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Abstract 

We give explicitly recurrence relations satisfied by the connection coefficients between two families of the classical 
orthogonal polynomials of a discrete variable (i.e., associated with the names of Charlier, Meixner, Krawtchouk and Hahn). 
Also, a recurrence relation is given for the coefficients in the formula expressing the nth associated polynomial in terms 
of the original polynomials. 
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I. Introduction 

Let {Pk(x)} be any system of  the classical orthogonal polynomials o f  a discrete variable, i.e., 
Charlier polynomials Ck(x; a), Meixner polynomials Me(x; fl, c), Krawtchouk polynomials Ke(x; p, N)  
and Hahn polynomials Qn(x; 0~, fl, N):  

B--1 

Y~  O(x)Pe(x)PI(x) -~ 6kthe (k, l = O, 1, . . . ) ,  
x=O 

where he > 0 (k = O, 1, . . .) ;  the set of  orthogonality is {0, 1,. . .  ,B - 1}, where B equals +co ,  +c~ ,  
N + 1 and N, respectively. Besides the three-term recurrence relation 

xPe(x) = ~o(k )Pe-l(x) + ~l(k )Pe(x) + ~2(k )Pe+l(x) (1.1) 

(k = O, 1 , . . . ;  P- l (x )  = O, Po(x) -- 1) 

these polynomials enjoy a number of  similar properties [10, Ch. II; 11]. We shall need four o f  these 
properties. 

* E-mail: Stanislaw.Lewanowicz@ii.uni.wroc.pl. 

0377-0427/96/$15.00 (~) 1996 Elsevier Science B.V. All rights reserved 
PH S0377-0427(96)00104-5 



214 S. Lewanowicz / Journal of Computational and Applied Mathematics 76 (1996) 213-229 

First, the weight function 0 satisfies a difference equation of the type 

a[a(x)Q(x)] = z(x)0(x), (1.2) 

where o- is a polynomial of  degree at most 2, and z is a first-degree polynomial. 
Second, for arbitrary n, the polynomial Pn obeys the second-order difference equation 

LnPn(x) = {a(x)AV + ,(x)A + 2, l}Pn(x) = 0, (1.3) 

where A := E - I,  V := I - E -1, E m (m E Z) is the mth shift operator, Emf(x)  = f ( x  + m), I is 
the identity operator, I f ( x )  = f (x ) ,  and 2n is a constant given by 

2n := -½n[(n - 1)o-" + 2z'] (n E ~).  (1.4) 

(By convention, all the bold letter operators act on the variable x.) 
Third, we have a pair of the so-called structure relations, 

[o-(x) + "c(x)]aPk(x) = do(k )Pk-l(x) + dl(k )Pk(x) + d2(k )Pk+i(x) (1.5) 

and 

cr(x)VPk(x) = do(k)Pk_l(x) + [dl(k) + 2k]Pk(X) + d2(k)Pk+l(x). 

Fourth, 

(1.6) 

Let {Pk} be any family of classical orthogonal polynomials of  a discrete variable, and let {/sk} 
be a sequence of polynomials. We are looking for a formula of the type 

Pn -= ~ C,,kPk. (1.8) 
k=0 

The coefficients Cn, k in (1.8) are called the connection coefficients between the polynomials {Pk} 
and {/sk} (see [1, Lecture 7]). 

Here are the interesting particular cases: 
1. {/sk} is another sequence of  classical orthogonal polynomials of  a discrete variable; 
2. {/sk} is a sequence of  orthogonal polynomials associated with {Pk} (see [2]). 
Note that in each case, polynomial {Pn} satisfies a linear difference equation in x. 

In a recent paper, Ronveaux et al. [11] have discussed the first case and proposed an algorithmic 
way of  obtaining a recurrence relation (in k) of  the form 

r 

~fl Cn,k ==- Z Ai(k)cn,  k+i = 0 .  (1.9) 
i = 0  

In the present paper we propose an altemative technique of derivation of  the recurrence relation 
(1.9), based on an idea introduced in [8, 9]. The difference operator £,e is given in terms of  o', 
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z and the difference operators 5f and 9 ,  defined implicitly by the right-hand sides of (1.1) and 
(1.5), respectively (see Theorems 3.1 and 3.4). Also, it should be stressed that in almost all the 
cases the order of the obtained recurrence relation is significantly lower than in [1 1] (for instance, 
an eighth-order relation, given in [11] for the Hahn-Hahn case, can be replaced by a second-order 
relation). Applications of the result to some pairs of the classical discrete orthogonal polynomials 
are given. 

The case where/sn is the nth associated polynomial is also discussed. A general result, given in 
Theorem 4.1, is applied to each classical family. 

2. Identities involving the discrete Fourier coefficients 

We shall need certain properties of the Fourier coefficients of an arbitrary polynomial f ,  deg f < B, 
defined by 

1 
ak[f] := ~ bk[f] (k = O, 1 , . . . ,B  - 1), (2.1) 

where 

B--1 

bk[f] := ~ Q(x)Pk(x)f(x), (2.2) 
x=0 

i.e., the coefficients in the expansion 

deg f 

f = ~ ak[f]Pk. 
k=0 

Let Y', ~ and ~ be the difference operators (acting on k) defined by 

f := {0(k)~ -1 + ¢ l ( k ) J  + ¢2(k)~, (2.3) 

:= do(k)g -~ + d l ( k ) J  + dz(k)~, (2.4) 

:= ~ + 2 k J  (2.5) 

(cf. (1.1), (1.5) and (1.6), respectively), where J is the identity operator, and g "  the mth shift 
operator: J b k [ f ]  = bk[f], gmbk[f] = bk+m[f] (m E 77). For the sake of  simplicity, we write 
in place of E 1. (We adopt the convention that all the script letter operators act on the variable k.) 

Further, let us define the difference operators U and V (acting on x) by 

U := a (x)V + z(x)l ,  (2.6) 

V := [a(x) + z(x)]A + z(x)I. (2.7) 

Notice that by virtue of AV = A - V, we can write 

L,  = V - U + 2,1. (2.8) 

We prove the following lemma. 
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Lemma 2.1. The coefficients (2.2) obey the identities: 

bk[xf(x)] = 5Y bk[f], 

bk[V f ]  = 2k bk[f], 

bk[Af] = 2k bk[f], 

bk[U f ]  = - ~  bk[f], 

bk[ V f ]  = - ~  bk[f], 

bk[Lnf] = (2n -- 2k)bk[f]. 

(2.9) 
(2.10) 
(2.11) 
(2.12) 

(2.13) 
(2.14) 

Proof. In view of (1.1) and (2.3), identity (2.9) is obviously true. 
We will prove the identity (2.10). Using (1.5), summing by parts, and then using (1.7) and the 

equation A[a(x)Q(x)VPk(x)] =--2kQ(x)Pk(x) (el. (1.2) and (1.3)), we get 

B - 1  B--1 

bk[~Tf] = ~ ~ Q(x)Pk(x)Af(x  - 1 ) = ~ o ( x l a ( x l V P k ( x ) A f ( x  - 1 ) 
X=0 x=0 

x = B  B--  1 

= Q(x)a(x)VPk(x) f (x  - 1) x=o - ~ A [O(x)a(x)VPk] f ( x )  
x=O 

B--1 

= 2k ~ O(x)Pk(xlf(x)  = 2k bk[f]. 
X=0 

The proof of (2.11) goes as follows. 

B--1 B--1 

bk[Af] = ~ E Q(x)Pk(x)Af(x)  = Z 0(x)[a(x) + z (x ) ]APk(x )A f (x )  
x=0 x=0 

B--1 

: y ~ q ( x  + 1)a(x + 1)~TPk(x + 1)Af(x) 
x=O 

B B--1 

= ~ Q (y) a ( y ) V P k ( y ) A f ( y  - 1 ) = ~ 0 (x) a (x) V P k ( x ) A f ( x  - 1 ) 
y = l  x=0 

B--1 B--I  

= - ~ A [a(x)Q(x)grPk(x)] f ( x )  = 2k ~ q (x )Pk(x ) f (x )  = 2k bk[f]. 
x=0 x=0 

Here we used a.o. the equation a(x + 1)0(x + 1) = [a(x) + z(x)]~(x) (cf. (1.2)). 
Similarly, we obtain 

B--1 B--1 

bk[aV f ]  = Z O(x)a(x)Pk(x)V f = Z O(x)a(x)Pk(x)A f ( x  - 1) 
x=O x=O 

B--1 

= - E A [a(xlQ(xlek(x)] f ( x )  
x=O 
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B--1 

y ~  [z(x )Q(x )Pk(x ) + a(x + 1)Q(x + 1)APk(x)] f (x ) 
x = 0  

B - 1  B - 1  

z (x )Q(x lPk(x) f (x )  - Z [ a ( x )  + z(x)]Q(x)APk(x)f(x)  
x=O x=O 

B--1 

= - bk[zf] - ~ Q(x )~Pk(x ) f ( x )  
x=O 

= - bk [z f ]  -- ~ bk [f].  

Hence follows the identity (2.12). 
Identity (2.13) may be proved in an analogous way. 
Using (2.8), (2.12) and (2.13), and remembering that ~ = ~ + 2kJ  (cf. (2.5)), we have 

bk[L, f(x)]  = bk[Vf(x)]  - bk[Vf(x)]  + 2, b~[f] = { 9  - ~ + 2 , J }  bk[f] = (2, - 2k) bk[f]. 

This proves the validity of (2.14). [] 

Remark 2.2. Identity (2.9) can be easily generalized to the form 

bk[qf] = q(~7) bk[f], 

where q is any polynomial. 

(2.15) 

The next result refers to the case of the Hahn polynomials. 

Lemma 2.3. Let  
Qk(" ;~,fl, N). Let  us define the difference operators G, H (acting on x) by 

G : = ( N  - 1 - x ) A  - ( ~ +  1)I, 

H:=xV +( f l+  1)I. 

The following identities hold." 

bk[G f (x ) ]  = - ( k  + fl + 1 )2  bk[f], 

~ b k [ H  f (x ) ]  = (k + ~ + 1)~ bk[f], 

where ~ ,  ~ are the following first-order difference operators (acting on k): 

:= (k + ,8 + 1 )Tffk)J + ~, 

: =  (k  + ~ + 1 ) r c ( k ) J  - g 

with 7 = ~ + ,8 +1,  and 

(k + y)(k + y + N)  
~ ( k )  : =  

(2k + y)2 

bk[f] be defined by (2.2) with Pk being the Hahn polynomials, i.e., Pk = 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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Proof. It suffices to observe that the operators (2.20), (2.21) and 2, ~ given by 

(k + fl + 1 ) r c (k ) j  ÷ 1 E 
"~:= k + 7  k + l  ' 

(k + ~ + 1 ) ~ ( k ) j  + __~1 e 
~ : =  k +  7 k + l  

verify the equations 

((N - 1)Y - f ) )  = . ~ ,  ~ST = ~ ,  

so that we have 

bk[(N - 1 - x )Af (x ) ]  = ~ bk[Af(x)], 

bk [xV f (x )]  = . ~  bk [Vf(x)] .  

Now use (2.11) and (2.10), respectively, and - -  noticing that 2k = k(k + 7 )  - -  check that 

~ ( 2 k J )  -- (~ + 1)~  = - ( k  + fl + 1)~, 

-~(2kJ) + (fl + 1 ) ~  = (k + a + 1 )~.  [] 

Lemma 2.4. Let ~ and ~ be the following first-order operators." 

:= (k + ~)O(k)E -1 - J ,  

: =  (~ + / ~ ) o ( k ) 6  -1 + J 

with 

(k + 7)(k + 7 + N )  O(k) : :  
(2k + 7 - 1)2 

Then we have the equality 

(2.23) 

(2.24) 

(2.25) 

~ = ~ .  (2.26) 

Proof. Eq. (2.26) can be verified by a straightforward calculation. [] 

3. Classical orthogonal polynomials of a discrete variable 

Let {Pk} and {/3k} be any two families of  the classical discrete orthogonal polynomials. We shall 
give a recurrence relation (in k) of  the form 

r 

~ Cn, k :-- ~'~ A i ( k  )Cn, k+ i :--- O, (3.1) 
i=0  

obeyed by the connection coefficients Cn, k in 

P, = ~ c,,kPk. (3.2) 
k=O 
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Obviously, Cn,k are the Fourier coefficients ak[/5,]. Let us write 

bn, k : =  bk[/5,] = hk On,k. (3.3) 

Let Pn satisfy Eq. (1.3), and let 

LnPn(X ) :-- {¢{(x)AV q- ?(x)A q- ~n 1} Pn(x) = O, (3.4) 

where 6, ~ are polynomials, degff~<2, deg f  = 1, and 7.n := - l n [ ( n -  1 ) ~ ' +  2f']. We shall use the 
notation 

 o(x) : =  - ( 3 . 5 )  

~9(x) := ?(x) - z(x). (3.6) 

We can write 

L, = L, + [~o(x) + ~b(x)]A - qo(x)V + (2, - 2,)I.  (3.7) 

3.1. Connection between Hahn families 

Assume that both sequences {Pk}, {/5} belong to the Hahn family. We will prove the following. 

Theorem 3.1. Let {Pk}, {/5} be Hahn polynomials, Pk = Qk(.;o~,fl, N),  and/sk = Qk(.;rl,(,N ). 
The coefficients (3.3) satisfy the second-order recurrence relation 

~ b n ,  k = O, ( 3 . 8 )  

where the difference operator f~ is #iven by 

:= ~ (v~J)  + (q¢ + ~9')~((k + fl + 1)~)  - ¢p'~((k + a + 1)~)  (3.9) 

with 

Vk : =  ~n - -  ~'k 71- ( f l  - -  ~)~ 0t - -  (0~ ~- 1)1/I 1. (3.10) 

Proof. In the considered case, we have (of. Appendix, Tables 1 and 2) 

~p(x) = ¢p' -x, (~p + ~9)(x) = -(q~' + ~p'). (N - 1 - x). 

Eq. (3.7) implies 

Z n = L n - (~o ! -~- I]] ')G - q ) t H  -Jr- I~n --  l~n ~- ( ~  --  O~)q)'-- (0~ "Jr- 1)1~'] I. 

Using this result in the equation 

bk[Z,f(x)] ---- O, (3.11) 

where f = / 5 ,  applying the operator ~ - - = ~  ( = ~ ;  cf. Lemma 2.4), and making use of Lemmas 2.1 
and 2.3, we obtain formula (3.9). 
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The order of the recurrence can be deduced from (3.9) in view of the form of  the difference 
operators ~ ,  ~ ,  N and ~ (cf. (2.20)-(2.24)). [] 

Substituting (3.3), and the specific values of a, z, 2k, hk as well as the forms of the operators 
(see (2.3)) and ~ (see (2.4)) given in the Appendix (see Table 1) in (3.8), we obtain the following 
corollary. 

Corollary 3.2. The connection coefficients Cn,k in 

Qn(x; tl, ( ,N )  = ~ Cn, kQk(x; c~, fl, N )  
k=0 

satisfy the second-order recurrence relation 

~ Cn,~ -~ Ao(k)cn, k-1 + Al(k)c, ,k + Az(k)cn, k+l = 0 

where 

A 0 ( k )  = 

Al(k) = 

A2(k) = 

(3.12) 

( k + n + z g -  1 ) ( n - k + l ) ( k + 7 + N ) ( 2 k + 7 - 2 ) 4 ( 2 k + 7 -  1), 

k(2k + 7 - 2)3(N - k)(k + 7 + N)  

x {(c~ - fl)n(n + 0) + (e - fl + 2~ - 2t/)k(k + 7) 

+(7 + 1 ) [ ~ ( 0 -  1 ) -  1/( 7 -  1))]}, 

( k ) 2 ( N -  k -  1)2(k + fl + 1)(k + a + 1) 

x ( k + n + 7 +  1 ) ( k -  n + 7 -  0 +  1 ) ( k + 7 + N ) ( 2 k + 7 +  1), 

and where 7 := c~ + fl + 1, and 0 := q + ( + 1, with the initial conditions Cn,, = 1, Cn, n+ 1 = O. The 
Pochhammer symbol (a)m has the following meaning: 

(a)0 := 1, ( a ) m : = a ( a + l ) . . . ( a + m - 1 )  (m = 1,2,...). 

Remark 3.3. Gasper [5] expressed Cn, k in (3.12) explicitly as a multiple of  

3F2 ( k - n , k + c ~ + l , n + k ÷ t g ) l  . 
k + r / +  1, 2 k + 7 +  1 

He also gave certain conditions sufficient for non-negativity of  c,,k for all n, k, N. 
Thus, (3.13) is a new recurrence for the above hypergeometric functions. By the way, this recur- 

rence may be also deduced from a general result given in [7]. 

3.2. Connection between Charlier, Meixner and Krawtchouk families 

Now we consider the case where none o f  the families {Pk}, {/sk} is a Hahn family. We will 
prove the following. 

(1 ~< k ~< n), (3.13) 
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Theorem 3.4. Let {Pk}, {/sk} be (independently chosen) Charlier, or Meixner, or Krawtchouk 
polynomials. The coefficients (3.3) satisfy the recurrence relation 

fa  b~,k = 0 (1 <, k <~ n; bn, n -~- hn, bn,n+l = 0 ) ,  (3.14) 

where the difference operator ~ is 9iven by 

fa  := ~ (/~kJ) + 2k (~k'Y" + ~ ( - 1 ) J )  (3.15) 

with 

u k  : =  - - 

The order o f  the recurrence relation (3.14) is not 9reater than 2. 

(3.16) 

Remark 3.5. Eq. (3.1) is obtained by substitution of (3.3) in (3.14). 

Proof. Let us denote f =/Sn. AS we have ~ = a (cf. Appendix, Tables 1 and 2), so Eq. (3.7) 
simplifies to 

Lnf(X) = Lnf(X) -k- ~b(x)A f ( x )  + (2, - 2 , ) f (x ) ,  

which can rewritten in the form 

L , f ( x )  = L , f ( x )  + A($(x - 1 ) f (x) )  + x f ( x )  

with x = 2, - 2n -- ~b'. Using this result in Eq. (3.11 ), we obtain 

bk[Lnf(X)] + bk[A (~k(x - 1)f(x))]  + bk[K f (x ) ]  = 0. 

Applying the operator ~ to both sides of  the above equation, and making a repeated use of 
Lemma 2.1, we arrive at the recurrence relation (3.14) with the operator # given in (3.15). [] 

Now, we can apply the general result given in Theorem 3.4 to all possible pairs of  the families 
of  non-Hahn classical discrete orthogonal polynomials. Computer algebra system MAPLE [3] was 
very helpful in obtaining the scalar form of  the Eq. (3.14). The specific values of a, v, 2k, hk as 
well as the forms of  the operators Y" (see (2.3)) and ~ (see (2.4)) are given in the Appendix for 
the monic Charlier polynomials (Table 1) and for the monic Meixner and Krawtchouk polynomials 
(Table 2). 

3.2.1. Charlier-Charlier 
For the connection coefficients cn, k in 

Cn(x; b) = ~ c,,kCk(x; a), 
k=0 

we obtain the first-order recurrence relation 

(n - k + 1)c,,k_l - k ( a -  b)cn, k = 0 (k = 1,2 . . . . .  n; c,,n = 1). 
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(k  = 0,1 . . . .  , n )  

wh ich  agrees  wi th  the result  g iven  in [11]. 

3.2.2. Meixner-Charl ier  
For  the connec t ion  coefficients  cn,k in 

Mn(X; fl, C) = ~ Cn, k fk (x ;a) ,  
k=0 

we obtain  the second-o rde r  recur rence  re la t ion 

q(k - n - 1) cn,k-1 - k ( k  + fl - aq - 1) cn,~ - a ( k ) 2 c n ,  k+l = 0 

(k = 1 ,2 , . . . , n ;  Cn,n = 1,Cn,n+l  = 0 ) ,  

where  q :=  (1 - c)/c. 

3.2.3. Krawtchouk-Char l ier  
For  the connec t ion  coeff icients  c,,~ in 

K,(x; p , N ) =  ~ Cn, k fk (x ;a) ,  
k=O 

w e  obta in  the second-o rde r  recur rence  re la t ion 

(k - 1 - n ) C n ,  k - 1  q- p k ( k  - N + a / p  - 1 ) C n , k  q-  a p ( k ) 2 c n ,  k+l : 0 

(k  = 1 , 2 , . . . , n ;  C,,n = 1,Cn,  n+l : 0 ) .  

3.2.4. Charl ier-Meixner  
For  the connec t ion  coeff icients  cn,k in 

Cn(x; a)  = ~ Cn,kmk(X; fl, C), 
k=O 

w e  obtain  the second-o rde r  recur rence  re la t ion 

( 1 - -  c ) 2 ( k  - n - 1 ) Cn, k-1 + (1 - c )k  [c(2k + fl - n + a - 1 ) - a] c.,k 

q-cZ(k)z(k -~- ~)Cn, k+ 1 = 0 (k  = 1 , 2 , . . .  , n )  

wi th  the initial condi t ions  c . , .  = 1, c. , .+l = O. 
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3.2.5. Meixner-Meixner 
For the connection coefficients Cn, k in 

m.(x; 7, d) = ~ c.,kmk(x; fl, c), 
k=0 

we obtain the second-order recurrence relation 

(1 - c )2 (1  - d ) ( k  - n - 1 ) c . , k _ l  

+ ( 1 - c ) k { c [ 2 k + f l - l - n - d ( k - n + f l - 7 ) ] - d ( k + 7 - 1 ) } c . , k  

+c(c - d)(k  )2(k + fl)Cn, k+l = 0 (k = 1 ,2 , . . .  ,n)  

with the initial conditions Cn, n = 1, Cn,n+l = O. 
For d = c, this equation simplifies to the first-order equation 

(1 - c)(n - k + 1)C.,k-1 -- ck(k - n + fl - 7)c.,k = 0 (k = 1 , 2 , . . . , n ;  Cn,  n = 1), 

which implies the formula 

(:)(  c 
M.(x; e, c) = ~ ~ (~ -/~)kMo_~(x;/~, c). 

k=0 

Gasper [5] gave an explicit formula for c.,k in terms o f  

( k - n ' k + ~  c ( 1 - d ) )  
2F1 d(1 - c-) " 

k + 7  

He also showed that Cn, k >1 0 iff d ~> c and 7 ~>/L 

3.2. 6. Krawtchouk-Meixner 
For the connection coefficients c.,k in 

Kn(x; N, p)  = ~ Cn,kMk(x; fl, C), 

k=0 

we obtain the second-order recurrence relation 

(1 - c ) 2 ( n - k +  1)On, k-1 q-(¢--  1 ) k [ ( c -  1 ) p ( N - k +  1 ) + c ( 2 k - n + ~ -  1)] cn,~ 

+c(cp - c - p ) ( k ) z ( k  q- f l )Cn,  k+l = 0 (k = 1,2,. . . ,  n), 

with the initial conditions c.,. = 1, c.,.+1 = 0. 

223 
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Gasper  [5] expressed cn, k in terms o f  

zF1 ( k - n , k + f l  c ) 

k - N p(c  - 1) 

3.2.7. Charlier-Krawtchouk 
For  the connec t ion  coefficients Cn, k in 

Cn(x;a) = ~ Cn,kKk(x; p , N ) ,  
k=0 

we obtain the second-order  recurrence  relat ion 

(k - n -  1)Cn, k-X 

- k  [ p ( 2 k  - N - n - 1) + a] Cn, k -- p2(k)2(N - k)c.,k+~ = 0 

(k = 1 , 2 , . . . , n ) ,  

with the initial condi t ions  c. , .  = 1, Cn, n+l = O. 

3.2.8. Meixner-Krawtehouk  
For  the connec t ion  coefficients c.,k in 

M.(x;f l ,  c) = ~ c.,kKk(x; p , N ) ,  
k=0 

we obtain the second-order  recurrence relation 

(1 - c)(k  - n - 1) c.,k_l - k [(1 - c )p (2k  - N - n - 1) + c(k + fl - 1)] c.,k 

- p ( c p -  p -  c ) ( k ) 2 ( N -  k)c.,k+l = 0 (k = 1 , 2 , . . . , n ) ,  

with the initial condi t ions  Cn, n = 1, Cn, n+l = O. 

3.2.9. Krawtchouk-Krawtchouk 
For  the connec t ion  coefficients c.,k in 

K . ( x ; q , N )  = ~ c.,kKk(x; p , N ) ,  
k=0 

we obtain the second-order  recurrence  relation 

( k -  n - 1)c . ,k_l  

+ k  [ ( 2 p  - q)k  - ( p  - q ) (N  ÷ 1) - np] Cn, k + p ( p  - q)(k  )z(N - k)  c.,k+l = 0 

(k = 1,2 . . . . .  n), 



S. Lewanowicz / Journal of Computational and Applied Mathematics 76 (1996) 213-229 

with the initial conditions c.,. = 1, c.,.+1 --- 1. The explicit form is [11] 

cn, k=  ( k ) ( p - - q ) n - k ( N + l - - n ) n _ k  ( k = 0 , 1 , . . . , n ) .  

225  

4. Associated polynomials 

Given a system {Pk(x)} of classical orthogonal polynomials of  a discrete variable, the associated 
polynomials {P(kl)(x)} are defined recursively by 

_ ,.(1) rx  (4.1) xP~l)(x) = ~0(k + 1)p(kl)l(x) + ~l(k + 1)P(kl)(x) + ~2(k + l)/"k+l,, ) 

( k  = o,  1 , . . . ;  - -  o ,  - -  1) ,  

notation being that of  (1.1). Recently, Atakishiyev et al. [2] have shown that for any natural n, 
f ( x )  = P~l)_l(x) obeys the following second-order difference equation: 

L*~f(x) =- VA[a(x)f(x)]  - V[z(x)f(x)]  + 2 , f (x )  = n(A + V)P,(x),  (4.2) 

where we assume that {Pk} are monic, and 

1 _tt .Ct. 
K : :  5 o  - -  

Let us look for a recurrence relation for the Fourier coefficients ak[P~l(x)], i.e., the connection 

coefficients r (1) ~tan_l,kt in 

rl--I 

e ~ l ( X )  = ~_~ a(n21,kPk(X) • (4.3) 

k=0 

Let us denote 

(1) (1) Z. ~(1) (4.4) bn-l,k := b~[Pn-1] = "~k",-1,k" 

Theorem 4.1. The coefficients i,(1) satisfy the recurrence relation Un-t ,k  

£pi,0) = 0 (2 ~< k ~< n - r + 1), (4.5) t.'n_ l, k 

where 

~a := 2ka(Sf) - ~z(SY) + 2,~2~-1~. (4.6) 

The order r of  the relation (4.5) equals 3 for Charlier, Meixner and Krawtchouk polynomials, and 
4 for Hahn polynomials. 

Proof. Let f ( x )  = P~l)_l(x ). By virtue of (4.2), we have the identity 

bk[L*.f(x)] = ~c bk[(A + V)P.(x)].  
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Applying the operator J -  := ~2~-1~ to both sides of the above identity, and using (2.11), (2.10) 
and (2.15), we obtain 

c~ bk[f] = co(k) 

with the operator 27 ° given in (4.6) and 

co(k) : = x  ( ~  + ~ )  bk[P~]. 

Now, notice that b~[Pn] = hn6,~, so that co(k) = 0 for k < n - 1; hence the eq. (4.5). [] 

In the subsequent subsections we assume that the associated polynomials {P~l)(x)} are monic. 

4.1. Associated Charlier polynomials 

The coefficients ~(1) in the formula t ~n - l , k  

n -1  

c ~ l ) l ( x ; a )  Z (1) . - = a n _ l , k C k ( x  , a )  
k=0 

satisfy the third-order formula 

k ~ ( 1 )  ) a n _ l ,  k (n + ..jUn_l,k_ 1 + k(n + 2k + 1" (1) 

• . (1) ark ~ ~0) = 0 + ( k ) : ( k  + 2a + l)an_l,k+ 1 + ~ J3".-1,k+: 

with the initial conditions -(~) - -  1, a ° )  _(1) - -  O. Un--l,n--1 - -  n--l ,n ~ 6tn--l,n+l - -  

4.2. Associated Meixner  polynomials 

The coefficients "n-l,k-(1) in the formula 

n--1 
Mr~(1).. (1) -1 (x, fl, c) = ~ an_l,~Mk(x; fl, c) 

k=0 

satisfy the third-order formula 

],._]_(1) - - ( C - -  1)2(C + 1 ) k ( n + 2 k +  l ) a n _ l ,  k (C - -  1)3(n +.~jun_l,k_ 1 , ,  (1) 

+(c - 1)(k)2[(c 2 + 3c + 1)(k + 1) + c(n + 216 - 1~1-(1) 
/ a U n - l , k + l  

• x ( 1 )  

- (c )2 (k )3 (k  + f l +  l)a._l,k+ 2 = 0  (1 ~ < k ~ < n - 1 )  

with the initial conditions _(1) = 1, _(1) _(1) = 0. t'tn--l,n--1 t ' tn_l,  n 7---- Un_l ,n+ 1 

(1 ~ < k ~ < n - 1 )  
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4.3. Associated Krawtchouk polynomials 

T h e  c o e f f i c i e n t s  _(1) in  t he  f o r m u l a  Un--l,k 

n--t 
K o) tx; = , - 1 ,  p , N )  ~ a(nl)l,kgk(X; p , N )  

k = 0  

s a t i s f y  the  t h i r d - o r d e r  f o r m u l a  

. \  (1) (n + tc)an_l,k_ 1 - ( 2 p  - 1 ) k ( n  + 2 k  + 1)a(,~l,k 

- ( k ) 2 [ ( p  1 ) 2 ( 2 N  n 5k  4 )  (k  + 1 "1 (1) . . . . .  )]an_l,k+ 1 

+ ( p  1 ) 2 ( 2 p  1 ) ( k ) 3 ( N  . .  (1) - -  - -  - -  K ) a n _ l , k +  2 ~ 0 (1 ~< k ~< n - 1) 

w i t h  the  i n i t i a l  c o n d i t i o n s  a (~) - 1, _(1) = a (1) = 0. n--l,n--1 --  t~n--l,n n-- 1 ,n+ l  

4.4. Associated symmetric Hahn polynomials 

T h e  c o e f f i c i e n t s  d o )  in  t he  f o r m u l a  ~n--l,k 

l(n-1)/2J 
Q(~l(X; O~,o~,N) ~_, o) = dn_l,kQn_2k_l(X,O~,oqN ) 

k = 0  

s a t i s f y  the  s e c o n d - o r d e r  f o r m u l a  

(1) (1) (1) 
Bo(k)dn_t,k_ 1 + Bl(k )d~_l, k + B2(k )dn_l,k+ 1 = 0 (0 <~ k <~ [ (n  - 1 ) / 2 ]  - 1),  

w h e r e  

Bo(k) = 2 ( n  - 2 k  - 2 )4 (4K 2 - 9 ) ( x  - 1 )~(2k  - 2~  - 1 ) ( x  + k -t- 2 )  

x ( N - n + 2 k -  1 ) 2 ( t c + N  + ct + 1)2 ,  

Bl(k)  = 8(n  - 2 k  - 2)2rca(x  - 1 ) 2 ( 2 x  - 3 ) ( 2 x  - 1 ) ( 2 x  + 1 )  2 

x { ( ~ ) 2 1 4 ( N  + ct) 2 - (2ct - 1)(2ct + 3 )  - 1] - ( x  - e ) ( K  + 1) 

x [ (2~  + 1 ) ( 2 k  - N + ct + 2 )  + ( 2 k  + 1 ) (2n  - 2 k  - 1 ) - N ( N  - 1)] 

- n ( n  + 2 e  + 1 ) [ ( N  + e)2 + (~  _ 1 ) (~  + 2 )  - 1]}, 

B 2 ( k )  = 32(2~c + 3 ) (2 tc  + 1)3(2t¢ - -  1 ) 2 / ¢ 6 ( n  - -  k - 1 ) ( 2 k  + 2~ + 3) ,  

w i t h  t¢ : =  n - 2 k  + e - 1, a n d  the  i n i t i a l  c o n d i t i o n s  ,4o1 = 1, , t o )  - 0. ~ n - -  1,0 ~ n - - 1 , - - 1  - -  

227 
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Appendix 

Table 1 
Data for the monic Charlier and Hahn polynomials 

Charlier Hahn 

C~(x; a) Qk(x; ~, fl, N )  

(a > O) (o~, fl > - 1 ,  N E 2v+) 

x 

"C a - -  x 

2k k 

YC ak,~ -1 + (k + a ) J  + 8 

ak8 -1 

hk k!a k 

x (N  + ~ - x) 

( f l + l ) ( N -  1 ) - ( 7 +  1)x 

k(k + ~,) 

k(N - k)(k + ~)(k + fl)(k + 7 - 1)(k + ~ + N - 1) e_~ 

(2k + 7 -- 2)2(2k + y -- 1 )2 

k(k + oO(k + fl)(k + ? - l )2(N - k )(k + ? + N - 1 )  8_  1 

(2k + y - 2)2(2k + 7 -- 1 )2 

k(k + ?)[2k(k + y) + (7 - ~)(y - 1) - N(~ - f l ) ] j  _ kg  
( 2 k + y -  1 ) ( 2 k + v + l )  

k!F(k  + a + 1)F(k + fl + 1)(2k + y + l)u-~,-I 

(k + 7)k(N -- k - 1 )! 

Note: ? := a + f l +  1. 

Table 2 
Data for the monic Meixner and Krawtchouk polynomials 

Meixner Krawtchouk 

Mk(x; fl, e) Kk(x; p, N )  

(fl > 0, e E ( 0 , 1 ) )  ( p E ( 0 , 1 ) ,  N C 7 / + )  

0" 

2k 

y" 

hk 

X 

fie + (e - 1 )x 

( 1  - c)k  

ck(k + fl - 

(1 - c )  2 1 ) g - i  

+ [(c + 1 )k + flcJ j + ¢ 
1 - - c  

ek(1 - fl - k ) g _ l  + e k J  
e - - 1  

k!(~)ke  k 
(1 -- c) ,a+2k 

x 

(1 - p ) - l ( N p  - x) 

(1 - p ) - l k  

p(1 - p ) k ( N  - k + 1)g -a 

+[k + p ( N  - 2k)]..¢ + 

pk(1 + N - k ) g  - l  - p(1 - p ) - ~ k J  

N!k!  k. 1 (ff-2-- 7,)! p ~ _ p)k 
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