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A new combinatorial interpretation of a q-analogue
of the Lah numbers

Jim Lindsay, Toufik Mansour and Mark Shattuck

The Lah numbers L(n, k) are the connection constants between

the rising factorial and falling factorial polynomial bases and count

partitions of n distinct objects into k blocks, where objects within

a block are ordered (termed Laguerre configurations). In this paper,

we consider the q-Lah numbers defined as the connection constants

between the comparable bases of polynomials obtained by replac-

ing each positive integer n with nq = 1+q+ · · ·+qn−1 and provide

a new combinatorial interpretation for these numbers by describ-

ing a statistic on Laguerre configurations for which they are the

generating function. We describe some other algebraic properties

of these numbers and can provide combinatorial explanations in

several instances using our interpretation. A further generalization

involving a second parameter may also be given.
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1. Introduction

We’ll use the following notational conventions: N := {0, 1, 2, . . . }, P := {1,
2, . . . }, [0] := ∅, and [n] := {1, . . . , n} for n ∈ P. Empty sums take the val-

ue 0 and empty products the value 1, with 00 := 1. The letter q denotes

an indeterminate, with 0q := 0, nq := 1 + q + · · · + qn−1 for n ∈ P, 0q!:=1,

nq! := 1q2q · · ·nq for n ∈ P, and
(
n
k

)
q
:= nq!

kq!(n−k)q!
for n ∈ N and 0 � k � n.

The binomial coefficient
(
n
k

)
is equal to zero if k is a negative integer or if

0 � n < k.

Let L(n, k) denote the set of all distributions of n balls, labelled 1, . . . , n,

among k unlabelled, contents-ordered boxes, with no box left empty. Garsia

and Remmel [2] call such distributions Laguerre configurations. See also [8]

and [12]. If L(n, k) := |L(n, k)|, then L(n, 0) = δn,0, ∀ n ∈ N, L(n, k) = 0 if
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0 � n < k, and

(1) L(n, k) =
n!

k!

(
n− 1

k − 1

)
, 1 � k � n,

or, equivalently,

(2) L(n, k) = L(n− 1, k − 1) + (n− 1 + k)L(n− 1, k), ∀n, k ∈ P,

with the initial conditions L(n, 0) = δn,0 and L(0, k) = δ0,k ∀n, k ∈ N. The

numbers L(n, k) are called Lah numbers, after Ivo Lah [5], who introduced

them as the connection constants in the polynomial identities

(3) x(x+1) · · · (x+n−1) =

n∑
k=0

L(n, k)x(x−1) · · · (x−k+1), ∀n ∈ N.

For applications to physics, see, e.g., [9] and [10] and the references therein,

and see Section 3.3 of [6] for a related sequence of linear differential equa-

tions.

In this paper, we consider the q-Lah numbers Lq(n, k) that are the con-

nection constants in the polynomial identities

x(x+ 1q) · · · (x+ (n− 1)q)

=

n∑
k=0

Lq(n, k)x(x− 1q) · · · (x− (k − 1)q), ∀n ∈ N,(4)

a simple q-generalization of (3). See, e.g., Garsia and Remmel [2] and Wag-

ner [14] for other examples of q-Lah numbers. Miceli and Remmel [7] have

given a general rook theory model which supplies combinatorial interpre-

tations to much more general product formulas than those of the form

of (4). Here, we provide a new combinatorial interpretation of the poly-

nomial Lq(n, k) given by (4) above by defining a statistic on L(n, k) for

which it is the generating function. In addition, we describe several inter-

esting properties of Lq(n, k), including an expression which reduces to (1)

when q = 1, the evaluations at q = 0 and q = −1, and the evaluation of the

derivative at q = 1. A further generalization involving a second parameter

may also be given in terms of a joint distribution polynomial for two statis-

tics on L(n, k). We observe that the p, q-analogue of the rook theory model

of Miceli and Remmel [7] also applies to our p, q-analogue.
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2. A statistic on Laguerre configurations

Let L(n, k) denote the set of all distributions of n balls, labelled 1, 2, . . . , n,
among k unlabelled, contents-ordered boxes, with no box left empty, and
let L(n, k) := |L(n, k)|. In this section, we define a statistic on L(n, k) for
which Lq(n, k) given by (4) above is the generating function.

Let δ ∈ L(n, k). We now describe a representation for δ which we will use
below. Suppose first that we express the ordered contents of each box of δ
by a word in [n], and then arrange these words in a sequence W1, . . . ,Wk in
increasing order of their least elements. For each i, note that the word Wi is
a permutation, which we express using standard cycle form, i.e., cycles are
ordered by increasing smallest elements and each cycle is written with its
smallest element in the first position. Once this is done, write out the words
Wi from left to right, inserting a bar between consecutive words. We will
call this the standard form of δ. As an illustration, if δ ∈ L(12, 5) is given by

(5) 3, 9, 4 8, 1, 10 2 6, 7, 5, 12 11

then its standard form would be

δ = (1, 8)(10)|(2)|(3)(4, 9)|(5, 6, 7)(12)|(11).

We define a statistic on L(n, k) as follows. Suppose δ ∈ L(n, k) is written
in standard form.

Definition 2.1. An ordered pair (i, j) is an element inversion if i > j and i
occurs to the left of j in δ, where i is not the first (= smallest) element of
any cycle of δ.

Definition 2.2. An ordered pair (i, j) is a block inversion if i > j and i
occurs to the left of j in δ, where i is the smallest element of some cycle of δ
and j is the smallest element of some block.

Let inve(δ) and invb(δ) denote the number of element and the number
of block inversions of δ, respectively, and let inv∗(δ) = inve(δ) + invb(δ).
For example, if δ is given by (5) above, then inve(δ) = 6 + 3 = 9, invb(δ) =
3 + 1 = 4, and inv∗(δ) = 9 + 4 = 13. When k = 1, the inv∗ statistic on
L(n, k) is equivalent to a statistic first defined by Carlitz [1] on the symmetric
group Sn and later studied [11].

Given n and k, 0 � k � n, let aq(n, k) denote the distribution polynomial
for the inv∗ statistic on L(n, k), i.e.,

(6) aq(n, k) :=
∑

δ∈L(n,k)
qinv

∗(δ).
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The aq(n, k) satisfy a simple recurrence which generalizes (2) above.

Theorem 2.1. If n, k ∈ P and 1 � k � n, then

(7) aq(n, k) = aq(n− 1, k − 1) + [(n− 1)q + kq]aq(n− 1, k),

with aq(0, k) = δk,0 and aq(n, 0) = δn,0 for all n, k ∈ N.

Proof. The boundary values are clear, so assume n, k ∈ P. The first term on

the right-hand side of (7) gives the total inv∗-weight of all the members of

L(n, k) in which the element n occupies a block by itself. The total weight

of all members of L(n, k) in which n occurs by itself in a cycle but occupies

a block with at least one member of [n−1] is (1+q+ · · ·+qk−1)aq(n−1, k) =

kqaq(n−1, k), since placing the cycle (n) in the ith block from the left within

a member of L(n−1, k) creates k− i additional block inversions. Finally, the

total weight of all the members of L(n, k) in which n occurs in a cycle with at

least one member of [n−1] is (1+q+· · ·+qn−2)aq(n−1, k), since n contributes

n − i − 1 additional element inversions whenever it is placed directly after

the ith number from the left within a member of L(n− 1, k).

Let Lq(n, k), 0 � k � n, be defined as the connection constants between

the q-rising factorial basis (
∏n

i=0(x+ iq))n�0 and the q-falling factorial basis

(
∏n

i=0(x− iq))n�0, as in (4) above. From (3) and (4), it is clear that Lq(n, k)

reduces to L(n, k) when q = 1.

Theorem 2.2. If n, k ∈ N and 0 � k � n, then

(8) Lq(n, k) = aq(n, k).

Proof. From (4), the equality is obvious for n = 0, k = 0, or n = 1. To

complete the proof, we need to show that the Lq(n, k) satisfy recurrence (7)

when n � 2. From (4), we may write

n∑
k=1

Lq(n, k)x(x− 1q) · · · (x− (k − 1)q) = x(x+ 1q) · · · (x+ (n− 1)q)

= (x+ (n− 1)q)

n−1∑
k=0

Lq(n− 1, k)x(x− 1q) · · · (x− (k − 1)q)

=

n−1∑
k=0

Lq(n− 1, k)x(x− 1q) · · · (x− (k − 1)q)[(x− kq) + ((n− 1)q + kq)]
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=

n−1∑
k=0

Lq(n− 1, k)x(x− 1q) · · · (x− kq)

+

n−1∑
k=0

[(n− 1)q + kq]Lq(n− 1, k)x(x− 1q) · · · (x− (k − 1)q)

=

n∑
k=1

Lq(n− 1, k − 1)x(x− 1q) · · · (x− (k − 1)q)

+

n∑
k=1

[(n− 1)q + kq]Lq(n− 1, k)x(x− 1q) · · · (x− (k − 1)q).

Comparing coefficients yields the requested result.

We may give a couple of additional recurrences satisfied by the Lq(n, k).

Proposition 2.3. If n, k ∈ P and 1 � k � n, then

(9) Lq(n, k) =

k∑
j=0

[(n− 1− j)q + (k − j)q]Lq(n− 1− j, k − j).

Proof. Fix j, 0 � j � k, and consider all the members of L(n, k), expressed
in standard form, for which n − j is the largest element occupying a block
with at least one other element of [n]. Then elements n−j+1, n−j+2, . . .,
n must all go in their own blocks, and regarding the placement of n−j, there
are n − 1 − j possible positions within cycles directly following an element
of [n − 1 − j] and k − j possible positions for the cycle (n − j). Thus, the
total inv∗-weight of all such members of L(n, k) is

[(n− 1− j)q + (k − j)q]Lq(n− 1− j, k − j),

and summing over all j yields recurrence (9).

Proposition 2.4. If n, k ∈ P and 1 � k � n, then

(10) Lq(n, k) =

n∑
j=k

Lq(j − 1, k − 1)

n−1∏
i=j

(iq + kq).

Proof. Note that the total inv∗-weight of all the members of L(n, k) for
which j is the smallest element of the kth block is Lq(j−1, k−1)

∏n−1
i=j (iq +

kq). For j would start the first cycle of the kth block (and thus contribute
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nothing towards inv∗), while regarding the placement of each i ∈ {j + 1,

j+2, . . . , n}, there are i−1 possible positions within cycles following elements

of [i−1] and k possible positions for the cycle (i). Summing over all j yields

recurrence (10).

2.1. The case q = 0

Setting q = 0 in Lq(n, k) gives the following result.

Proposition 2.5. If n, k ∈ P, then there are 2n−k
(
n−1
k−1

)
members of L(n, k)

which contain neither an element inversion nor a block inversion.

Proof. Note that a distribution δ ∈ L(n, k), expressed in standard form, has

no element or block inversions if and only if the members of [n] appear in

the natural order in a left-to-right scan of δ. There are then
(
n−1
k−1

)
ways to

choose the blocks (upon placing k− 1 dividers in n− 1 slots) and, once this

is done, 2n−k ways to choose the cycles within the blocks.

Let Lq(n) :=
∑n

k=0 Lq(n, k). If q = 1, then Lq(n) reduces to L(n) :=

|L(n)|, where L(n) denotes the set of all Laguerre configurations of size n. If
q = 0, then Lq(n) reduces to 3n−1 if n � 1, by Proposition 2.5. Alternatively,

note that the numbers 1, 2, . . . , n must appear in order from left to right

within a member of L(n) containing no element or block inversions; thus,

concerning each of the n− 1 positions separating 1, 2, . . . , n, one may either

insert a block divider, insert a cycle divider, or leave empty.

Let L(n, k; r) = 1
r!

dr

dqrLq(n, k) |q=0. Theorems 2.1 and 2.2 imply

L(n, k; r) = L(n− 1, k − 1; r) +

r∑
i=0

(δk>i + δn>i+1)L(n− 1, k; r − i),(11)

with L(n, n; r) = δr=0, where δS = 1 if the statement S holds and δS = 0

otherwise.

Theorem 2.6. We have

(i) L(n, k; 0) = 2n−k
(
n−1
k−1

)
for all 1 � k � n,

(ii) L(n, k; 1) = 2nk−3k−n+1
k 2n−k−1

(
n−2
k−1

)
for all 1 � k � n− 1,

(iii) L(n, k; 2) = (k+1)(4k2−7k+2)−(2k3+2k2+1)n+(2k2−1)n2

k(k+1) 2n−k−2
(
n−2
k−1

)
for all

2 � k � n− 1, with L(n, 1; 2) = (n− 3)(n+ 2)2n−4 for all n � 3.
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Proof. (i) We give another proof of Proposition 2.5 above. Recurrence (11)

for r = 0 gives L(n, k; 0) = L(n − 1, k − 1; 0) + 2L(n − 1, k; 0) if n � 2 and

k � 1, with L(1, 1; 0) = 1. This recurrence may be written as

2−(n−k)L(n, k; 0) = 2−(n−k)L(n− 1, k − 1; 0) + 2−(n−k−1)L(n− 1, k; 0),

which, by induction, implies 2−(n−k)L(n, k; 0) =
(
n−1
k−1

)
. Thus, L(n, k; 0) =

2n−k
(
n−1
k−1

)
, as claimed.

(ii) When r = 1, recurrence (11) implies for n � 3,

L(n, k; 1) = L(n− 1, k − 1; 1) + 2L(n− 1, k; 1) + (1 + δk>1)L(n− 1, k; 0),

with L(2, k; 1) = 0 for k = 1, 2. If k = 1, this is

L(n, 1; 1) = 2L(n− 1, 1; 1) + L(n− 1, k; 0),

which, by (i), implies L(n, 1; 1) = 2n−2
(
n−2
1

)
. For k � 2, we have

L(n, k; 1) = L(n− 1, k − 1; 1) + 2L(n− 1, k; 1) + 2L(n− 1, k; 0).

Multiplying the last equation by yk, summing over all k = 2, 3, . . . , n, and

using (i) implies

L1
n(y)− 2n−2(n− 2)y

= (2 + y)L1
n−1(y)− 2n−2(n− 3)y + 2

n−1∑
k=2

2n−k−1

(
n− 2

k − 1

)
yk,

for all n � 3 with L1
2(y) = 0, where L1

n(y) :=
∑n

k=1 L(n, k; 1)y
k. Solving this

recurrence relation (for example, by Maple) yields

L1
n(y) = 2n−1 − 2((n− 2)y − 1)(2 + y)n−2,

which implies L(n, k; 1) = 2nk−3k−n+1
k 2n−k−1

(
n−2
k−1

)
for all n � 2 and k =

1, 2, . . . , n− 1.

(iii) Arguments similar to those used in the case r = 1 apply to the case

r = 2.

Comparable, though more complicated, expressions may be given for

L(n, k; r) in the cases when r = 3 and r = 4. Combinatorially, statement (ii)
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of Theorem 2.6 asserts that the members of L(n, k) having a single inversion

(either element or block) number

2n−k−1

(
(2n− 3)

(
n− 2

k − 1

)
−
(
n− 1

k

))
, 1 � k � n− 1.

Summing this over k implies that the members of L(n) having a single

inversion number

2n−1 + 2(n− 3)3n−2, n � 2.

We can provide combinatorial explanations for the last two formulas.

Combinatorial proofs

Proof. We prove only the first formula, the proof of the second being similar.

Suppose n � 3. Let L(n, k; j) ⊆ L(n, k) comprise those members with j

inversions altogether (counting both element and block). We first count those

members of L(n, k; 1) having an element inversion. Let 3 � i � n and

suppose an element inversion within a member of L(n, k; 1) is caused by the

number i (necessarily coming to the left of i − 1 in standard form). Note

that we may produce such a configuration by first forming a member of

L(n − 1, k; 0) (using the elements [n] − {i}), writing it in standard form,

and then adding i directly before i− 1 (when scanned left-to-right) in such

a way so that i is not first in a cycle. (That is, add i directly before i − 1

within its cycle if i − 1 does not start a cycle and add i to the end of the

first cycle to the left of i− 1 if it does.) Thus, by (i) in Theorem 2.6, there

are 2n−k−1(n− 2)
(
n−2
k−1

)
members of L(n, k; 1) having an element inversion.

To complete the proof of the first formula above, we must show that the

members of L(n, k; 1) having a block inversion number

2n−k−1

(
(n− 2)

(
n− 2

k − 1

)
−
(
n− 2

k

))
, k � 2.

To form a member of L(n, k; 1) with a block inversion in which the element i,

3 � i � n, is responsible, take a member λ ∈ L(n − 1, k; 0) (on the set

[n] − {i}), write it in standard form, and then add the 1-cycle (i) to the

block directly preceding the block containing the element i− 1. This cannot
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be done in the case when 3 � i � n − k + 1 and i − 1 occurs in the first
block of λ. Note that for each i, the total number of such λ is

n−k∑
j=i−1

2j−1 ·
(
n− j − 2

k − 2

)
2n−j−k = 2n−k−1

(
n− i

k − 1

)
,

by (i), where j denotes the number of elements of [n]−{i} in the first block
of λ. Subtracting these configurations, we see that the members of L(n, k; 1)
having a block inversion total

n∑
i=3

2n−k−1

(
n− 2

k − 1

)
−

n−k+1∑
i=3

2n−k−1

(
n− i

k − 1

)

= 2n−k−1(n− 2)

(
n− 2

k − 1

)
− 2n−k−1

(
n− 2

k

)
,

by (i), as requested.

Summing (iii) in Theorem 2.6 above over k, 1 � k � n− 1, implies that
the members of L(n) having exactly two inversions altogether of either kind
number

(2n− 1)2n−2 + (2n2 − 8n− 4)3n−3, n � 3.

One may provide a combinatorial proof of this formula along similar lines
to those above.

2.2. The case q = −1

Using recurrence (7) at q = −1, and noting mq = [m is odd] if m ∈ N when
q = −1, one may obtain Table 1 for the L−1(n, k) values when 0 � k � n �
8. The L−1(n, k) occur as sequence A173410 in [13]. From Table 1, certain
values of L−1(n, k) are easily deduced, though there does not seem to be
a simple closed form for all n and k. For example, we have L−1(n, 1) =
L−1(n, 2) = 2�

n

2
� if n � 2 and L−1(n, n − 1) = 2�n2 � if n � 1. If k = 3, we

have L−1(2n, 3) = (3n−4)2n−1 for n � 2 and L−1(2n+1, 3) = (3n−2)2n−1

for n � 1. Let s = �k−1
2 � and t = �n2 � − �k−1

2 �, where k > 0 is fixed and
n > k. Using recurrence (7) when q = −1, one may show in general that
L−1(n, k) is of the form a polynomial in n of degree s times the factor 2t.

We can find an explicit formula for the generating function of the
L−1(n, k).
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Table 1: The numbers L−1(n, k) for 0 � k � n � 8

k = 0 1 2 3 4 5 6 7 8
n = 0 1

1 0 1
2 0 2 1
3 0 2 2 1
4 0 4 4 4 1
5 0 4 4 8 4 1
6 0 8 8 20 12 6 1
7 0 8 8 28 20 18 6 1
8 0 16 16 64 48 56 24 8 1

Theorem 2.7. The generating function

A(x, y) = 1 +
∑
n≥1

n∑
k=1

L−1(n, k)x
nyk

is given by

(12) A(x, y) =
1− 2x2 − x2y2 + xy + 2x3y2 + 2x2y − x3y3

1− 2x2 − 2x2y2 − 2x4y2 + x4y4
.

Proof. Denote the aq(n, k) defined by (6) above by an,k. Let An(y) be the
generating function for the an,k, that is, An(y) =

∑n
k=0 an,ky

k. Rewriting
the recurrence of an,k in the statement of Theorem 2.1 yields for n � 1,

An(y) = yAn−1(y) +
1− qn−1

1− q
An−1(y) +

An−1(y)−An−1(qy)

1− q
,

with the initial condition A0(y) = 1. Now define A(x, y) = 1+
∑

n≥1An(y)x
n.

Rewriting the above recurrence relation in terms of generating function
A(x, y) implies

A(x, y) = 1 + xyA(x, y) +
x

1− q
(A(x, y)−A(qx, y))

+
x

1− q
(A(x, y)−A(x, qy)).(13)

Replacing (x, y) by (−x, y), (x,−y) and (−x,−y), and substituting q = −1
into (13), yields the following system of equations

(1− xy − x)A(x, y) = 1− x

2
(A(x,−y) +A(−x, y)),
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(1 + xy + x)A(−x, y) = 1 +
x

2
(A(−x,−y) +A(x, y)),

(1 + xy − x)A(x,−y) = 1− x

2
(A(x, y) +A(−x,−y)),

(1− xy + x)A(−x,−y) = 1 +
x

2
(A(−x, y) +A(x,−y)),

which implies

A(x, y) =
1− 2x2 − x2y2 + xy + 2x3y2 + 2x2y − x3y3

1− 2x2 − 2x2y2 − 2x4y2 + x4y4
,

as claimed.

Taking y = 1 in (12) gives

A(x, 1) =
1 + x− x2 + x3

1− 4x2 − x4
=

∑
n�0

f� 3n

2
�x

n,

which implies the following explicit formula for the row sums L−1(n) :=∑n
k=0 L−1(n, k).

Corollary 2.8. If n ∈ N, then

(14) L−1(n) = fr,

where r = �3n2 � and fn denotes the Fibonacci sequence defined by fn =
fn−1 + fn−2 if n � 2, with f0 = f1 = 1.

We can provide a combinatorial explanation of formula (14).

Combinatorial proof of Corollary 2.8

Proof. First note that Corollary 2.8 asserts that the members of L(n) having
even inv∗ value outnumber those having odd inv∗ value by fr for all n. Thus
one may establish (14) by first identifying a subset L∗(n) of L(n) having
cardinality fr, all of whose members have even inv∗ value, along with an
inv∗-parity changing involution of L(n)− L∗(n).

Let L∗(n) ⊆ L(n) consist of those configurations formed in the inductive
manner as follows, n � 2:

(i) If λ ∈ L∗(n − 2) comprises an odd number of blocks, then add the
elements n − 1, n as {(n − 1, n)}, {(n − 1), (n)}, or {(n − 1)}, {(n)},
or as either (n− 1, n) or (n− 1), (n) to the current rightmost block.
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(ii) If λ ∈ L∗(n − 2) comprises an even number of blocks, then add the

elements n− 1, n as {(n− 1, n)}, {(n− 1), (n)}, or {(n− 1)}, {(n)}.
(iii) L∗(0) is the singleton set comprising the empty configuration and

L∗(1) = {(1)}.

Then all members of L∗(n) clearly have even inv∗-parity. It may be verified,

upon considering even and odd cases, that |L∗(n)| = fr by showing that if

an := |L∗(n)|, then an satisfies the recurrence an = 4an−2 + an−4, n � 4,

along with the initial conditions a0 = a1 = 1, a2 = 3 and a3 = 5.

Given δ ∈ L∗(n) in standard form and i ∈ [n], let δ[i] denote the member

of L(i) (in standard form) obtained by writing the elements of [i] in the

order as they appear within the cycles and blocks of δ (for example, if

δ is given by (5) above and i = 6, then δ[6] = (1)|(2)|(3)(4)|(5, 6)). To

construct an inv∗-parity changing involution g, let λ ∈ L(n)−L∗(n) and i0,

0 � i0 � �n2 � − 1, be the smallest number i such that the elements n − 2i

and n − 2i − 1 are not added to λ[n−2i−2] in the manner described above

for membership in L∗(n). The involution g requires several cases to specify

it completely. For simplicity, we take i0 = 0 and assume that λ[n−2] has an

even number of blocks (the other cases being similar). If neither n − 1 nor

n occurs as a 1-cycle in λ, or exactly one belongs to a block by itself, then

let g(λ) be the distribution obtained by switching n − 1 and n within λ,

leaving the other members of [n] undisturbed. Next, suppose that at least

one of {n− 1, n} occurs as a 1-cycle in λ, with neither occurring in a block

by itself. In this case, if, say (n), belongs to block 2�− 1 (from the left) for

some �, then move this cycle to block 2�, and if it belongs to block 2�, then

move it to block 2�− 1 (move (n), if it occurs, otherwise move (n− 1)).

Note that the above mapping does not change the inv∗-parity in the

case where n occurs in block 2� for some � not as a 1-cycle and n− 1 occurs

in either block 2� − 1 or 2� as a 1-cycle or in the case where the 2-cycle

(n − 1, n) occurs in either block 2� − 1 or 2�. If the number of elements

of [n − 2] occurring in block 2� is even, then cyclicly shifting n through

the positions directly after these elements produces an equal number of

distributions having even and odd inv∗ values. Furthermore, the case where

the cycle (n− 1, n) occurs in block 2� pairs off with the case where it occurs

in block 2� − 1. If the number of elements of [n − 2] occurring in block 2�

is odd, then cyclicly shifting n through the positions directly after these

elements as well as after n − 1 produces an equal number of distributions

having even and odd inv∗-parity.
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2.3. The derivative at q = 1

In this section, we’ll find an explicit formula for the derivative in q of Lq(n, k)

evaluated at q = 1, which gives the sum of the inv∗ values taken over all of

the members of L(n, k). We will need the following lemma.

Lemma 2.9. If k ∈ P, then

(15)

k∑
j=0

(−1)j
(
k

j

)
q

q(
j+2

2 )−(j+1)(k+1) = 0.

Proof. Induct on k, the k = 1 case clear. To complete the induction, substi-

tute the identity,

(
k

j

)
q

=

(
k − 1

j − 1

)
q

+ qj
(
k − 1

j

)
q

,

into the sum on the left-hand side of (15) for each j, 1 � j � k.

By convention, we’ll take Lq(n, k) = 0 if n, k ∈ P, with k > n. Note that

the recurrence (7) continues to hold for all n, k ∈ P. We now give an explicit

formula for the Lq(n, k).

Theorem 2.10. If n, k ∈ P, then

(16) Lq(n, k) =

k∑
j=1

(
jq(jq + 1q) · · · (jq + (n− 1)q)∏k

i=0,i �=j(jq − iq)

)
.

Proof. We induct on n and first prove (16) when n = 1. If k = 1, both sides

are 1, so to complete the n = 1 case, we must show

(17)

k∑
j=1

1∏k
i=1,i �=j(jq − iq)

= 0, ∀k � 2.

Observe next that aq − bq = qb(a− b)q, if a > b � 1, which implies

k∏
i=1,i �=j

(jq − iq) = (−1)k−jqj(k−j)+(j2)(k − j)q!(j − 1)q!.
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If k � 2, we then have

k∑
j=1

1∏k
i=1,i �=j(jq − iq)

=

k∑
j=1

(−1)k−jqj(j−k)−(j2)

(k − j)q!(j − 1)q!

=
(−1)k−1

(k − 1)q!

k∑
j=1

(−1)j−1

(
k − 1

j − 1

)
q

q(
j+1

2 )−jk

= 0,

by Lemma 2.9, which establishes (17) and thus the n = 1 case. The induction
is now easily completed upon assuming n � 2 and k � 1 and using the
recurrence Lq(n, k) = Lq(n− 1, k − 1) + [(n− 1)q + kq]Lq(n− 1, k).

Letting q = 1 on the right-hand side of (16) gives

k∑
j=1

∏n−1
i=0 (j + i)∏k

i=0,i �=j(j − i)
=

n!

k!

k∑
j=1

(−1)k−j

(
j + n− 1

j − 1

)(
k

j

)
=

n!

k!

(
n− 1

k − 1

)
,

by identity (5.25) on p. 169 of [4], whence (16) generalizes (1).
Taking the derivative of both sides of (16) with respect to q, letting

q = 1, and noting

d

dq
jq |q=1=

(
j

2

)
yields

d

dq
Lq(n, k) |q=1=

k∑
j=1

∏n−1
i=0 (j + i)∏k

i=0,i �=j(j − i)

(
n−1∑
i=0

(
j
2

)
+
(
i
2

)
j + i

−
k∑

i=0,i �=j

(
j
2

)
−
(
i
2

)
j − i

)
,

which implies the following result.

Theorem 2.11. If n, k ∈ P, then the total inv∗ value of all the members of
L(n, k) is given by

n!

k!

k∑
j=1

(−1)k−j

(
j + n− 1

j − 1

)(
k

j

)(n−1∑
i=0

(
j
2

)
+
(
i
2

)
j + i

−
k∑

i=0,i �=j

(
j
2

)
−
(
i
2

)
j − i

)
.

Since

k∑
i=0,i �=j

(
j
2

)
−
(
i
2

)
j − i

=

k∑
i=0,i �=j

j + i− 1

2
=

1

2

((
k

2

)
+ (k − 1)j

)
,
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the second part of the formula above may be reduced further using identity
(5.25) on p. 169 of [4], though we do not see a way to simplify the first part.

3. A further generalization

By defining a second statistic on L(n, k), one may generalize the Lq(n, k) as
follows. Suppose δ ∈ L(n, k) is written in standard form.

Definition 3.1. An ordered pair (i, j) is an element permanence if i > j
and i occurs to the right of j in δ, where i is not the first element of any
cycle of δ and j > 1.

Definition 3.2. An ordered pair (i, j) is a block permanence if i > j and i
occurs to the right of j in δ in a different block, where i is the smallest
element of some cycle of δ, but not the smallest element of any block, and j
is the smallest element of some block.

Let perme(δ) and permb(δ) denote the number of element and the num-
ber of block permanences of δ, respectively, and let perm∗(δ) = perme(δ) +
permb(δ). For example, if δ is given by (5) above, then perme(δ) = 4+4+5 =
13, permb(δ) = 2 + 3 = 5, and perm∗(δ) = 13 + 5 = 18.

Given n and k, 0 � k � n, consider the p, q-Lah number Lp,q(n, k)
defined by

(18) Lp,q(n, k) :=
∑

δ∈L(n,k)
pperm

∗(δ)qinv
∗(δ).

If p and q are indeterminates, then np,q := pn−1+pn−2q+ · · ·+pqn−2+qn−1

if n ∈ P, with 0p,q := 0. Reasoning as in the prior section shows that the
Lp,q(n, k) satisfy the boundary values Lp,q(n, 0) = δn,0 and Lp,q(0, k) = δk,0,
for all n, k ∈ N, along with the recurrence

(19) Lp,q(n, k) = Lp,q(n− 1, k − 1) + [(n− 1)p,q + kp,q]Lp,q(n− 1, k),

for all n, k ∈ P, which generalizes (7). Taking q = 1 in (19) implies that the
inv∗ and perm∗ statistics are identically distributed on L(n, k). Using (19),
one may show that the Lp,q(n, k) are the connection constants in the poly-
nomial identities

x(x+ 1p,q) · · · (x+ (n− 1)p,q)

=

n∑
k=0

Lp,q(n, k)x(x− 1p,q) · · · (x− (k − 1)p,q),(20)
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for all n ∈ N, which generalizes (4).
We conclude with an explicit formula for Lp,q(n, k) involving determi-

nants. Expanding the product in (20), we obtain

n∑
k=d

Lp,q(n, k)ek−d(−1p,q, . . . ,−(k − 1)p,q)

= en−d(1p,q, . . . , (n− 1)p,q),

for all n ∈ P and d = 1, 2, . . . , n, where ej(x1, . . . , xn) is the jth symmetric
function on the variables x1, . . . , xn (by convention, e0(x1, . . . , xn) = 1).
Substituting d = 1, 2, . . . , n into the above equation and rewriting the n
resulting equations in matrix form yields, by Cramer’s rule, the following
formula for n ∈ P and j = 0, 1, . . . , n− 1:

(21) Lp,q(n, n− j) = det

⎛
⎜⎜⎜⎝

gn−1,0 0 · · · 0 h0
gn−1,1 gn−2,0 · · · 0 h1
...

...
. . .

...
...

gn−1,j gn−2,j−1 · · · gn−j,1 hj

⎞
⎟⎟⎟⎠ ,

where hi = ei(1p,q, . . . , (n− 1)p,q) and gi,j = ej(−1p,q, . . . ,−ip,q).

4. Some final remarks

In this section, we compare and contrast our q-analogue of L(n, k) with other
q-analogues which have appeared in the literature. Recall that our Lq(n, k)
is defined by the formula

x(x+ 1q) · · · (x+ (n− 1)q)

=

n∑
k=1

Lq(n, k)x(x− 1q) · · · (x− (k − 1)q), ∀n ∈ P,(22)

and satisfies the recurrence

(23) Lq(n, k) = Lq(n−1, k−1)+((n−1)q+kq)Lq(n−1, k), ∀n, k ∈ P.

It is the generating function for a statistic on L(n, k) which we denote by
inv∗.

We first consider the q-analogue L̄q(n, k) of Garsia and Remmel [2] which
can be defined as follows. Suppose that we are given a placement P of n
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labelled balls, with labels from 1, . . . , n, in k unlabelled tubes. Define the

word associated with each tube by reading the balls in the tubes from bottom

to top. Then associate a word with the placement P by ordering the words

associated with the tubes by decreasing smallest elements and placing a 0

between each of the words. See Figure 1 below. Given such a word w, let

inv(w) denote the number of inversions of w and let L̄q(n, k) denote the

sum of qinv(w) taken over all the words that arise from a placement of n

labelled balls in k unlabelled tubes. Note that inv(w) = 23+41 = 64, while

inv∗(w) = 9 + 4 = 13 for the placement illustrated below.

3

9

4

8

1

10

2 6

7

5

12

11

Garsia-Remmel word

11 0 6 7 5 12 0 3 9 4 0 2 0 8 1 10

Our word

1 8 10 | 2 | 3 4 9 | 5 6 7 12 | 11

Figure 1: Configuration of labelled balls in tubes.

Let [x]q := 1−qx

1−q and [x]q ↑n:= [x]q[x + 1]q · · · [x + n− 1]q and [x]q ↓n:=
[x]q[x−1]q · · · [x−n+1]q if n ∈ P, with [x]q ↑0= [x]q ↓0:= 1. Then Garsia and

Remmel [2] showed the following q-analogues of equations (1), (2), and (3).

There is the explicit formula for L̄q(n, k) given by

(24) L̄q(n, k) = qk(k−1)nq!

kq!

(
n− 1

k − 1

)
q

, ∀n, k ∈ P.

The L̄q(n, k) are defined by the recursions

(25) L̄q(n, k) = L̄q(n− 1, k − 1) + (n+ k − 1)qL̄q(n− 1, k), ∀n, k ∈ P,

along with the initial conditions L̄q(n, 0) = δn,0 and L̄q(0, k) = δ0,k ∀ n, k ∈
N. For all n ∈ P and x,

(26) [x]q ↑n=
n∑

k=1

L̄q(n, k)[x]q ↓k .
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One can show that (26) has the polynomial version

x(qx+ 1q) · · · (qn−1x+ (n− 1)q)

=

n∑
k=1

L̄q(n, k)x

(
x− 1q

q

)
· · ·

(
x− (k − 1)q

qk−1

)
, ∀n ∈ P,(27)

which is of a form similar to (22).
Garsia and Remmel [3] later gave a rook theory interpretation of their

L̄q(n, k) in terms of q-counting rook placements on an n × (n − 1) board.
Using this model, one can supply completely combinatorial proofs of (24)
and (25) as well as of (26) when x is a non-negative integer. In contrast,
only (23) above for Lq(n, k) appears to have a combinatorial proof by our
model and no q-analogue for (1) simpler than (16) can apparently be found.

Furthermore, this is not the first combinatorial interpretation which has
been given for Lq(n, k). As mentioned earlier, Miceli and Remmel [7] have
given a general rook theory model which supplies combinatorial interpreta-
tions to much more general product formulas than those of the form of (22).
In particular, Miceli and Remmel gave combinatorial interpretations for the
connection coefficient expansions of the form

∏n
i=1([x]q ± [ai]) in terms of

expansions of the form
∏n

i=1([x]q ± [bi]) for arbitrary non-negative integer
sequences a = (a1, a2, . . .) and b = (b1, b2, . . .), and replacing [x]q by x will
yield equations of the form (22). See Theorem 4.1 of [7]. Another advantage
of the Miceli-Remmel model is that both (22) and (23) can be given combi-
natorial proofs, whereas only (23) has such a proof by our model. Perhaps
our interpretation for Lq(n, k) is better suited for explaining some of the
special values it assumes, as in Sections 2.1–2.3 above. A question which
arises would be if our model could be used to explain (22) when, say, x = i
or x = iq for some i ∈ N. In addition, the Miceli-Remmel model can be
extended to a second parameter, and the p, q-version of their model applies
to our two-variable version (see Theorem 5.1 of [7]).

Finally, the q-Lah numbers L̃q(n, k) introduced by Wagner [14] arise in
the study of modular binomial lattices and are given by

(28) L̃q(n, k) =
n!

k!

(
n− 1

k − 1

)
q

, ∀n, k ∈ P,

which generalizes (1). They may also be given as distribution polynomials
for a statistic on L(n, k) defined as follows. Suppose δ = B1, B2, . . . , Bk ∈
L(n, k), where the blocks of δ are arranged by increasing smallest elements.
Define w̃(δ) =

∑k
i=1(i − 1)(|Bi| − 1) (note w̃ is an analogue of a now well
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known statistic first considered by Carlitz [1] on set partitions). The poly-
nomial L̃q(n, k) is then the sum of qw̃(δ) taken over all of the members of
L(n, k), see Theorem 3.3 of [12]. In contrast, the L̃q(n, k) do not seem to
function in any interesting way as connection constants between polynomial
bases nor is there any interesting generalization of recurrence (2). On the
other hand, the L̃q(n, k) do satisfy a different type of q-recurrence, namely

(29) L̃q(n, k) =
n

k
L̃q(n− 1, k − 1) + nqk−1L̃q(n− 1, k), ∀n, k ∈ P,

which reduces to L(n, k) = n
kL(n− 1, k − 1) + nL(n− 1, k) when q = 1.
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