Gould-Hsu Inversion Chains and Their Applications

Hongmei LIU*, Shuyan DING, Shuhua QI

School of Science, Dalian Nationalities University, Liaoning 116600, P. R. China

Abstract In this paper, by means of Gould-Hsu inverse series relations, we establish several Gould-Hsu inversion chains. As consequence, some new transformation formulae as well as some famous hypergeometric series identities are derived.

Keywords Gould-Hsu inversion; combinatorial identities; hypergeometric series.

MR(2010) Subject Classification 05A30; 05A19

1. Introduction

Gould-Hsu inversions, which were established by Gould and Hsu in 1973 (see [6]), play an important role in the computation of combinatorial identities. With the help of Gould-Hsu inversions, many authors obtained a great deal of new transformation formulae, especially Chu [2,4] and Krattenthaler [3].

The Gould-Hsu inversions are described as follows:

Let $\{a_i\}$ and $\{b_j\}$ be two complex sequences, and let the polynomials $\phi(x; n)$ be defined by

$$\phi(x;0) = 1$$
 and $\phi(x;n) = \prod_{k=0}^{n-1} (a_k + xb_k)$, for $n = 1, 2, ...$

Then we have the following inverse series relations:

$$\begin{cases} f(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \phi(k;n) g(k), & n = 0, 1, 2..., \\ g(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{a_k + kb_k}{\phi(n;k+1)} f(k), & n = 0, 1, 2.... \end{cases}$$
(1)

If a pair of sequences $\{f(n), g(n)\}$ satisfy the above relation, then we call $\{f(n), g(n)\}$ a Gould-Hsu inversion pair, or a G'-pair for short. Gould-Hsu inversion chain was first put forward in [7], where two chains were given by the authors. In this paper, we will establish several new Gould-Hsu inversion chains by making use of hypergeometric series transformations and the following Lemma:

Received June 17, 2010; Accepted October 12, 2010

Supported by the Science Foundation of Dalian Nationalities University (Grant No. DC110305). * Corresponding author

E-mail address: hmliu99@yahoo.com.cn (Hongmei LIU)

Lemma 1 Let

$$a_{nk} = (-1)^k \binom{n}{k} \phi(k;n), \quad b_{nk} = (-1)^k \binom{n}{k} \frac{a_k + kb_k}{\phi(n;k+1)}.$$

If $\{f(n), g(n)\}$ is a G'-pair, so is $\{f'(n), g'(n)\}$, where

$$f'(n) = c_n f(n), \ g'(n) = \sum_{k=0}^n d_{nk} g(k) \text{ and } d_{nk} = \sum_{j=k}^n b_{nj} c_j a_{jk}$$

Proof Let matrices $A = (a_{nk})$, $B = (b_{nk})$, $D = (d_{nk})$ and a diagonal matrix $C = (c_0, c_1, \ldots, c_n)$. It is easy to see that A, B, and D are lower triangle matrices, and

$$f = Ag$$
, $g = Bf$, $f' = Cf$, $g' = Dg$ and $D = BCA$.

Further, by means of (1), AB = BA = I, so we can easily verify

$$f' = Ag'$$
 and $g' = Bf'$,

which indeed proves the lemma. \Box

If $\{f(n), g(n)\}$ is a G'-pair, from Lemma 1, we can establish another G'-pair $\{f'(n), g'(n)\}$. Repeating this process, we can create a Gould-Hsu inversion chain:

$$\{f(n), g(n)\} \longrightarrow \{f'(n), g'(n)\} \longrightarrow \{f''(n), g''(n)\} \longrightarrow \cdots$$

As consequence, in Section 3 some new transformation formulae are derived.

Because hypergeometric series plays an central role in the present work, we introduce its notation as follows. According to Bailey [1] and Slater [8], the hypergeometric series is defined as

$${}_{r+1}F_s\left[\begin{array}{c}a_0, a_1, \dots, a_r\\b_1, \dots, b_s\end{array} \middle| z\right] = \sum_{n=0}^{\infty} \frac{(a_0)_n (a_1)_n \cdots (a_r)_n}{(b_1)_n \cdots (b_s)_n} z^n,$$

where $(a)_0 = 1$ and $(a)_n = a(a+1)\cdots(a+n-1)$. In this paper, we will apply the following famous hypergeometric series identities: Gauss's theorem [1, 1.3 (1)]:

$${}_{2}F_{1}\begin{bmatrix}a,b\\c\end{bmatrix} = \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)},$$
(2)

Vandermonde's theorem [1, 1.3]:

$${}_{2}F_{1}\begin{bmatrix}-n,b\\c&1\end{bmatrix} = \frac{(c-b)_{n}}{(c)_{n}},$$
(3)

Dougall-Dixon formula [1, 4.3 (3)]:

$${}_{5}F_{4}\left[\begin{array}{ccc}a, & 1+a/2, & c, & d, & -m\\a/2, 1+a-c, 1+a-d, 1+a+m\end{array}\middle|1\right] = \frac{(1+a)_{m}(1+a-c-d)_{m}}{(1+a-c)_{m}(1+a-d)_{m}}.$$
(4)

Whipple formula [1, 4.3 (4)]:

$${}_{7}F_{6}\left[\begin{array}{cccc}a, & 1+a/2, & b, & c, & d, & e, & -m\\a/2, 1+a-b, 1+a-c, 1+a-d, 1+a-e, 1+a+m\end{array}\middle|1\right]$$

Gould-Hsu inversion chains and their applications

$$=\frac{(1+a)_m(1+a-d-e)_m}{(1+a-d)_m(1+a-e)_m} {}_4F_3\left[\begin{array}{ccc} 1+a-b-c, & d, & e, & -m\\ 1+a-b, 1+a-c, d+e-a-m \end{array} \middle| 1\right].$$
(5)

2. Several Gould-Hsu inversion chains

Theorem 2 If $\{f(n), g(n)\}$ is a G'-pair with $\phi(x; n) = 1$, and

$$f'(n) = x^n f(n), \quad g'(n) = \sum_{k=0}^n x^k \binom{n}{k} (1-x)^{n-k} g(k),$$

then $\{f'(n), g'(n)\}$ is a G'-pair too.

Proof Since $\phi(x; n) = 1$, we have

$$a_{nk} = b_{nk} = (-1)^k \binom{n}{k},$$

$$c_n = x^n \text{ and } d_{nk} = x^k \binom{n}{k} (1-x)^{n-k}$$

Therefore

$$\sum_{j=k}^{n} b_{nj} c_j a_{jk} = \sum_{j=k}^{n} (-1)^j \binom{n}{j} x^j (-1)^k \binom{j}{k} = \binom{n}{k} \sum_{j=0}^{n-k} (-1)^j \binom{n-k}{j} x^{j+k}$$
$$= x^k \binom{n}{k} (1-x)^{n-k},$$

which is just equal to d_{nk} . By Lemma 1, the proof of the theorem is completed. \Box

Theorem 3 If $\{f(n), g(n)\}$ is a G'-pair with $\phi(x; n) = 1$ and

$$f'(n) = \frac{(b)_n}{(c)_n} f(n), \quad g'(n) = \sum_{k=0}^n \binom{n}{k} \frac{(b)_k (c-b)_{n-k}}{(c)_n} g(k),$$

then $\{f'(n), g'(n)\}$ is a G'-pair too.

Proof In this case, a_{nk} and b_{nk} are the same as those in the above theorem, and

$$c_n = \frac{(b)_n}{(c)_n}, \quad d_{nk} = \binom{n}{k} \frac{(b)_k (c-b)_{n-k}}{(c)_n}.$$

Then

$$\sum_{j=k}^{n} b_{nj} c_j a_{jk} = \sum_{j=k}^{n} (-1)^j \binom{n}{j} \frac{(b)_j}{(c)_j} (-1)^k \binom{j}{k}.$$

Replacing j by j + k and then applying the Vandermonde's theorem (3), we obtain

$$\sum_{j=k}^{n} b_{nj} c_j a_{jk} = \binom{n}{k} \frac{(b)_k}{(c)_k} \, _2F_1 \begin{bmatrix} -n+k, b+k \\ c+k \end{bmatrix} 1 = \binom{n}{k} \frac{(b)_k (c-b)_{n-k}}{(c)_n},$$

which is just equal to $d_{nk},$ and the result follows from Lemma 1. \Box

169

Theorem 4 If $\{f(n), g(n)\}$ is a G'-pair with $\phi(x; n) = (a + x)_n$ and

$$f'(n) = \frac{(c)_n(d)_n}{(1+a-c)_n(1+a-d)_n} f(n),$$

$$g'(n) = \sum_{k=0}^n \binom{n}{k} \frac{(a)_n(c)_k(d)_k(1+a-c-d)_{n-k}}{(a)_k(1+a-c)_n(1+a-d)_n} g(k),$$

then $\{f'(n), g'(n)\}$ is a G'-pair too.

Proof Since $\phi(x; n) = (a + x)_n$, we have

$$a_{nk} = (-1)^k \binom{n}{k} (a+k)_n, \quad b_{nk} = (-1)^k \binom{n}{k} \frac{2k+a}{(a+n)_{k+1}},$$
$$c_n = \frac{(c)_n (d)_n}{(1+a-c)_n (1+a-d)_n}, \quad d_{nk} = \binom{n}{k} \frac{(a)_n (c)_k (d)_k (1+a-c-d)_{n-k}}{(a)_k (1+a-c)_n (1+a-d)_n}.$$

Replacing j by j + k, we obtain

$$\sum_{j=k}^{n} b_{nj} c_j a_{jk} = \sum_{j=k}^{n} (-1)^j \binom{n}{j} \frac{2j+a}{(a+n)_{j+1}} \frac{(c)_j (d)_j}{(1+a-c)_j (1+a-d)_j} (-1)^k \binom{j}{k} (a+k)_j$$

$$= \binom{n}{k} \frac{(c)_k (d)_k (a+k)_{k+1}}{(1+a-c)_k (1+a-d)_k (a+n)_{k+1}}$$

$$\sum_{j=0}^{n-k} \frac{(a+2k)_j (2j+2k+a)(c+k)_j (d+k)_j (-n+k)_j}{j! (2k+a) (1+a-c+k)_j (1+a-d+k)_j (1+a+n+k)_j}$$

$$= \binom{n}{k} \frac{(c)_k (d)_k (a+k)_{k+1}}{(1+a-c)_k (1+a-d)_k (a+n)_{k+1}}$$

$${}_5F_4 \begin{bmatrix} a+2k, \ 1+a/2+k, \ c+k, \ d+k, \ -n+k \\ a/2+k, \ 1+a-c+k, \ 1+a-d+k, \ 1+a+n+k \end{bmatrix} 1 \end{bmatrix}.$$
(6)

Applying Dougall-Dixon formula (4) to the last hypergeometric series gives

$$(6) = \frac{(1+a+2k)_{n-k}(1+a-c-d)_{n-k}}{(1+a-c+k)_{n-k}(1+a-d+k)_{n-k}}.$$

Finally, we find

$$\sum_{j=k}^{n} b_{nj} c_j a_{jk} = \binom{n}{k} \frac{(a)_n (c)_k (d)_k (1+a-c-d)_{n-k}}{(a)_k (1+a-c)_n (1+a-d)_n} = d_{nk}.$$

By Lemma 1, the proof of the theorem is completed. \Box

Theorem 5 If $\{f(n), g(n)\}$ is a G'-pair with $\phi(x; n) = (a + x)_n$ and

$$f'(n) = \frac{(c)_n(d)_n(e)_n(f)_n}{(1+a-c)_n(1+a-d)_n(1+a-e)_n(1+a-f)_n}f(n),$$

$$g'(n) = \sum_{k=0}^n \binom{n}{k} \frac{(a)_n(1+a-e-f)_{n-k}(c)_k(d)_k(e)_k(f)_k}{(a)_k(1+a-c)_k(1+a-d)_k(1+a-e)_n(1+a-f)_n}$$

Gould-Hsu inversion chains and their applications

$${}_{4}F_{3}\left[\begin{array}{c}1+a-c-d,e+k,f+k,-n+k\\1+a-c+k,1+a-d+k,e+f-a-n+k\end{array}\middle|1\right]g(k),$$

then $\{f'(n), g'(n)\}$ is a G'-pair too.

By making use of Whipple formula (5), similarly to the proof of Theorem 4, we can easily obtain this theorem. Here, we omit the details.

3. Applications

Iterating Theorems 2 and 3 one time, we have the following results.

Theorem 6 If $\{f(n), g(n)\}$ is a G'-pair with $\phi(x; n) = 1$, then

$$\sum_{k=0}^{n} x^{k} \binom{n}{k} (1-x)^{n-k} g(k) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} x^{k} f(k),$$
(7)

$$\sum_{k=0}^{n} \binom{n}{k} \frac{(b)_{k}(c-b)_{n-k}}{(c)_{n}} g(k) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{(b)_{k}}{(c)_{k}} f(k).$$
(8)

When $\phi(x; n) = 1$, we can present many Gould-Hsu inversion pairs. For example, from binomial theorem, $\{x^n, (1-x)^n\}$ is a G'-pair; from Vandermonde theorem (3), $\{\frac{(e-d)_n}{(e)_n}, \frac{(d)_n}{(e)_n}\}$ is a G'-pair; from (4.2) in [5], $\{\binom{d+n}{e}^{-1}, \frac{e}{n+e}\binom{n+d}{d-e}^{-1}\}$ is a G'-pair; from (7.6) in [5], there exists a G'-pair $\{\binom{2n}{n}\binom{j+n}{n}^{-1}2^{-2n}, \binom{2n+2j}{n+j}\binom{2j}{j}^{-1}2^{-2n}\}$. Certainly, there exist some other G'-pairs from the identities listed in the book of Gould [5]. Here we do not present all. Inserting the above G'-pairs into Theorem 6, we can obtain some new transformation formulae.

• Inserting G'-pair $\{x^n, (1-x)^n\}$ into (8), we deduce

$$\frac{(c-b)_n}{(c)_n} \, _2F_1 \left[\begin{array}{c} -n,b\\ 1+b-c-n \end{array} \middle| 1-x \right] = \, _2F_1 \left[\begin{array}{c} -n,b\\ c \end{array} \middle| x \right].$$

• Inserting G'-pair $\{\frac{(e-d)_n}{(e)_n}, \frac{(d)_n}{(e)_n}\}$ into (7) and (8), respectively, we get

$$(1-x)^{n} {}_{2}F_{1} \begin{bmatrix} -n,d \\ e \end{bmatrix} \left| \frac{-x}{1-x} \right| = {}_{2}F_{1} \begin{bmatrix} -n,e-d \\ e \end{bmatrix} x ,$$

$$(9)$$

$$\frac{(c-b)_{n}}{(c)_{n}} {}_{3}F_{2} \begin{bmatrix} -n,b,d \\ e,1+b-c-n \end{bmatrix} | 1 = {}_{3}F_{2} \begin{bmatrix} -n,b,e-d \\ c,e \end{bmatrix} | 1].$$

In this case, the first one in (9) is just the special form of [1, 2.4 (1)]. • Inserting G'-pair $\left\{ \binom{d+n}{e}^{-1}, \frac{e}{n+e} \binom{n+d}{d-e}^{-1} \right\}$ into (7) and (8), respectively, gives

$$\sum_{k=0}^{n} \frac{e}{k+e} \binom{n}{k} \binom{k+d}{d-e}^{-1} x^{k} (1-x)^{n-k} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \binom{d+k}{e}^{-1} x^{k},$$
$$\sum_{k=0}^{n} \binom{n}{k} \frac{(b)_{k} (c-b)_{n-k}}{(c)_{n}} \frac{e}{k+e} \binom{k+d}{d-e}^{-1} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{(b)_{k}}{(c)_{k}} \binom{d+k}{e}^{-1}.$$

• Inserting G'-pair $\binom{2n}{n}\binom{j+n}{n}^{-1}2^{-2n}, \binom{2n+2j}{n+j}\binom{2j}{j}^{-1}2^{-2n}$ into (7) and (8), respectively, we obtain

$$\sum_{k=0}^{n} \binom{n}{k} \binom{2k+2j}{k+j} \binom{2j}{j}^{-1} (\frac{x}{4})^{k} (1-x)^{n-k} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \binom{2k}{k} \binom{j+k}{k}^{-1} (\frac{x}{4})^{k},$$
$$\sum_{k=0}^{n} \binom{n}{k} \frac{(b)_{k}(c-b)_{n-k}}{(c)_{n}} \binom{2k+2j}{k+j} \binom{2j}{j}^{-1} 2^{-2k} = \sum_{k=0}^{n} (-4)^{-k} \binom{n}{k} \binom{2k}{k} \binom{j+k}{k}^{-1} \frac{(b)_{k}}{(c)_{k}}.$$

Further, iterating Theorems 4 and 5 once again, we have the following

Theorem 7 If $\{f(n), g(n)\}$ is a G'-pair with $\phi(x; n) = (a + x)_n$, then

$$\sum_{k=0}^{n} \binom{n}{k} \frac{(a)_{n}(c)_{k}(d)_{k}(1+a-c-d)_{n-k}}{(a)_{k}(1+a-c)_{n}(1+a-d)_{n}} g(k)$$

$$= \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{(2k+a)(c)_{k}(d)_{k}}{(a+n)_{k+1}(1+a-c)_{k}(1+a-d)_{k}} f(k), \qquad (10)$$

$$\sum_{k=0}^{n} \binom{n}{k} \frac{(a)_{n}(1+a-e-f)_{n-k}(c)_{k}(d)_{k}(e)_{k}(f)_{k}}{(a)_{k}(1+a-c)_{k}(1+a-d)_{k}(1+a-e)_{n}(1+a-f)_{n}} \times$$

$${}_{4}F_{3} \begin{bmatrix} 1+a-c-d,e+k,f+k,-n+k\\ 1+a-c+k,1+a-d+k,e+f-a-n+k \end{bmatrix} 1 g(k)$$

$$= \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} \frac{(2k+a)(c)_{k}(d)_{k}(e)_{k}(f)_{k}}{(a+n)_{k+1}(1+a-c)_{k}(1+a-d)_{k}(1+a-e)_{k}(1+a-f)_{k}} f(k). \qquad (11)$$

When $\phi(x;n) = (a+x)_n$, we get a G'-pair $\{(-1)^n \frac{(a)_n(a-b+1)_n}{(b)_n}, \frac{(a)_n}{(b)_n}\}$ from Vandermonde theorem (3). There exists a G'-pair $\{\frac{n!}{(2n+1)^2}, \binom{n+1/2}{n}^{-2}\}$ with a = 1 by (4.17) in [5]. Inserting these two pairs into Theorem 7, we can obtain the following identities.

• Inserting G'-pair $\{(-1)^n \frac{(a)_n (a-b+1)_n}{(b)_n}, \frac{(a)_n}{(b)_n}\}$ into (10), letting $n \to \infty$, then using Gauss's theorem (2), we get

$${}_{5}F_{4}\left[\begin{array}{cc}a,1+a/2,\ c,\ d,1+a-b\\a/2,1+a-c,1+a-d,b\end{array}\right|1\right] = \frac{\Gamma(1+a-c)\Gamma(1+a-d)\Gamma(b)\Gamma(b-c-d)}{\Gamma(1+a)\Gamma(1+a-c-d)\Gamma(b-c)\Gamma(b-d)},$$

which is just the generalized form of Dougall-Dixon formula [1, 4.4 (1)].

• Inserting G'-pair $\{(-1)^n \frac{(a)_n (a-b+1)_n}{(b)_n}, \frac{(a)_n}{(b)_n}\}$ into (11) and letting $n \to \infty$, we get the following identity:

$$\begin{split} & \frac{\Gamma(1+a-e)\Gamma(1+a-f)}{\Gamma(1+a)\Gamma(1+a-e-f)} \sum_{k=0}^{\infty} \frac{(c)_k (d)_k (e)_k (f)_k}{k! (1+a-c)_k (1+a-d)_k (b)_k} \times \\ & _3F_2 \left[\begin{array}{c} 1+a-c-d, e+k, f+k\\ 1+a-c+k, 1+a-d+k \end{array} \middle| 1 \right] \\ & =_7 F_6 \left[\begin{array}{c} a, 1+a/2, \ c, \ d, \ e, \ f, \ 1+a-b\\ a/2, 1+a-c, 1+a-d, 1+a-e, 1+a-f, b \end{array} \middle| 1 \right]. \end{split}$$

Gould-Hsu inversion chains and their applications

• Inserting G'-pair $\left\{\frac{n!}{(2n+1)^2}, \binom{n+1/2}{n}^{-2}\right\}$ into (10) with a = 1, we obtain

$${}_{5}F_{4}\left[\begin{array}{ccc}1,1/2,\ c,\ d,-n\\3/2,2-c,2-d,2+n\end{array}\middle|1\right] = \frac{(n+1)!(2-c-d)_{n}}{(2-c)_{n}(2-d)_{n}} \ {}_{4}F_{3}\left[\begin{array}{ccc}1,c,\ d,-n\\3/2,3/2,c+d-n-1\end{vmatrix}\middle|1\right],$$

which is the special form of [1, 4.3 (2)]. • Inserting G'-pair $\left\{\frac{n!}{(2n+1)^2}, \binom{n+1/2}{n}^{-2}\right\}$ into (11) with a = 1, we obtain

We can also iterate Theorems 2-5 i (i > 1) times, and insert the above inversion pairs into them, then many other transformation formulae can be derived.

References

- [1] W. N. BAILEY. Generalized Hypergeometric Series. Cambridge University Press, Cambridge, 1935.
- [2] Wenchang CHU. Some new applications of Gould-Hsu inversions. J. Combin. Inform. System Sci., 1989, **14**(1): 1–4.
- [3] C. KRATTENTHALER. A new matrix inverse. Proc. Amer. Math. Soc., 1996, 124(1): 47-59.
- [4] Wenchang CHU. Inversion techniques and combinatorial identities: Balanced hypergeometric series. Rocky Mountain J. Math., 2002, **32**(2): 561–587.
- [5] H. W. GOULD. Combinatorial Identities. Morgantown, W.Va., 1972.
- [6] H. W. GOULD, L. C. HSU. Some new inverse series relations. Duke Math. J., 1973, 40: 885-891.
- [7] Xinrong MA, Tianming WANG. Inverse chain of inverse relation. J. Math. Res. Exposition, 2001, 21(1): 7 - 16.
- [8] L. J. SLATER. Generalized Hypergeometric Functions. Cambridge University Press, Cambridge, 1966.