  ~' 
n n[ 

n = l  

log( ) 
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yields 

k~ ~ ( n , ~ ) ~ , =  - -~ ~! 

( ~'÷-'÷~== B~, ...B~ 
= (-1) "-k n! E (vl . . .vk) vl!. . .vk! 

n = k  "U 1 , . . .  , V k  E N  

The assertion (2.4) of Theorem 2 would now follow easily from (3.5). 

PROOF OF THEOREM 3. By (1.7) and (1.11), we have 

tn 
(3.5) 

~--~b!~)t~= ( t )~ ( 
7,=0 l o g ( f +  t)  = 1 

1 )x 
+ (l / t)  (log(1 + t) - t) 

= E ( - 1 ) J  x +  - 1  ( l o g ( l + t ) - t )  j t -j 
j=0  
- 

= E ( _ I ) j  x + - 1 j! ( -1)  n- j  d(n,j) n! 
j=O n=2j 

- ( ; ) -  = E ( _ I )  j x+ - 1  j! E ( _ l ) n d ( n + j , j )  (n+j)------~. 
j =0 n=j 

= E ( _ l ) n  j j! x+ --1 d (n+j , j ) ( n+ j )~ '  
n=0 j=0  

(3.6) 

which leads us easily to 

n j! ( x + j _ l ) d ( n + j , j )  ~!~) = ~ (  1)n-J (~Tj)~ j 
j=0  

= ~ ( - l y - J  (~ j_j)~ 
j=0 

~t 

= E ( _ I ) , ~ _  j 1 d(n + j, j) E ( - 1 )  j -k  s(j, k) x k 
j=o k=l 

n n 

= Z ( _ l y - ~  ~ 4Y, k) d(n + J,Y) ~ = ~(~,k) ~ ~ 

k=l  j=k  (n + j)! k=l 

- -  d(n + j , j ) .  (x + j  - 1)(x + j  - 2 ) . . .  (x + 1)x 

J 

This completes the proof of Theorem 3. 

PROOF OF TIIEOREM 4. By applying Theorem 3, we have 

d k 

On tile other hand, it follows from (1.7) that 

x=0 t k dk {b(X) t'~ = (log ( l o g ( l +  t ) )  ) 
n=k d ~ -  

By means of (3.7) and (3.8), we get 

k! ~-(n, k )P  = log log([  + t) 
n=k 

(3.7) 

(3.8) 

(3.9) 
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Since  (see [11,12]) 

it is easily seen that  

oo 

(1 + t) log(1 + t) '  
n = O  

E B (~) t ~ t 
n=l - -  ~.T = log log(1 + t) 

Therefore, by comparing (3.10) with (3.9), we have 

(3.10) 

= (-1)k E 
n = k  v l , . . . , v k E N  

(VlT. vl!..vk!] P' 

(3.11) 

which readily yields the assertion (2.9) of Theorem 4. 

Numerous further results involving the polynomials and numbers considered in this paper can 
also be derived by using the methods and techniques described here. 
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