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ANNALS OF MATHEMATICS 
Vol, 36, No. 3. July, 1935 

LACUNARY RECURRENCE FORMULAS FOR THE NUMBERS OF 
BERNOULLI AND EULER 

By D. H. LEHMER 

(Received February 24, 1934) 

Recurrence relations for the computation of the numbers of Bernoulli have 
been the subject of a great many papers. Nevertheless, only two extensive 
calculations have been carried out. Adams' has calculated the first 62 (non- 
zero) Bernoulli numbers, while Cer6brenikof2 has given the first 92. Both these 
intrepid calculators used recurrence formulas of the most primitive sort, in spite 
of the fact that several formulas had already been given, which would have 
saved them many hundreds of hours. 

It is customary to give recurrences whose coefficients are neatly expressed in 
terms of familiar functions, sometimes at the expense of considerable labor in 
calculating their actual value. In the recurrence relations in this paper the 
coefficients are designed for ease of calculation at the expense of compactness of 
expression. 

The reader may question the utility of tabulating more than 92 Bernoulli 
numbers and hence the need of giving formulas for extending their calculation. 
It is true that for ordinary purposes of analysis, for example in the asymptotic 
series of the Euler Maclaurin summation formula, a dozen Bernoulli numbers are 
sufficient. There are other problems, however, which depend upon more subtle 
properties of the Bernoulli numbers, such as their divisibility by a given prime. 
Examples of such problems are the second case of Fermat's Last Theorem and 
the Riemann Zeta-function hypothesis. Our knowledge as to the divisibility 
properties of the Bernoulli numbers is still quite primitive and it would be highly 
desirable to add more to it, even if the knowledge thus gained be purely empirical. 

The method which we use applies not only to Bernoulli numbers B, but with 
equal ease to the numbers E, R, and G of Euler, Lucas and Genocchi.3 These 
four sets of numbers may thus be considered together to make a symmetrical 
theory. Moreover R and G may be simply expressed in terms of B so that we 
thus obtain three sets of recurrences for Bernoulli numbers. The coefficients 
of the power series for trigonometric functions of higher order may also be dealt 
with by the same method as we indicate briefly in ?4. 

In contrast to the recurrences usually given for Bernoulli numbers, in which 

1 Journal fhir Math. 85 (1878), 269-272. Collected Papers, v. 1. 
2 Akademija Nauk. Math. Phys. Kl: MImoires. Ser. 8. v. 16, no. 10 (1905), and v. 19, 

no. 4 (1906). 
3See Lucas: Theorie des Nombres, Paris, 1890, chapters 13 and especially 14. For elabo- 

rations of Lucas' theory of Bernoulli and allied numbers see the following papers by E. T. 
Bell: Trans. Amer. Math. Soc. 24 (1922), 89-112; 28 (1926), 129-148; 31 (1929), 405-421. 
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638 D. R. LIAMR 

B,, is made to depend upon all4 the preceding (non-zero) B's the recurrences 
given in this paper have gaps so that B,, can be computed from those preceding 
B's whose subscripts are congruent to n with respect to a modulus m the length 
of each gap. Recurrences with arbitrarily large gaps seem to have been con- 
sidered first by van den Berg.' Twelve years later the same results (in less 
explicit form, from the point of view of application) were obtained by R. Hauss- 
ner,6 who expressed the coefficients of the recurrences with large gaps in terms of 
the hypergeometric function. Both van den Berg and Haussner based their 
method on the power series expansion of the product of sin xx, where X runs 
over the nth roots of unity (a product suggested by Kronecker7). Both treat- 
ments, especially that of van den Berg, are unnecessarily long and complicated. 
A more straightforward discussion in finite terms has been given by Nielsen,8 
who gives only the simpler results, however. Mention should be made of the 
recurrences given by Ramanuj an9 for small gaps. In the present paper we 
obtain the recurrences of van den Berg and Haussner in a form for practical 
application, as a part of a more general discussion by a natural finite method, 
simpler than that of Nielsen. 

1. The present development is based on a certain sum"' ufn(p, q, r, s, t), which 
is defined for positive integral values of p, q, r, s, and for non-negative" values 
of n and t. 

(1) an = odp, q, r, 5, t) = E (71im2 * 273..1)(1 + 7718 + 712e2 + * + 2,_,e')n 

where e - e2ri/Pr and each -q, takes on the values 1, 27, 272, . ?.P2- where 7 = 
I27ri/pq and the sum extends over all (pq)'- possible combinations of these values. 
For s = r we have the following 

THEOREM A. akpq-rt(p, q, r, r, t) = 0 for every k for which kq is not a mnultiple 
of r. 

Proof. The (pq) ?- terms of o-.(p, q, r, r, t) may be grouped in two different 
ways into pq sets of (pq)7-2 terms each, by assigning definite values to either 
'1 or 271-l. We have in this way two partitions of a as follows: 

pq-1 pq-1 
(2) a= A Si 

Leo Vs-0 

Recurrences for B. involving only B, for n/2 < v < n have been given by Stern: Journal 
fur Math. 84, 216; Radike, ibid 89, 259; Saalschultz, Vorlesungen uiber die Bernoullischen 
Zahlen (Berlin 1893), p. 30 and Lucas loc. cit p. 240. 

" itOver Periodieke Terugioopende Betrekkingen tusschen de Coefficienten in de Ontwikkeling 
van Functien," Verslagen en Mededeelingen der Koninklijke Akademie van Wetenschap- 
pen. Amsterdam (1881), 16, 74-176. 

6 Gottinger Nachrichten (1893), 777-809. 
7 Journal de Math. (2), 1 (1856), 385. 
8 Trait6 elementaire des nombres de Bernoulli, Paris 1922, 195-225. 
9 Journal of the Indian Math. Soc. 3, 1911, 219-234. Collected Papers, p. 1-14. 
10 This sum is a natural generalization of the two sums of Kronecker, loc. cit. 
11 For n - 0O, . may involve 00. This is taken as unity. 
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LACUNARY RECURRENCE FORMULAS 639 

where in S,, i1 is fixed at ti", and in S', t7r-, is fixed at iv. We now consider 

S= (771772 . 7r-2i7Y)t(ti'e + C. + 7116i2 + + * t, fr-21) ) 

= 71vt+n(q+') * * t7r-2)'(1 + t71-q+v)6 + 71171-(q+v)62 

+ * * * + 7r-277 (q+ ) r ) 

since er - 71q If now we introduce into the first parenthesis the factor 771-() (q+') 

this parenthesis will contain the product of the t7's in the second parenthesis. 
Carrying out the summation indicated, we obtain precisely Spq(q+,). Hence 

nS - 7vt+n(q+v)+(r-1))(q+v)tSpq_(q+,) 
(3) 

e 

= ?n+rt+t )+P(n+rt)Spq-(q,+) 

Setting n = kpq - rt we observe that n + rt is a multiple of pq, so that the power 
of 77 in (3) is not a function of v, and, in fact, is i-# = e-rt. Summing (3) for v = 
0, 1, 2, * , pq - 1 we thus obtain in view of (2), for n = kpq - rt, 

- k pq-rta Opq-rt = E rta kpq-rt. 

That is 

((6P)kq - 1) 0kpq-rt = 0. 

Since eP is a primitive rth root of unity, the theorem follows. 

2. The Numbers Bn, Gn, Rny and En. These four sets of numbers may be 
defined by 

Bo = 1,t B, = - 1/2, (B + l)n -Bn = O (n > 1), 

Go =O, Gi = 1, (G + J)n +Gn = 0 (n >1), 

Ro = 1/2, R, = ?, (R +1) n-_ (R - l)n = 0J (n > 1), 

Eo = 1,y E, = O. (E + l)n + (E - l) n = 0Oy (n > 1), 

in which, after expansion, the exponents are degraded to subscripts. Equiva- 
lent definitions in terms of generating functions are 

eBz = Z or cos 2Bz = z cot z 
e- 1 

e ez = 2z or cos 2Gz = 2z tan z 
ez +1 

(5) 
eRz = ze-1 or cos 2Rz = z CsC "e 

e2z - 1 

eEz = 2e- or cos Ez = see z. 
,e2Z + 1 
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640 D. H. LEHRMER 

The numbers Bn, Rn, Gn, and En vanish when n is odd with the exceptions 
B1 = - 1/2, G, = 1. We subjoin a small table of the values of these numbers 
when n is even. 

in Bn Gn Rn En, 
2 +1/6 -1 -1/6 -1 

4 -1/30 +1 +7/30 +5 

6 +1/42 -3 -31/42 -61 

8 -1/30 +17 +127/30 +1385 

10 +5/66 - 155 -2555/66 -50521 

If we multiply each of the equations (4) by a.(rm) Xn-n and sum over n from 0 

to mn, (taking into special consideration the cases n = 0, 1), and then sum over 
m, we get the fundamental relations 

(6.1) f(B + x + 1) -f(B + x) = f'(x), 

(6.2) f(G + x + 1) + f(G + x) = 2f'(x), 

(6.3) f(R + x + 1) -f(R + x- 1) = f'(x), 

(6.4) f(E + x + 1) + f(E + x- 1) = 2f (x) , 

where f(x) = a0 + alx + a2X1 + ... 

If in (6.3) and (6.4) we set f(x) = n while in (6.1) and (6.2) we set f(x) = 

(2x - 1)n , and replace 2x by x in these latter results, we get 

(2B + (1 + x))n - (2B - (1 - x))ts = 2n(x - l) 

(2G + (1 + x))n + (2G - (1 - X))n = 4n(x - 1)n-1 

(R + (1 + x))n_- (R - (1- x)) n = nx1n-] 

(E + (1 + x))n + (E - (1 - x))n = 2xn. 

Before expanding the binomials in (7) according to increasing powers of the 
umbral letters B, G, R, and E, we recall that all odd powers vanish, except 
B1 and G6. The terms arising from these symbols we transpose. After expand- 
ing we may let x range over values xi to be determined later, and then sum over 
these values. We thus obtain 

I / /21 

22PB2, (\f) 2 (1 + xi)2: -X (-1)J(1-)- 

(8.1) _ 

= n. 8 (1 + xi)"' - (- 1)'t1 - s- 
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LACUNARY RECURRENCE FORMULAS 641 

[n/21 

z 22YG2, (2v) z (1 + X,),-2" + (_ 1)'(1 -J 
(8.2) 'o 

- 2n z (1 + x)n-I + (-1)n(l -X)-I 

[n/21 

t8.3) R2 () (1 + Iy)n-2y _ _)n(l _ Xj)7-2v n x xn-1 

=0 i 

[n/21 

(8.4) z E2, (2) z (1 + x,)-92 + (-1)n(1 - xi)"2 = 2 z x . 
1=0 j i 

We now seek to determine the xi with a view to applying Theorem A. It is 
simplest to consider first the equations (8.2) and (8.4). In these equations we 
make n even, say n = 2m. In the definition of Ofn(py q, r, r, t) set pq = 2 (that 
is i1 =-1). We now observe that if the set xi coincides with the set 

e + fl2 + ?73E3 + + flr-l 

then 

S (1 + x);, + (1 - xi)" =a,(p, q, r, r, 0) 
(9) 

X2m = e4imiPra2n(py q, r, r - 1, 0) 

where p = 1, q = 2 or p = 2, q = 1. Substituting (9) into (8.2) and (8.4) and 
using Theorem A with t = 0, we have at once the general lacunary recurrences 
for the numbers of Genocchi and Euler. First with p = 2, q = I we have 

[rn/rj 2 
(10.2) ; 22n2XrG2mX2x a27r(2, 1, r, r, 0) = -4mo-2m1(2, 1, r, r, 0) 

[rn/ti 2m 

(10.4) E2rn-2\r (2Xr) T2Xr(2, 1, r, r, 0) = 2e2Trirr-ml,(2, 1, r, r - 1, 0) 
X =o 

If r is odd, On(2, 1, r, r, 0) = Grn(l 2, r, r, 0). Hence (10.2) and (10.4) remain 
unaltered if r is odd and 2, 1 is replaced by 1, 2. For r = 2h however, different 
formulas are obtained from Theorem A, when p = 1, and q = 2. These are 

[r/h i 

(11.2) 22n2XhG2n_2xh (jh) 02\h (1, 2, 2h, 2h, 0) =-4rh02m-1 (1,2, 2h, 2h, 0) 
(0=_ 

im/hi 2 

(11.4) E2m-2Xh(9; 0)oXh(1 2, 2h; 2hp0) = 262rirn/h 02m,(1, 2)2h) 2h - 1,P0). 
,\MO 
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642 D. H. LERMER 

We now return to the numbers B and R. If we rewrite (8.1) and (8.3), sub- 
stituting yj for xi and if we multiply the equations in y, by (-1)n and add them 
to the equations in xi, we obtain at once 

[n/2 ] 

22vB2v (2n) E (1 + X;)-2^ - (1 - y) n-2r - (X)(1 - -2 

(12.1) 
+ (_-1)n(1 + yi) n- = n (1 + xi)n - (1 - yi)n- 

- (-1)n(1 - X))n-1 + ( -_ (1 + yi) n-l 

n/2] 

z Rev (2 ) z (1 +i x.2 -( _Yj)n2_ (-l)n(l _. x,)n-2 

(12.3) 

+ (-1)n(1 + yj)r-2P - n x in;- + (_1)nyn-1 

Again we set pq = 2 in (1), and choose n in (12.1) and (12.3) of the same 
parity as r in (1). Finally we choose for zx the set of 2r-3 quantities 

xi = . + fl2e2 + q7gE3 + + 77r-1<i] where 772773 ... 7tr-1 = +1, 

and for yj the 2r- quantities 

Yi= - + 7,262 + q 3 e + + -ler- where 712 73 *7r-i - (-1)r-. 

With these choices it is seen that 

E (1 + x,) - (1 - lh)M - (-1)n(1 -yxi)A + (-1)f(1 + yi) = a,(p, q, r, r, 1) 
and 

x xn1 + (_1) n-1 - 
e2vi(n-l)/PrO."_(p, q, r, r - 1, 1). 

Applying Theorem A and writing n - r = 2m, we have for p = 2, q = 1 

[rn/ r '2m+ r 
22vm-2X B2m-2X7 (.2X T1 a2Xr+r(2, 1, r, r, 1) 

(13.1) 8 \2Xr + r) 

= (2m + r)a2n4ri,-(2, 1, r, r, 1), 

(13.3) z \R2v&-2x (2Xr + r/ U2Xr.(2, 1, r, r, 1) 

- (2m + r)eri(2m+l1),r 2m+r,-(2, 1, r, r -1,1). 
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LACUNARY RECURRENCE FORMULAS 643 

If r is odd we may again interchange p and q without altering (13.1) or (13.3). 
For r = 2h, however, Theorem A gives us 

22m-2/hhiB2m-2Xh (2m+2h\ 2(, 2, 2h, 2h, 1) 
(14.1) x. 22-x 2Xh + 2h1Y 

= 2(m + h)a2.+2m+_i(1, 2, 2h, 2h, 1) 
Em/hi (2m+2h 

(14.3) x R2m= .2y (2Xh + 2h) T2Xh+2h(lX2,2h,2h,1) 

= eTi(2m-1)/h2(m + h)a2m+2h.1(1, 2, 2h, 2h - 1,1). 

3. Explicit recurrences. In order to obtain practical recurrences we have 
only to evaluate or to give some effective method for calculating the various 
a's that appear in equations 10 to 14. For small values of r or h this is simple 
enough. But it is very desirable to have large gaps, which means large values 
of r and h. The labor of calculating the a's increases very rapidly, so that a 
practical limit to the size of the gaps is soon reached. The most practical 
recurrences have gaps of 12. We subjoin a few explicit recurrences which may 
be derived from equations 10 to 14, by evaluating the a's and simplifying. 

From (10) and (13) we obtain for r = 2 the following recurrences with gaps 
of 4: 

[m/21 

YL (_1)X2in-2X B2in4 (24m+ 22)=( ) +1 4X +2/ 2 

mo (_1)x 2m-2X G2m-4A (2m) = (-1) [-2] 2M 

(15) im/2J + + 1 

z ( 1 )2 'R2m.. ( 4x + 2) = (-1> 2 }^ E) 2( 2 _ GA22A4 E2mw 2 4X)=(lm m 
x~~o ~ ~ ~4X/= 

In order to obtain recurrences with gaps of 4 from equations (11) and (14) 
we set h = 2, and get 

2 ( 2m+4) ((1)X2 -1) = m + 2 )n 2+ + 
BG2m+2 4 X +4/ ((- 22Xl +l)=-m(( [ ] 1) 

im/2 21/ 2m 

2G2.17 + 2m G+n4 (4i ((- 1)x 22X+1 + 1) = - m ~ 1) E- 2in-I + 1) 
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644 D. H. LEHMER 

[rn21 2rn + 4\ 
R2mX (4X + 4) 24X+4((- 1)x22X+ + 1) =(m+ 2)(c + 1) 

frn/2) 
4 

2m 201 
)= 

,+1 
2E2M, + 4X 24((-1)X22-l + 1) c' + 1 

X= 1 

where co = 11, c, = -41, and cn = -6cn, -25cn_2 

c = 1, c = -3 , and c' = -6cn, -25cn2. 

It is evident that these last recurrences are more complicated than (15). 
The same is true and to a greater extent for larger gaps. We shall not give 
space to further examples of equations (11) and (14). 

Recurrences with gaps of 6 are obtained from (10) and (13) putting r = 3, 
aiid are as follows: 

In&/31 2rn+3 6 if m = 3k-1. 

6X +3 2m+ 3 otherwise. 

4G2m+ 3 I = Tm if m = 3k-i 
XS. 0 6\ 4motherwise . (m/32mf1 f =3k-/ 

Lm/3 (2m + 3 26 2m + 3((_1)i3i+1 + 1) 
\26X +3/ 24 

E2m + 3 L E2w-6x ( 6X ) 26X =_ ((- 1)"'3- + 1). 

For r > 3, o-n(2, 1, r, s, t) can no longer be expressed explicitly without intro- 
ducing powers of irrationalities.'2 The practical method of evaluating these 
expressions is to resort to linear recurring series. Hence in the recurrences with 
larger gaps, the a's are given as recurring series, which, after all, are nearly as 
easy to work with as powers of an integer. Thus for r = 4, the following 
recurring series are used. 

n an an fJn fn nin gn 

0 2 2 1 1 -1 1 

1 1 0 -7 -3 -5 1 

2 1 3 41 17 -1 -7 

12 Thus for gn we have -2yn = (5 + aid) (1 - -8)n1 + (5 - v/I-) (1 + / -8)-1. 
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LACUNARY RECIJRRENCE FORMULAS 645 

3 -4 10 -239 -99 43 -23 

4 -34 14 1393 577 95 17 

5 -29 - 12 -8119 -3363 -197 241 

6 -41 -99 47321 19601 -1249 329 

7 140 -338 - 275807 - 114243 - 725 -1511 

a and a' satisfy the recurrence Un = -34U-4 - UL-8 

f and f' satisfy the recurrence Un = -6 Un-I --2 

g and g' satisfy the recurrence Un = 2 Un1 -9Un-2. 

With these definitions we have the following recurrences with gaps of 8: 
Im/4 I e 4) + -2 [+]2 X m 

B2 ~ \8A(2m + 4) 2 E442= (-1) 2 (m + 2) ( t 9 

m 4G2m)- 8X )4 = (41) m i 2 

0/4 (2 + 0\ 2 2 

R2 \8x m +5 
2 

46 4 - (m + 244f6 +829 a m 

x~~~o 
Im/4 I 2m + 

E2mrt-8X ) 2 6Xa4C =m f: g+ +. 

5 36 - 35 

E2-.1---8x 8x 2"CW, f". + g , , 

The recurrences with gaps of 12 are given explicitly in terms of the following 8 
recurring series: 

f On On n l1 Vn It'n 

0 1 2 0 2a 2 2 

1 5 5 1 -6 2 10 

2 26 7 2 10 -70 90 

3 97 -26 3 306 -1078 1234 

4 265 -265 4 -4846 -2446 18290 

5 362 - 1351 

6 1351 -5042 n 4V it 

7 -13775 - 13775 0 -1 1 0 

8 -70226 -18817 1 11 1 129 

9 -262087 '70226 2 - 101 - 179 200 
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640 D. H. I MZR 

10 -716035 716035 3 559 -1259 2660 

11 -978122 3650401 4 119 7129 35472 

5 and (3' satisfy Un = -2702 Un-- -Un-12 

u and u' satisfy Un = -12 Un,- -62 U.-2 +36 Un-3 -169 Un,, 

v and v' satisfy Un = 4 Un-I -78 Un_2 -428Un-3 -1369Un-4 

wand w'satisfy Un = 20 Un-1 -11OUn_2 +3566un-3 -25 Un-4- 

WIe have then the following recurrences 

/ B2m-12A (12X + 6 + (- 1) 26) 

M + 3 

+ 1)2iI-+2- n \ 6n 
m 
(+3m+2+ 

(-1) 
3,3 

if m 2(mod3) 

(15a) = ,r \ 

3 3(,,+2 + ( 1)L2J2m+2) if m # 2(mod 3) 

8 G2m + 3 G2rni2X (12X)(1 + i06k + (-1)X2CX-1) 

- 0m (1 + -i + (-1)[L12]2-i) 

where 0 is equal to 1 or -2 according as m 2 (mod 3) or not. 
Ifm/ 6] 

3 R2m-12X (2m + 6\ 9 2x+5 (06A+2 + ( 1)26)1+2) 
X-O \12x +6/ 

= (-1)m-1(m + 3)(u,.+2 + V,.2 - 
+2 

fm/Clm 
8E2m + 3 E2,2m 1 (2X 212-1(1 + 06x + (- 1) 26-1) 

=(_l)m(3m + (- 1)m + Um + Vm + Wm)- 

Recurrences with gaps of 14 or more are not so practical as those given above. 
We have worked out those with gaps of 16 (the next simplest case after 12), 
but these involve 8th order recurring series whose scales of relation have very 
large coefficients exceeding 10'5 in most cases. 

Replacing G. and R,, by 

Gn = 2(1 - 2n)Bn 

Rn = (1 - 2n-I)Bn 

in the abov e recurrences, we obtain further formulas for B,. 
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LACUNARY RECURRENCE FORMULAS 647 

In connection with the calculation of Bo, it is well to point out that Adams' 
method of using the von Staudt-Clausen theorem to eliminate fractions, can be 
adapted to any recurrence for Bn whatever, having integer coefficients. In 
fact, we make the substitution" 

(16) B2n - E i/p 

where the sum extends to all primes p for which p - 1 divides 2n. Then An is 
an integer and may be considered as the unknown part of BIn. Now if we sub- 
stitute (16) in any recurrence, we may combine and transpose to the right all 
terms arising from 1/p for each p involved. In this way it is clear that we obtain 
a series of fractions whose denominators are distinct primes and whose sum is an 
integer. Hence these fractions are actually integers'4 and the recurrences 
reduce to operations with whole numbers. 

To illustrate this process let us consider the computation of Biqa using (15a). 
For brevity we write 

(-l)'06X+2 + (-1)X26X+2 = CX 

co = 30, cl = 70482, C2 = 189767010,... 
Setting m = 98 in (15a) we obtain at once 

16(22/10 
z (- 1)XB196-12 12X + 6) 

1 
= -6 ( 2100 +3). 

Writing 

( 202 ) T 12X +6) ~T 

and using (16) we have 
16 

101 
(17) (_ 1)A9xTx = - 6 - 2'? + 3) + 1 i/p E T(- 1)&, 

X-0 p v 

where p = 2, 3, 5, . are primes and v are those solutions of the congruence 

(18) 196-12v _ 0 (mod p-1) 

for which 0 < v ? 16. From (18) we see that p ? 197 and that if p > 3, p is 
of the form 6x + 5. It is easy to verify that Loo - 210 + 3 is a multiple of 6. 

13 Adams (loc. cit.) wrote the equivalent of In = (-l)n-1 (An -1) so that I, = 0 for v ? 6. 
For lacunary recurrences this artifice is of little use. 

" This fact leads at once to interesting congruences modulo p involving the coefficients 
of the recurrence. 
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648 D. H. LEIHMER 

Hence each of the terms 1/p S T,(- 1)" is an integer. In fact, the actual terms 
are as follows: 

v lip E T,(- 1)v = 
31 

T,(- 1)v + (- T13 + TS - T3)/11 

-(+T16 + T1, + T. + T3)17 - T9/23 + (T14 - T7 + To)/29 

-(T13 + T3)/41 - T1/47 + T712/53 - T9/89 + Ts/101 - T7/113 

-Tr/137 + T4/149 + T2/173 + To/197. 

The fractional part of Bi96 by (16) is 183883/171390 Calculating A98 from 
(17) with the aid of the tables of Adams and Cer'brenikoff, and subtracting the 
above fractional part, we obtain the following value for B196: 

Numerator Denominator 

-62753 13511 04611 93672 55310 66998 93713 60315 

30541 53311 89530 55906 39107 01782 46402 41378 

48048 46255 54578 57614 21158 35788 96086 55345 
171390. 

32214 56098 29255 49798 68376 27052 31316 61171 

66687 49347 22145 80056 71217 06735 79434 16524 

98443 87718 31113 

This is the first instance of an isolated entry in the table of Bernoulli numbers. 

4. Application of Theorem A to other sets of numbers. The four sequences 
of numbers B, G, R, E are special cases, for h = 2, of a set of h2 sequences of 
rational numbers which are the coefficients of the power series developments 
of the h reciprocals and the h (h - 1) ratios of the h functions of Olivier"5 

zV zP+h zP+2h + (v + h)! + (v + 2h)! + (v = 0,1,2, ... h-i). 

The detailed account of these h2 sequences will appear elsewhere. We illustrate 
here merely the application of Theorem A to one of the 9 sequences associated 
with h = 3. This sequence of integers (the counterpart of E) we designate by 
WT and define as follows: 

wo = 1, (W + 1)n + (W + .)n + (W + .2)n = 0 

where o = ellil . It follows as in (6.4) that 

(19) f(W + x + 1) + f(W + x + W) + f(W + x + W2) = 3f(x). 

1; Journ. f Ur Math. 2 (1827), 243-251. 
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LACUNARY RECURRENCE FORMULAS 649 

Setting x = 0 and f(t) = ezt we have as the counterpart of (5.4), 

3~~~~~~ 3 = j~Z= 
ez + eWz + eW2z w0(z) 

from which we see that Wn is zero if it is not a multiple of 3. The first few non- 
zero values of W are 

WV = 1, W3 = -1, W6 = 19, TV9 = -1513, 1W12 = 315523. 

Next set f(t) = t3k in (19) and let x range over a set xi. Expanding and summing 
we obtain as in (8.4) 

5 W3k-3X(3X ) E (1 + XZ)aX + (1 + Xco)3X + (1 + W2X.)3X = 3 xi 
X -o 

In order to apply Theorem A we let xi run through the values 

Xi = e + 72,E2 + 73 E3 + + 1 rl-I 

where each -q = 1, W, w2. We have then the general lacunary recurrence 
[k/ri 3 

W UU (\zr) / 3Xr(p, q, r, r, 0) = 3e6kTilPro03k(p, q, r, r - 1, 0), 

where pq = 3. Setting r = 2 we have the following example with p = 3, q = 1: 

lVk+2[k/21 -k W3k + 2 JW3k-Sx E6 (-1)Y.33 = )k. 

PRINCETON, NEW JERSEY. 
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