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Abstract: In this paper, we prove some congruences for higher-order Euler numbers.
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1. Introduction and results. For an inte-
ger k, the Euler number E(k)

2n of order k (the index k
may be negative) is defined by (see [2, 5])

(1.1) (secx)k =
∞∑

n=0

(−1)nE
(k)
2n

x2n

(2n)!
,

or equivalently

(1.2)
(

2
ex + e−x

)k

=
∞∑

n=0

E
(k)
2n

x2n

(2n)!
.

The numbers E(1)
2n = E2n are the ordinary Euler

numbers. By (1.1) or (1.2), we can get
(1.3)

E
(k)
2n = (2n)!

∑
v1+v2+···+vk=n

v1≥0,v2≥0,...,vk≥0

E2v1E2v2 · · ·E2vk

(2v1)!(2v2)! · · · (2vk)!

when k is positive.
The Euler numbers E2n satisfy the recurrence

relation

(1.4) E0 = 1, E2n = −
n−1∑
k=0

(
2n
2k

)
E2k.

By induction, all the Euler numbers E0, E2,
E4, . . . are integers. By (1.3), we know E

(k)
2n is an

integer.
Recently, several researchers have studied the

congruences for Euler numbers. For example:
In [7], Wenpeng Zhang obtained an interesting

congruence for Euler numbers,

(1.5) Ep−1 ≡ 1 + (−1)(p+1)/2 (mod p).

where p is any odd prime.
In [4], Guodong Liu obtained an congruence for

Euler numbers,
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(1.6)
(p−1)/2∑

k=1

E2n+2k ≡ −1 (mod p).

where n ≥ 0 is integer and p is any odd prime.
The following conjecture is on Euler numbers

(see [1] B45).
Conjecture. For any prime p ≡ 1 (mod 4),

the congruence E(p−1)/2 6≡ 0 (mod p) holds.
In [3], Guodong Liu proved the conjecture for

p ≡ 5 (mod 8). In [6], Pingzhi Yuan, using a result
of [3] and the class number formula for the quadratic
field with negative discriminant, proved the above
conjecture.

The main purpose of this paper is to prove some
congruences for higher-order Euler numbers. That is,
we shall prove the following main conclusion.

Theorem 1. Let n ≥ 0, r ≥ 3 be integers, p
be any odd prime. If r ≡ 2k+ 1 (mod p), where 1 ≤
k ≤ (p− 1)/2. Then

(1.7)
(p−1)/2∑

i=1

E
(r)
2n+2i ≡ 0 (mod p).

Theorem 2. Let n ≥ 0, r ≥ 2 be integers, p
be any odd prime. If r ≡ 2k+ 2 (mod p), where 0 ≤
k ≤ (p− 1)/2. Then
(1.8)

(p−1)/2∑
i=1

E
(r)
2n+2i ≡

(−1)(p+1)/2

22k

(
2k
k

)
(mod p).

Taking r = 2 in Theorem 2, we may immediately
deduce the following

Corollary 1. Let n ≥ 0 be any integers, p be
any odd prime. Then we have

(1.9)
(p−1)/2∑

i=1

E
(2)
2n+2i ≡ (−1)(p+1)/2 (mod p).

Setting p = 3, 5, 7, 11 in Corollary 1, we can get
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E
(2)
2n+2 ≡ 1 (mod 3).(1.10)

E
(2)
2n+2 +E

(2)
2n+4 ≡ −1 (mod 5).(1.11)

E
(2)
2n+2 +E

(2)
2n+4 +E

(2)
2n+6 ≡ 1 (mod 7).(1.12)

E
(2)
2n+2 +E

(2)
2n+4

+E
(2)
2n+6 +E

(2)
2n+8 +E

(2)
2n+10 ≡ 1 (mod 11).

(1.13)

2. Some lemmas.
Lemma 1. Let n ≥ 1, k ≥ 1 be integers. Then

we have

(2.1) E
(k)
2n ≡ 0 (mod k).

Proof . By (1.1), we have
∞∑

n=1

(−1)nE
(k)
2n

x2n−1

(2n− 1)!

= k(secx)k tanx.

(2.2)

By (secx)2 =
∑∞

n=0(−1)nE
(2)
2n (x2n/((2n)!)) =∑∞

n=1(−1)n−1E
(2)
2n−2(x

2n−2/((2n− 2)!)), we get

tanx =
∞∑

n=1

(−1)n−1E
(2)
2n−2

x2n−1

(2n− 1)!
.(2.3)

By (2.2) and (2.3), we have
∞∑

n=1

(−1)nE
(k)
2n

x2n−1

(2n− 1)!

= k

∞∑
n=0

(−1)nE
(k)
2n

x2n

(2n)!

×
∞∑

n=1

(−1)n−1E
(2)
2n−2

x2n−1

(2n− 1)!

= k

∞∑
n=1

(−1)n−1
n−1∑
i=0

(
2n− 1

2i

)
× E

(k)
2i E

(2)
2n−2i−2

x2n−1

(2n− 1)!
.

(2.4)

Comparing the coefficients of x2n−1 on both sides of
(2.4), we get
(2.5)

E
(k)
2n =−k

n−1∑
i=0

(
2n−1

2i

)
E

(k)
2i E

(2)
2n−2i−2 ≡ 0 (mod k).

This completes the proof of Lemma 1.
Lemma 2. Let n ≥ 0, k ≥ 1,m ≥ 1 be inte-

gers. Then we have

(2.6) E
(k+m)
2n ≡ E

(k)
2n (mod m).

Proof . By (1.1), we have

∞∑
n=0

(−1)nE
(k+m)
2n

x2n

(2n)!
= (secx)k+m

= (secx)k(secx)m

=

( ∞∑
n=0

(−1)nE
(k)
2n

x2n

(2n)!

)( ∞∑
n=0

(−1)nE
(m)
2n

x2n

(2n)!

)

=
∞∑

n=0

(−1)n
n∑

j=0

(
2n
2j

)
E

(k)
2j E

(m)
2n−2j

x2n

(2n)!
.

(2.7)

Comparing the coefficients of x2n on both sides of
(2.7), we get

E
(k+m)
2n =

n∑
j=0

(
2n
2j

)
E

(k)
2n−2jE

(m)
2j

= E
(k)
2n +

n∑
j=1

(
2n
2j

)
E

(k)
2n−2jE

(m)
2j .

(2.8)

By (2.8) and Lemma 1, we have

E
(k+m)
2n ≡ E

(k)
2n (mod m).(2.9)

This completes the proof of Lemma 2.

Lemma 3. Let n ≥ 1, k ≥ 1,m ≥ 0 be inte-
gers. Then we have
(2.10)

E
(k)
2n ≡ 1

2m

m∑
i=0

(
m

i

)
(m− 2i)2n (mod (m+ k)).

Proof . By (1.1), we have

∞∑
n=0

(−1)nE
(k)
2n

x2n

(2n)!
= (secx)k

= (secx)m+k(secx)−m

=

( ∞∑
n=0

(−1)nE
(m+k)
2n

x2n

(2n)!

)

×

( ∞∑
n=0

(−1)nE
(−m)
2n

x2n

(2n)!

)

=
∞∑

n=0

(−1)n
n∑

j=0

(
2n
2j

)
E

(m+k)
2j E

(−m)
2n−2j

x2n

(2n)!
.

(2.11)

Comparing the coefficients of x2n on both sides of
(2.11), we get
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E
(k)
2n =

n∑
j=0

(
2n
2j

)
E

(m+k)
2j E

(−m)
2n−2j

= E
(−m)
2n +

n∑
j=1

(
2n
2j

)
E

(m+k)
2j E

(−m)
2n−2j .

(2.12)

By (2.12) and Lemma 1, we have

E
(k)
2n ≡ E

(−m)
2n (mod (m+ k)).(2.13)

On the other hand, by (1.2), we have

∞∑
n=0

E
(−m)
2n

x2n

(2n)!
=
(
ex + e−x

2

)m

= 2−m
m∑

i=0

(
m

i

)
e(m−2i)x

= 2−m
m∑

i=0

(
m

i

) ∞∑
n=0

(m− 2i)nx
n

n!
.

(2.14)

Comparing the coefficients of x2n on both sides of
(2.14), we get

(2.15) E
(−m)
2n = 2−m

m∑
i=0

(
m

i

)
(m− 2i)2n.

By (2.13) and (2.15), we immediately obtain (2.10).
This completes the proof of Lemma 3.

3. Proof of the theorems.
Proof of Theorem 1. By Lemma 2 and

Lemma 3, we have

(p−1)/2∑
i=1

E
(r)
2n+2i ≡

(p−1)/2∑
i=1

E
(2k+1)
2n+2i

≡ 1
2p−2k−1

p−2k−1∑
j=0

(
p−2k−1

j

)

×
(p−1)/2∑

i=1

(p−2k−1−2j)2n+2i

≡ 1
2p−2k−1

p−2k−1∑
j=0

(
p−2k−1

j

)
×(p−2k−1−2j)2n+2

× (p−2k−1−2j)p−1−1
(p−2k−1−2j)2−1

≡ 0 (mod p).

(3.1)

This completes the proof of Theorem 1.
Proof of Theorem 2. By Lemma 2 and Lem-

ma 3, we have

(p−1)/2∑
i=1

E
(r)
2n+2i ≡

(p−1)/2∑
i=1

E
(2k+2)
2n+2i

≡ 1
2p−2k−2

p−2k−2∑
j=0

(
p− 2k − 2

j

)

×
(p−1)/2∑

i=1

(p− 2k − 2− 2j)2n+2i

=
1

2p−2k−2

p−2k−2∑
j=0

p−2k−2−2j=±1

(
p− 2k − 2

j

)

×
(p−1)/2∑

i=1

(p− 2k − 2− 2j)2n+2i

+
1

2p−2k−2

p−2k−2∑
j=0

p−2k−2−2j 6=±1

(
p− 2k − 2

j

)

×
(p−1)/2∑

i=1

(p− 2k − 2− 2j)2n+2i

=
p− 1

2p−2k−1

×
((

p− 2k − 2
(p− 2k − 1)/2

)
+
(

p− 2k − 2
(p− 2k − 3)/2

))
+

1
2p−2k−2

p−2k−2∑
j=0

p−2k−2−2j 6=±1

(
p− 2k − 2

j

)
× (p− 2k − 2− 2j)2n+2

× (p− 2k − 2− 2j)p−1 − 1
(p− 2k − 2− 2j)2 − 1

≡ −22k

((
p− 2k − 2

(p− 2k − 1)/2

)
+
(

p− 2k − 2
(p− 2k − 3)/2

))
≡ −22k

(
p− 2k − 1

(p− 2k − 1)/2

)
≡ (−1)(p+1)/2

22k

(
2k
k

)
(mod p).

(3.2)

This completes the proof of Theorem 2.
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